#### Development of a Subscale Flight Testing Platform for a Generic Future Fighter

Christopher Jouannet

Linköping University - Sweden





#### Subscale Demonstrators at Linköping University







## Plattforms at LiU/FluMeS



•Business Jet "Raven" •In-house design and fabrication

| •scale                     | ~1:7    |
|----------------------------|---------|
| <ul> <li>Length</li> </ul> | 1.76 m  |
| •wingspan                  | 2.00 m  |
| •TOW                       | 13.0 kg |
| •propulsion:               | 2x70 N  |

- •Forward swept wing
- •Dynamically scaled
- •High wing load for remote controlled aircraft



- Dassault Aviation Rafale
   Commercial Kit
- •scale
   1:6

   •length
   2.05 m

   •wingspan
   1.44 m

   •TOW
   ~14 kg

   •propulsion
   1x120 N
- •Used for high angle of attack testing
- •Serves as a flying test bench



•Generic Future Fighter (GFF) •Design: Saab

In-house fabrication

| scale      | ~ 1:7.5 |
|------------|---------|
| length     | 2.4 m   |
| wingspan   | 1.5 m   |
| TOW        | ~17 kg  |
| Propulsion | 1x160 N |

- •Model of a fictive fighter of the 5<sup>th</sup> generation
- Thrust vector nozzle



#### Background: The Research Project

- Research study from the Swedish Material Board (FMV) initiated in 2006.
- Aeronautical design and integration of a Generic Future Fighter (GFF) with stealth capabilities, super-cruise and long range.
- Parties involved:
  - Saab AB
  - Swedish Defense Research Agency (FOI)
  - Volvo Aero
  - Linköping University (LiU)
  - Royal Institute of Technology (KTH)





## Background: Specifications

- The specification of the GFF asked for:
  - Multirole
  - Stealth
  - Internal payload bays
  - Super-cruise
  - Integration of future sensors and system architecture
  - Studies of a new engine
  - Scaled demonstrator





## Background: The GFF Concept

- Three internal payload bays in the fuselage
- Canard configuration (i.e. a stealthy development of the Gripen system)
- Canted fixed fins by stealth reasons
- All moveable canards







## Background: The GFF Concept

> Main characteristics:

LiU

| Length             | [m]               | 17    |
|--------------------|-------------------|-------|
| Height             | [m]               | 4     |
| Span               | [m]               | 10,5  |
| Wing Area          | [m <sup>2</sup> ] | 47    |
| OEW                | [kg]              | 10000 |
| Design Weight      | [kg]              | 15400 |
| Internal Fuel      | [kg]              | 6200  |
| MTOW               | [kg]              | 23500 |
| New Engine with AB | [kN]              | 170   |







## Background: Challenges

- FOI investigations confirmed interactions between vortices and fins:
  - vortices created by the sharp edges of the forebody and/or canard at high angles of attack
  - major problem in the past on similar aircraft configurations (like the Boeing F/A-18 Hornet and the Lockheed F-22 Raptor)
  - potential flutter and/or fatigue problems
- May require structural modifications and hence a heavier structure



## Background Water Tunnel Testing

The tunnel is being used to investigate the vortex breakdown behavior and its relative location to the fin







## Introduction: Subscale Flight Testing

- Allows to evaluate the flight characteristics prior to building a full-scale prototype
- Investigate extreme, high-risk portions of the flight envelope without risking expensive prototype air vehicles
- Evaluate, demonstrate and compare high-risk platforms and technologies without the prohibitive expense of a full-scale vehicle
- Subscale flight testing is not new: several examples are available (MDD X-36, Rockwell HiMAT, Saab UCAV, NASA X-43A-LS and Gulfstream Quiet Supersonic Jet)













# Flight Testing: Airfield & Test Procedures

#### Test site:

- Closed military airfield
- > Test procedure:
  - Pilot + one observer/system controller
  - Flight only within visual range no usage of autopilot
  - Flight manoeuvre / segment marking by setting timestamp flag





#### **Available Scaling Methods**

- Different scaling methods can be employed. Key scaling similarity conditions that must be met in order to achieve full similarity are:
  - Geometric similarity
  - > Aerodynamics
  - Reynolds number (inertia-to-viscous forces ratio)
  - Mach number (inertia-to-pressure force ratio)
  - Inertial scaling
  - Froude scaling





#### **Scaled Model**

- 13% down-scaled demonstrator
- > Main influencing factors:
  - Handling
  - > Transportability
  - Weight estimation
  - Availability of jet engines
- Careful landing gear installation





#### **Scaled Model Cost**







## Flight Test Equipment

The objective:

to construct an instrumentation package consisting of both the ground and airborne package.







## Manufacturing: General Considerations

- The demonstrator is realized in composite materials with the internal structural elements of the fuselage made of plywood and carbon-fiber.
- ➤ Fuselage: sandwich of two glass-fiber layers and one Herex<sup>TM</sup> sheet, cured in vacuum bags.
- ➤ The moulds were milled from RenShape<sup>TM</sup> 5460 blocks directly from the outer mould-line of the aircraft defined in CATIA V5.







## Manufacturing: Engine Installation & Fuel System

- Engine: JetCat P160
- Thrust-vectoring exhaust pipe
- Engine placement?









#### Maiden Flight



Linköping University









#### **Conclusions and Future Work**

- ➢ GFF: the latest subscale demonstrator that has been designed and manufactured at Linköping University for a very low cost 50 k€
- Incorporates the results from a research initiated by the Swedish Material Board (FMV) in 2006
- After a successful maiden flight, the flight testing will continue during summer 2011
- Water tunnel and CFD analyses are/have been carried out and indicate that vortex brake-down at higher angles of attack seem to interact with the fins
- The demonstrator will be flown to specifically explore the effects of the vortices on the fins and the risk for potential problems





#### Thank you!



From left to right:

K. Amadori, D. Lundström, P. Berry, C. Jouannet, P. Krus, I. Staack (T. Melin missing on the picture)



2010 ICAS - 19-24 Sept.



## Scaling Method: Froude Scaling

> In this project Froude scaling is used, originating from the similarity parameter Froude number  $N_{Fr}$ :

$$N_{Fr} = \frac{V^2}{\ell \cdot g}$$

- The method compensates for inertial and gravitational effects, assuming that two objects flying at different speed, altitude, etc. have the same Froude number.
- From the conversion factor n, a wide spectrum of quantities can be derived, i.e.:

$$\frac{\ell_{\mathrm{M}}}{\ell_{\mathrm{A}}} = \mathbf{N}_{Fr} \quad \rightarrow \ell_{\mathrm{M}} = \mathbf{N}_{Fr} \cdot \ell_{\mathrm{A}}$$



2010 ICAS - 19-24 Sept.



## Scaling Method: Froude Scaling

LiU

| Scale | Size  | Wing Span | Weight  | Design Weight |
|-------|-------|-----------|---------|---------------|
|       | [mm]  | [mm]      | [kg]    | [kg]          |
| 1,00  | 17000 | 10500     | 23500   | 15400         |
| 0,17  | 2890  | 1785      | 115,456 | 75,660        |
| 0,16  | 2720  | 1680      | 96,256  | 63,078        |
| 0,15  | 2550  | 1575      | 79,313  | 51,975        |
| 0,14  | 2380  | 1470      | 64,484  | 42,258        |
| 0,13  | 2210  | 1365      | 51,630  | 33,834        |
| 0,12  | 2040  | 1260      | 40,608  | 26,611        |
| 0,11  | 1870  | 1155      | 31,279  | 20,497        |
| 0,10  | 1700  | 1050      | 23,500  | 15,400        |



2010 ICAS - 19-24 Sept.

#### **Europeen Student project**

#### Goals

- Run a common aircraft design project at different university
- Work shearing
- Usage of common tools
- From concept to flying prototype (scaled or not)
- Run as a "mini company" with a steering board
- > Enable student to work within a "real project" during education
- Spread design teams



