

Preliminary Design for Flexible Aircraft in a Collaborative Environment

Pier Davide Ciampa, Björn Nagel

German Aerospace Center Air Transportation Systems

Darwin Rajpal, Gianfranco La Rocca

4th CEAS Air & Space Conference 16th-19th September 2013 Linköping

Knowledge for Tomorrow

Outline

- Scope: Enhancing Overall Aircraft Design (OAD)
- Collaborative Design and Optimization Environment
 - DLR centralized data model and design framework
- Enabling physics based OAD
 - Design and disciplinary analysis modules integrated
 - OAD Workflow development
- Study Cases
 - Conventional aircraft
 - Boxwing configuration
- Conclusions and Outlook

Overall Aircraft Design Exploring novel design space

- Visions and Scenarios demand the extension of the current design space
 - No data/knowledge available at the early stage (no handbook methodologies)
 - But effective physics based model available to assess new Technologies

Shift to the early stages

Unconventional OAD in pre-design

Unconventional configurations:

- Highly disciplinary coupled designs
- Unexpected behaviour
- MDO solution required

How to enable the pre-design of novel configurations?

Enhancing preliminary design requires:

- Physics based analysis (many modules are already available)
- Collaborative design approach with specialists in OAD (Overall Aircraft Design)
- Automation of the design process, and cross-disciplinary management

Collaborative Design Environment

Specialists

- Integration of modules developed by disciplinary specialists.
- A common namespace defined by DLR CPACS data format
- Design Framework for workflow orchestration
- Beyond tools: A system of distributed competencies.

DIR

OAD process

CPACS <u>Common Parametric Aircraft Configuration Schema</u>

a CPACS file...

- **Hierarchical** schema definition (xml-structure data format)
- Product and process information
- Standard within DLR (since 2005)
- External Partners
- Multi-scale, containing data on:
 - Aerodynamics
 - Structures
 - Mission
 - Climate
 - Fleets
- Open source:

http://code.google.com/p/cpacs/

...the same CPACS file!

Design Framework RCE <u>Remote Component Environment</u>

- Decentralized system
- Workflow development
- Distributed architecture
- DLR developed
- Open source

Tools remain on owners' servers. Exchange of input and output in CPACS format via the network.

Modules

CPACS

DEE Initiator Conceptual OAD

- Conceptual design code
- Developed at TU Delft
- Conventional and Unconventional
- Consists of three separate modules-
 - Initializer
 - Analyzer
 - Optimizer
- CPACS compatible

Aerodynamics Module Aerodynamics Design

- Physics based aerodynamics module
- Automated generation lattice mesh for lifting surfaces
- AVL VLM solver for induced drag
- Additional components for estimation of wave and friction drag

Aeroelastic Engine Structural Analysis

Automated Generation of FE models: Multi-level approach:

Level-1

- FE beam formulation
- Distributed masses

Level-2

- FE shell formulation
- Hybrid Models

- Internal static and dynamic FEA solver or exporting of macros for commercial FEA
- Sizing process for the primary structures

Aeroelastic Engine FSI coupling

Collaborative design oriented:

- Loosely coupled
- Aerodynamics loads mapping (aero lattice → FE nodes)
- Structural displacements deformations (FE nodes → aero lattice or geometry)
- Coupling kernel based on a modular set of interpolation schemas (e.g. RBF)

Disciplinary Analysis Aero-Structural Sizing

Internal forces

ELEMENT:

Iterative Sizing

Workflow Development OAD process

3 phases workflow:

1) Initial Synthesis:

- Initialize the aircraft design
- Conceptual OAD tool

2) Physics based analysis:

- Aero-structural sizing loop
- Aircraft performance evaluation Rigid and Flexible (flexibility loop)

3) Multifidelity synthesis:

- Physics based values replace conceptual calculations
- New OAD synthesis

Workflow Development OAD process

Design Case I Conventional configuration OAD

Test configuration:

- TLAR defined in a Design challenge launched in December 2012

TLAR	
Range (nm)	2000
Mach cruise	0.79
PAX	190

Aero-Structural analysis:

- 2.5g pull-up maneuver
- Static strength sizing
- Isotropic material
- Fixed structural layout
- Rigid / Flexible trim and performance

3 OAD design process modes:

L0 design process:

- Only conceptual aircraft design

L1 Rigid design process:

- Conceptual and physics based design
- Aero-structural sizing, rigid performance

L1 Flexible design process:

- Conceptual and physics based design
- Including flexibility loop

Design Case I Results

ΟΔΠ	Conceptual L0
OAD	Initial OAD
mTOM [kg]	83145.7
mFM [kg]	18947
OEM [kg]	45198

Design Case II Results

- Unconventional boxwing OAD (ref. TLAR Pisa)
- Same approach conventional

	Conceptual L0
OAD	Initial
mTOM [kg]	245551
mFM [kg]	77474
OEM [kg]	126327

Conclusions and Outlook

- Collaborative design approach for aircraft in pre-design
 - Enabling physics based analysis
 - Focus on flexibility effects
- Integration of distributed physics based modules
 - Analysis starting from an initial OAD synthesis model
 - Disciplinary modules for aero-structural design and new synthesis
 - Flexibility loop influence

Design cases:

- Conventional aircraft behaves as expected
- Care has to be considered with the unconventional aircraft case
- Outlook:
 - Adopt the approach for design and optimization applications

Thank you for your interest!

Pier Davide Ciampa, Björn Nagel

German Aerospace Center Air Transportation Systems

Darwin Rajpal, Gianfranco La Rocca

4th CEAS Air & Space Conference 16th-19th September 2013 Linköping

