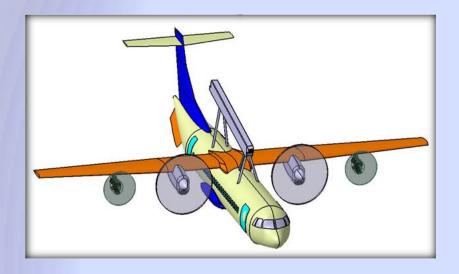


## **EWADE 2011**

10th European Workshop on Aircraft Design Education - Naples 2011



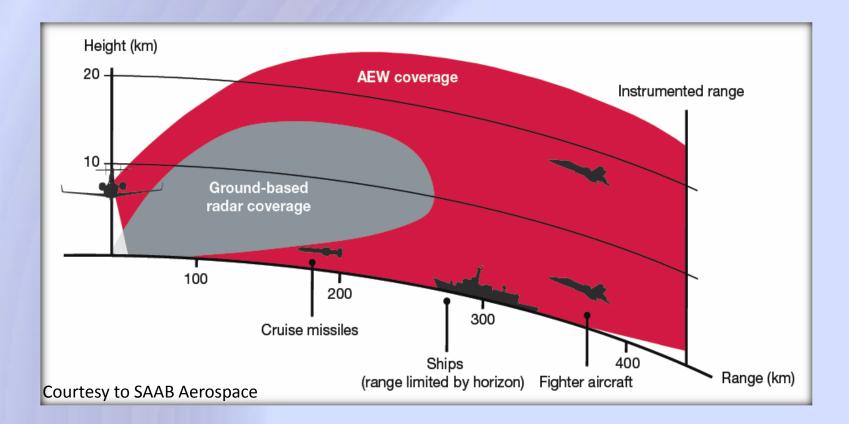
## Regional turboprop conversion for AEW&C purposes supposing auxiliary engine installation. Technical and economical analysis


Prof. Sergio Chiesa Prof. Nicole Viola Eng. Marco Fioriti Eng. Giovanni Antonio Di Meo (Politecnico di Torino Professor) (Politecnico di Torino Professor) (Politecnico di Torino Ph.D) (Alenia Aeronautica Ph.D Student)

## **Project scopes**

To Investigate the impact of the conversion of a regional turboprop platform to AEW&C asset

To technically analyze the hypothesis of realization of a AEW&C asset whose performances are comparable with jet engine aircraft but with fuel consumption advantages of a turboprop engine aircraft


To perform a effectiveness-cost assessment to demonstrate the validity of the solution in an economical perspective



# Section 1: Introduction

## Airborne Early Warning and Control (AEW&C)

The baseline of a AEW&C platform is to put a surveillance radar at <u>high altitude</u> in order to have an high surveyed area



### Two Kind of platform performing AEW&C missions: 1) Turbofan Airliners

Strategy to reach high altitude = > using turbofan engined platform

| CONs                         |
|------------------------------|
| rating and acquisition costs |
| r                            |

### "Boeing E-767 AWACS "

- Service ceiling, 12.200 m
- Platform, 767-200
- AN/APY-2 radar
- 2x Turbofan engine, 276 kN





### "Boeing 737 AEW&C"

- Service ceiling, 12.500 m
- Platform, 737-700
- ESSD MESA radar
- 2 x Turbofan engine, 121 kN

### Two Kind of platform performing AEW&C missions: 2) Regional Turboprop

Strategy to reach high altitude => using turboprop platform with high power to weight ratio engines of 0,20-0,26 KW/Kg (typical values are 0,16-0,17 KW/Kg)

| PROs                                             | CONs                                                         |
|--------------------------------------------------|--------------------------------------------------------------|
| Lower operating costs than turbofan<br>platforms | Higher fuel consumption than conventional turboprop platform |

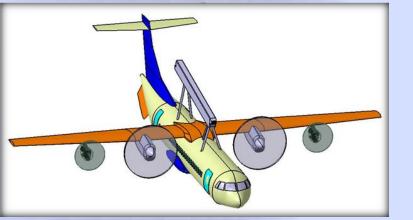


" SAAB 2000 AEW&C"

- Service ceiling, 9.450 m
- OEW, 14.500 kg
- MTOW, 23.000 kg
- 2x Rolls Royce turboprop, 3096 KW



"SAAB 340 AEW&C"


- Service ceiling, 9.450 m
- OEW, 8140 kg
- MTOW, 13.155 kg
- 2x Rolls Royce turboprop, 1305 KW

### **Proposed Solution :**

### **Regional Turboprop aircraft with auxiliary diesel power unit\***

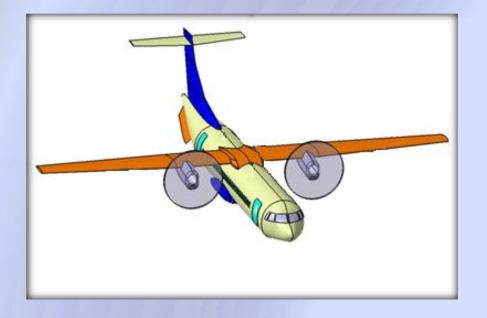
Strategy to reach high altitude: Assuring a part of the power to be constant with altitude by installing turbocharged diesel auxiliary engines

| PROs                                                                                                | CONs                                  |
|-----------------------------------------------------------------------------------------------------|---------------------------------------|
| Part of power generated by diesel engines<br>with lower specific fuel consumption than<br>turboprop | Installation of supplementary engines |
| Similar performances to AEW&C turboprop<br>at lower fuel consumption                                | Aerodynamic Drag increase             |



### "Diesel Turboprop AEW&C"

- Service ceiling, 9.480 m
- OEW, 12.950 kg
- MTOW, 22.000 kg
- 2x Turboprop, 1850 KW
- 2x Diesel engine, 183 KW (until 10 Km altitude)


\*Considered engines are on development for UAS-MALE application

# Section 2: Conversion Issues

### Conversion issues: Platform choice

### **Basic platform**

Turboprop aircraft for regional transportation purposes



"Regional Turboprop"

- Service ceiling, 8138 m
- OEW, 12.950 kg
- MTOW, 22.000 kg
- 2x Turboprop, 1850 KW

## **Conversion issues: Radar antenna positioning against fuselage**

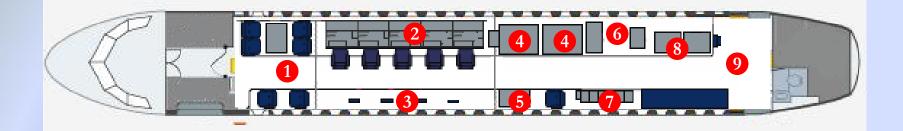


#### ERIEYE AEW&C Radar system

- AESA technolgy
- Length 9,7 m
- Weight 1300 Kg
- Power absorption 60 KVA\*

#### **Distance to fuselage**

Antenna height has to assure a sight angle of about 7° on unloaded wing

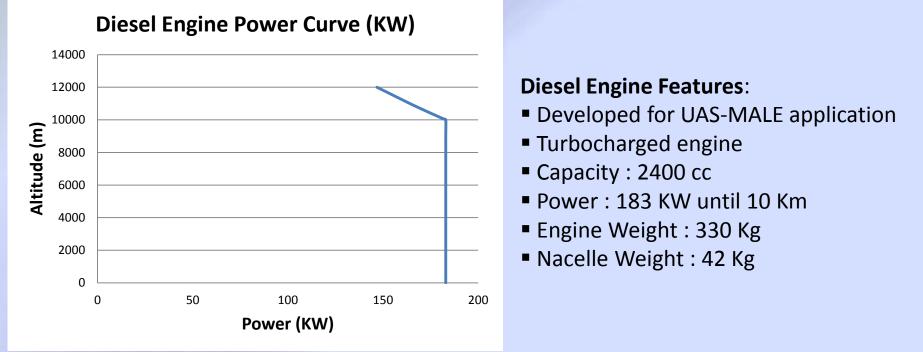



Inclination Angle Antenna has to be parallel to horizon on flight



#### \* Estimated value

## Conversion issues: AEW&C interior systems accommodation




- 1 Rest Area
- 2 Mission operator console
- **3** Folding seats
- 4 Auxiliary fuel tank
- 5 Electronic Warfare equipment

- 6 ERIEYE equipments
- **7** ERIEYE power units
- 8 Communication rack
- 9 Cargo and Galley

## **Conversion issues:** *Diesel Engine Installation*

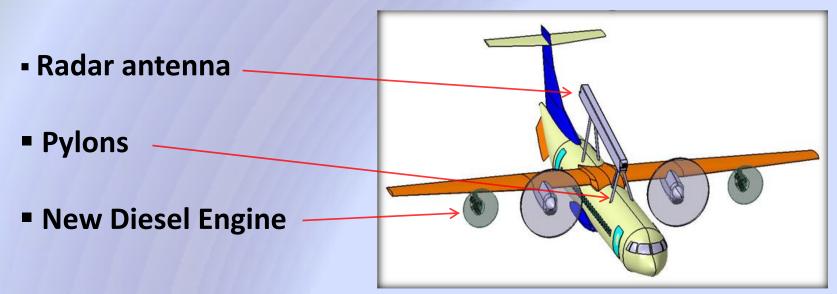
Diesel Specific fuel consumption : 231 gr/KW h A typical value for turboprop engine is 275 gr/KW h (+ 19%)



| Installation facts        |       |  |
|---------------------------|-------|--|
| Starter/generator         | 20 Kg |  |
| Pylon                     | 18 Kg |  |
| Pipe and electrical lines | 40 Kg |  |

### Conversion issues: Electrical Power supply

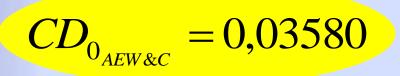
| Electrical Power Requirements                           | Available Electrical Power                                                                                                                                                     |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AEW&C Erieye Radar System<br>Power Absorption = 60 KVA* | <ul> <li>Typical regional turboprop platform are equipped with two 20 KVA class generators</li> <li>Diesel engines are equipped with 10 KW class starter/generators</li> </ul> |


Regional Turboprop electrical power system is not sufficient in order to supply power to AEW&C system



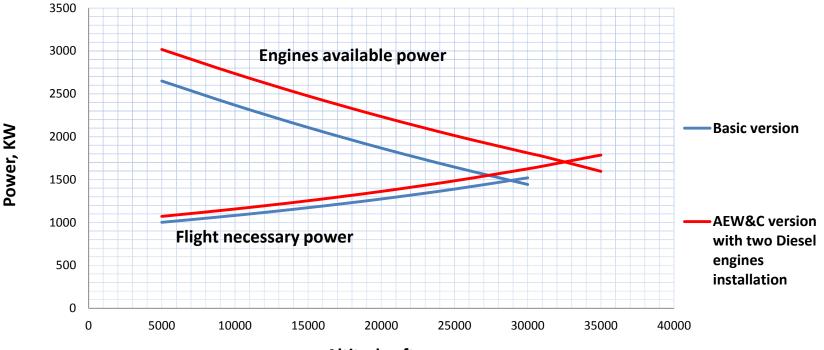
- Installing 40 KVA class generators instead of 20 KVA class generators
- Extracting power from APU during flight
- \* Estimated value

## Conversion issues: Zero-Lift Drag Coefficient increase


The conversion to a AEW&C platform causes the increase of zero-lift drag coefficient due to:



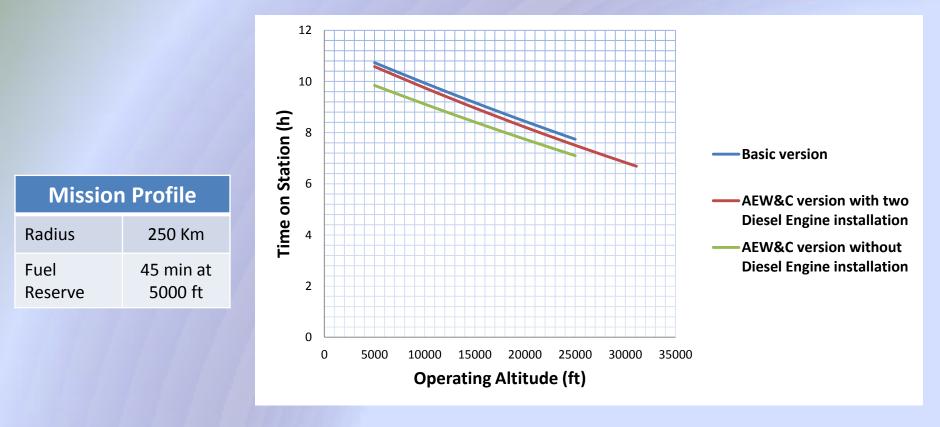
$$CD_{0_{AEW\&C}} = CD_{0_{Base}} + \Delta CD_{0}$$


## Conversion issues: Aerodynamic Drag break-down\* CD<sub>0</sub>

| Fuselage<br>Wing<br>Horizontal Tail<br>Vertical Tail<br>Engine Nacelles | 0,008053<br>0,014<br>0,0008347<br>0,001315<br>0,0032 | $CD_{0_{base}} = 0,027403$    |
|-------------------------------------------------------------------------|------------------------------------------------------|-------------------------------|
| Radar antenna<br>Pylons (x5)<br>Diesel Engine Nacelles<br>Interferences | 0,00254<br>0,00195<br>0,00150<br>0,00065             | $\Delta CD_0 = 0,0084$ (+31%) |



\*All CD's are normalized toward wing surface S

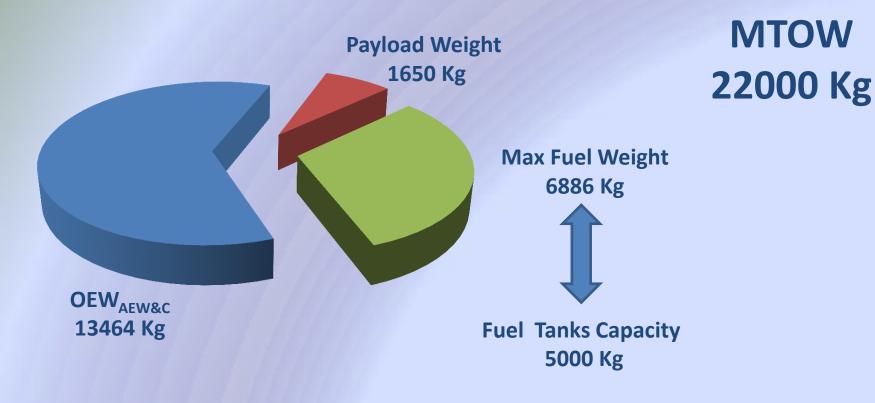

## Performance Analysis: Service Ceiling



Altitude, ft

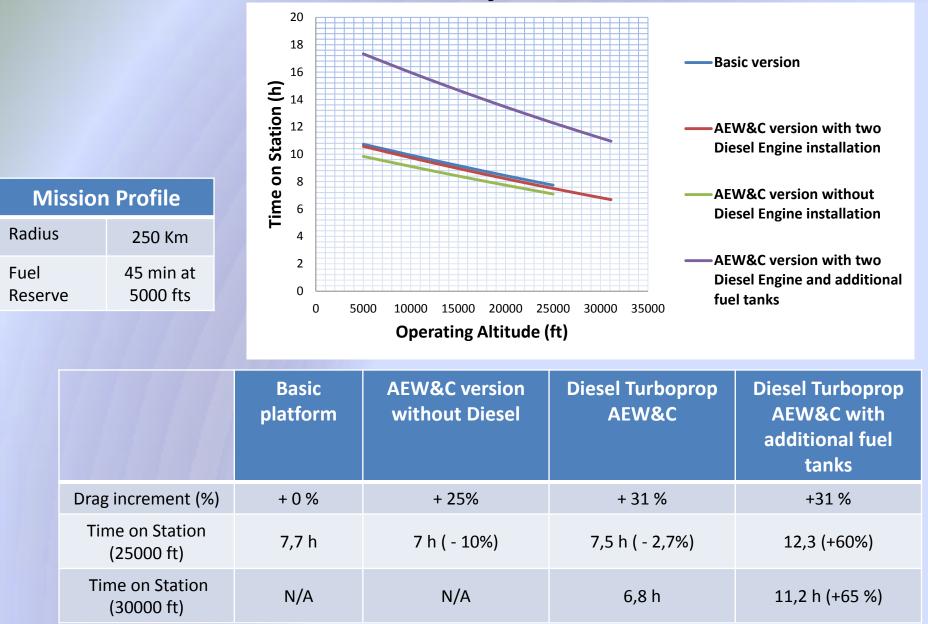
|                  | Basic platform   | Diesel Turboprop AEW&C  |
|------------------|------------------|-------------------------|
| Absolute Ceiling | 28200 ft (8595m) | 32680 ft (9960 m) +16%  |
| Service Ceiling  | 26700 ft (8138m) | 31100 ft (9480 m ) +16% |

### **Performance Analysis:** Endurance




|                               | Basic platform | AEW&C version without<br>Diesel | Diesel Turboprop<br>AEW&C |
|-------------------------------|----------------|---------------------------------|---------------------------|
| Drag increment (%)            | + 0 %          | + 25%                           | + 31 %                    |
| Time on Station<br>(25000 ft) | 7,7 h          | 7 h ( - 10 %)                   | 7,5 h ( - 2,8%)           |
| Time on Station<br>(30000 ft) | N/A            | N/A                             | 6,8 h                     |

### Weight Break-down : OEW changes due to conversion


| OEW <sub>basic</sub> = 12950 Kg                                    |           | Payload Estimation         |
|--------------------------------------------------------------------|-----------|----------------------------|
| - 2 hostess                                                        | -140 Kg   | AEW&C system               |
| - 72 seats                                                         | - 1080 Kg | ERIEYE Radar System 1300Kg |
| + 2 Diesel Engines                                                 | + 660 Kg  | Mission equipments 350 Kg  |
| + 2 Engine Nacelles                                                | + 84 Kg   |                            |
| + 2 Starter Generators                                             | + 40 Kg   | Payload Weight = 1650 Kg   |
| + 2 Fuel Supply Systems                                            | + 80 Kg   |                            |
| + 2 Nacelle Pylons                                                 | + 36 Kg   |                            |
| + 2 Strakes Surfaces                                               | + 50 Kg   |                            |
| <ul> <li>Pneumatic System for<br/>Radar Pylons De-icing</li> </ul> | + 40 Kg   |                            |
| + Mission Crew (8)                                                 | + 744 Kg  |                            |
| OEW <sub>AEW&amp;C</sub> = 1                                       | 3464 Kg   | New weight<br>break-down   |

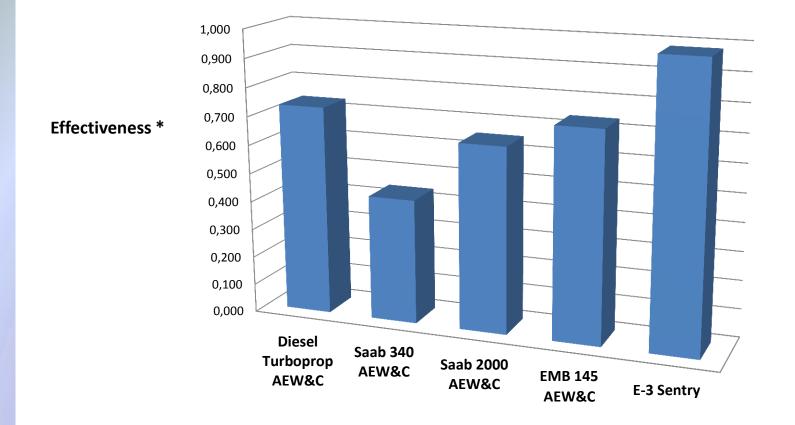
## Weight Break Down : Fuel Tank Addition



### It is possible to add a Fuel Tank of 1886 Kg

### **Performance Analysis: Endurance**



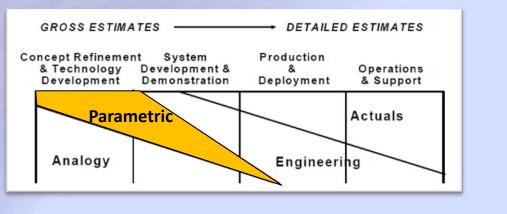

## Section 4: Effectiveness-Cost Analysis

### **Effectiveness analysis:** *Methodology*

| $\frac{\text{Global effectiveness}}{\text{of a platform}} U(x) = \frac{1}{K} \left\{ \prod_{i=1}^{n} \left[ Ka_{i}U_{i}(x) + 1 \right] - 1 \right\}$ |                           |                              |                    |                              |                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------|--------------------|------------------------------|--------------------|
| Normaliza<br>constant                                                                                                                                | ation                     | Relative imp<br>coefficients |                    | Effectivenes<br>single parar |                    |
|                                                                                                                                                      | Diesel AEW&C<br>Turboprop | Saab 340<br>AEW&C            | Saab 2000<br>AEW&C | EMB 145<br>AEW&C             | E3 - Sentry        |
| Max Endurance                                                                                                                                        | 12,5 h                    | 7 h                          | 9 h                | 8 h                          | 11,4 h             |
| Max Range                                                                                                                                            | 2261 nm                   | 937 nm                       | 2000 nm            | 2000 nm                      | 5000 nm            |
| Service Ceiling                                                                                                                                      | 9480 m                    | 9450 m                       | 9450 m             | 11275 m                      | 11855 m            |
| Radar System                                                                                                                                         | Erieye                    | Erieye                       | Erieye             | Erieye                       | AN/APY-2           |
| Crew                                                                                                                                                 | 10                        | 7                            | 10                 | 10                           | 17                 |
| TO Field Length<br>(ISA,SL,MTOW)                                                                                                                     | 1223 m                    | 1285 m                       | 1220 m             | 1970 m                       | 3054 m             |
| Max Cruise<br>Speed                                                                                                                                  | 511 Km/h                  | 522 Km/h                     | 660 Km/h           | 833 km/h                     | 973 Km/h           |
| Cabin Floor                                                                                                                                          | 41 m <sup>2</sup>         | 18 m <sup>2</sup>            | 28 m <sup>2</sup>  | 26 m <sup>2</sup>            | 106 m <sup>2</sup> |

### Section 4: Effectiveness-Cost Analysis

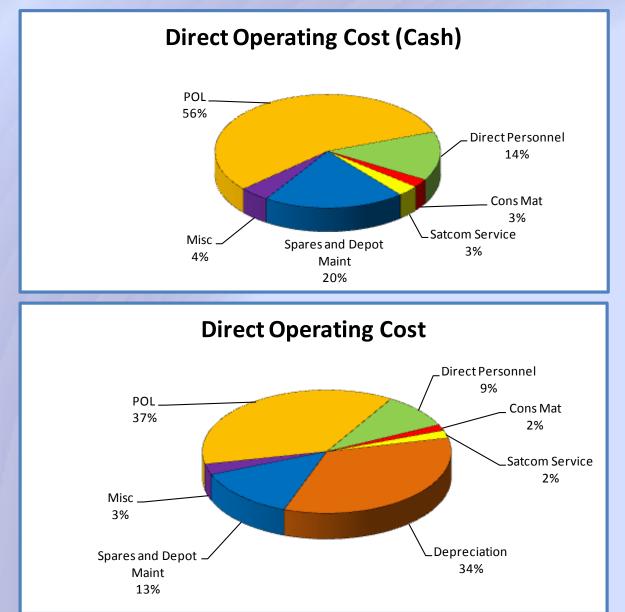
### **Effectiveness analysis:** *Results*



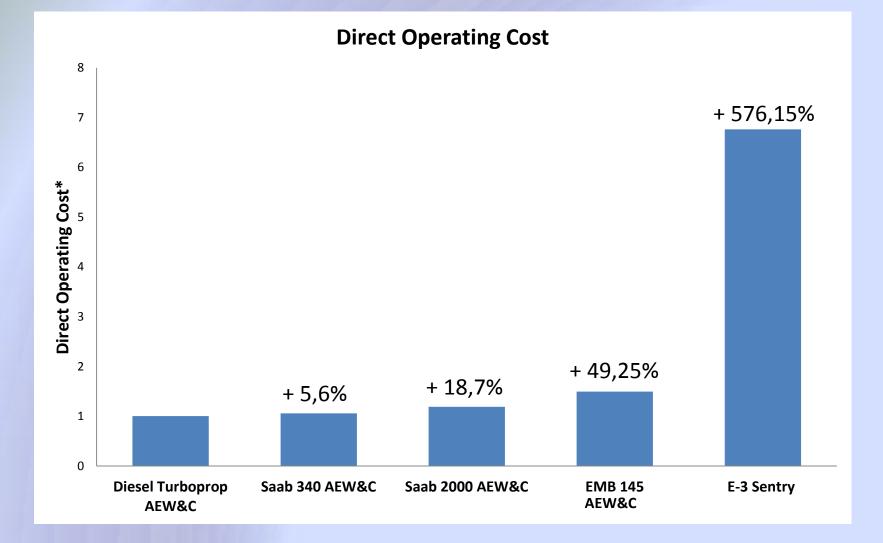

| Diesel Turboprop<br>AEW&C | Saab 340<br>AEW&C | Saab 2000<br>AEW&C | EMB 145 AEW&C | E-3 Sentry |
|---------------------------|-------------------|--------------------|---------------|------------|
| 0,734                     | 0,438             | 0,650              | 0,734         | 0,982      |

\* Normalized Values

### **Cost analysis:** *Methodology*

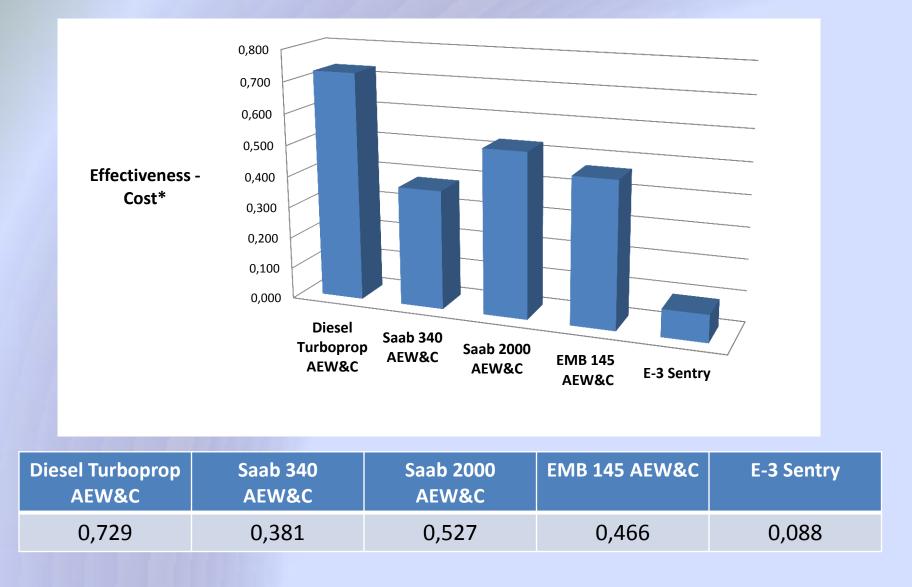

A homemade parametric/statistical model has been used to estimate aircraft maintenance cost. The MMH/FH parameter is the main model cost driver.




#### **Operating & Support Cost Items**

|          | Direct personnel (crew, maintainers), consumable material | > Parametric model                                                                                                                  |
|----------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Cash DOC | Spares and depot maintenance                              | $\longrightarrow$                                                                                                                   |
|          | Fuel and lubricants (POL)                                 | Fuel weight * fuel cost                                                                                                             |
|          | Satcom service                                            | 20% Mission time * SATCOM cost/ho                                                                                                   |
| DOC      | Above items and depreciation                              |                                                                                                                                     |
|          |                                                           | <b>Depreciation</b> , typical civil DOC item, has been calculated to take in to account the <u>aircraft</u> <u>acquisition cost</u> |

### Cost analysis: Diesel Turboprop AEW&C Results




### **Cost analysis:** Comparisons



\* Normalized Values

### **Effectiveness - Cost Analysis : Results**



\* Normalized Values



## **EWADE 2011**

10th European Workshop on Aircraft Design Education - Naples 2011



# Thank you all indeed

# Any question?