

EWADE 2011 10th European Workshop on Aircraft Design Education 24-27 May, 2011

Development of a Software for Aircraft Preliminary Design and Analysis (ADAS)

Fabrizio Nicolosi

Giuseppe Paduano

University of Naples Federico II^{*} Department of Aerospace Engineering (DIAS) <u>fabrnico@unina.it</u>

Aircraft Design

Aircraft Design is a complex process, articulated in many different stages spread over time and related between variously.

The preliminary/conceptual design is intended as an objective determination of the main geometric parameters, aerodynamic, structural, propulsion, stability and control characteristics useful to the initial definition of the new project, starting from the knowledge of the mission specifics.

ADAS 1.0

Aircraft Design and Analysis Software

ADAS 1.0

Aircraft Design and Analysis Software

A Software for the conceptual/preliminary design of transport aircraft (Transport Jet, regional TBP, business jet) and light aircraft

- Written in VISUAL BASIC (80 form x 1000 Average code lines)
- User Friendly GUI and useble on any Microsoft Windows Platform
- Indipendent calculation modules
- .txt Output Files
- Valid for Teaching and Professional applications
- Development started 2005

Università degli Studi di Napoli "Federico II"

Università degli Studi di Napoli "Federico II"

ADAS Flow Chart

- **ADAS Modules**
- Weight Estimation:

Example of results:

ADAS Modules

EWADE 2011 – 10° European Workshop on Aircraft Design education, Naples, Italy 24-27 May, 2011

- Sizing Requirements:

In this module will be estabilished the Design Point. That is very Important for the next Modules as here shown:

- Sizing Requirements:

The method choosed for this module is the classical use of the FAR 23 and FAR 25, as shown by Roskam:

- Sizing Requirements:

The Restrictions for the two type of FAR are summarized below:

- Sizing Requirements:

In ADAS all Data must be insert in Tabs. First choise is the FAR then there is one Tab for each Flight Condition, here FAR 25 JET is shown:

- Sizing Requirements:

In ADAS all Data must be insert in Tabs. First choise is the FAR then there is one Tab for each Flight Condition, here FAR 25 JET is shown:

Chall Canada Taba C					
)ff Distance Landing	Distance Climb Per	formance Cruise Per	formance Results Comparison	Chart
Aircraft Category	ansport jet				-
чтоw (њ)	160223 160223				
Gwet [ft^2]	8648 8648	LDo clean configuration	on > 0.0183 U.U	183 CLmax clean configuration	1.7
Eq. Friction Coefficient ?	? 0.0032	Oswald Factor -	e 0.81 💌	CLmax TO configuration	2.3
Eq. Parasite Area [ft^2] 💦	28 27.50	DCDo TO flap config.	0.013 💌	CLmax L configuration	2.0
W/S) [lb/ft^2]	105	Oswald Factor -	e 0.80 💌		
Wing Area S [ft^2]	1525.02	DCDo L flap config.	0.061 💌	Wland/Wto	
	1525.93	Oswald Factor -	e 0.73 💌	Tmax continuous/Tto (sugg. 0.94)	0.94
	9.5	DCDo gear down	0.020 💌	Tto(50*F)/Tto (sugg. 0.80) 0.1
Wing Span [tt]	120.4	DCDo OEI	0.0060 👻	Number of Engines	
Wing ^{AA} LE [deg] (Ex. 30)	25				
🗸 FAR 25.111 - (OEI - Gear up	p - Takeoff flap - Takeoff	Thurst or Power - Ground	effect - Altitude=SL)		
🗸 FAR 25.121 - (OEI - Gear de	own - Takeoff flap - Take	off Thrust or Power - Grou	nd Effect - Altitude=SL)		
🗸 FAR 25.121 - (OEI - Gear up	p - Takeoff flap - Takeoff	Thrust or Power - Altitude	=SL)		
🗸 FAR 25.121 - (OEI - Gear up	p - no flap - Max continuo	us thrust or power - Altitud	e=SL)		
🗸 FAR 25.119 - (AEO - Gear d	lown - Landing flap - Max	landing weight - Altitude=9	6L)		
▼ FAB 25 121 - (0EL - Gear dr	nwn - Annroach flan - Tak	eoff thrust or nower - Max	landing weight - Altitude	=51.)	
Requirement - Climb Rate or	Engines F	lap Gear		Alt [ft] BC [ft/min]	
		ouap 🔽 Ob 🔽	, , ,		

- Sizing Requirements:

In ADAS all Data must be insert in Tabs. First choise is the FAR then there is one Tab for each Flight Condition, here FAR 25 JET is shown:

- Sizing Requirements:

Wheen add acting in the transfer of the sequence of the sequen

- Wing Analysis:

This module allow to design and analyze any type of wings.

The first step is to decide the Wing Planform:

- Wing Analysis:

Next step is to decide the aerodynamic and geometrical characteristics for the representative sections of the wing :

Section	y/(b/2)	Chord [m]	X I.e. [m]	Epsilon [*]	Alpha zl [*]	Xac/c	Cm ac	Clalpha[1/*]	Clmax	t/c	dy/c [%]	CI×
1	0	2.7	0	0	-2	0.25	-0.02	0.11	1.5	0.12	2.6	1.1
2	0.3	2.7	0	-1	-2	0.25	-0.04	0.11	1.5	0.09	2.6	1.1
3	1	1.59	0.7	-2	-3	0.25	-0.06	0.11	1.5	0.09	2.6	1.1

_										
	Reynolds	Cd min. turb.	CIO	Lam. Bucket	Cd0 Bucket	k factor	Cm 0.25c(Cl=0)	dCm 0.25c/dCl	CI(Cm 0.25c n.l.)	Cm 0.25c(Clmax
	2,000,000	0.006	0.5	0.2	0.006	0.01	-0.02	0	1	-0.048

This step can be done also automatically, by the command "Wing Planform Easy Creator" that help the user to create:

- STRAIGHT TAPERED WING

- CRANKED WING

-Wing Analysis:

For Cranked wing the approach is sketched below:

-Wing Analysis:

🛦 ADAS Program - B737F	P - [Wing Planform]				_ @ X	
File ?						
CGeometric Input Date	1					
MTOW [kg] 65746	57000 Section y/(b/2) Chord [m] X I.e. [m] E	psilon [*] Alpha zl [*] Xac/c Cm ac Cla	lpha[1/*] Clmax t/c dy/c[%]	CI*		
Wing Area [m^2]112.22	105 1 0 6.23 0	0 -2 0.25 -0.04	0.11 1.5 0.1 2.2	1 Other		
Wing Span [m] 34.29	30.91 2 0.3 3.8 2.465	0 -2 0.25 -0.04	0.11 1.5 0.1 2.2	1 Data		
Wing-Fusolage d/b	0.1	0 -2 0.25 -0.04				
Number of sections	Cranked Wing	or Tables Autor	Wing Planfo	orm Easy Creator		
 _Output Data	Area [m^2]	CI*	t Data ——			
Wing Area [m^2]	Aspect Ratio - AR	Develde evelet	ide (m) (Ide [m] 0 Mach 0		
Aspect Ratio	Taper Ratio eq.	Reynolds number	: Wing Compressib	le 🔽		
Taper Ratio = ct/cr	Sweep Angle c/4 eq. [deg]	Cd min turbolent	Lift V Fuse	elage Effect on Drag		
Mean t/c wing [%]	Creq.					
Chord [m]	y/b/2 Crank	CIO	Tay Divergence	- Mach Esuilation		
	EXT LE % Cr	Laminar Buckat				
7,00	EXT TE % Cr		y/(b/2)	Calculate		
	Tip Twist Angle [deg]	Cd0 Bucket		(fixed sections)		
6,00	Airfoil Thickness t/c	k Factor		Chord		
5.00				distribution		
5,00	Outer Wing t/c (const)	Cm (Cl=0)		Equivalent Wing		
chord [m] 4.00				Acceduracia		
chord [m] 4,00				Results		
3,00	Allor	Cl (Cm non linear)		Final Aerod.		
	Cmac			Results		
2,00	Clalpha [1/deg]	Cm (Clmax)		Wing Analysis		
1.00	CI max			Calculator		
0,00		Cancel	Ok 🛛	Unit Converter		
				ISA		
	* 2-D Aerodinamic data are assumed co	instant along wingspan		Main Menù		

- Wing Analysis:

- Wing Analysis:

If required the correction for the presence of the fuselage is estimated

- Wing Analysis:

Here some skecth of results:

- Wing Analysis:

A great help for the choise of CLmax is given by the secondary module called *Crest Critical and Drag Divergence Mach Estimation*:

- Wing Analysis:

A great help for the choise of CLmax is given by the secondary module called *Crest Critical and Drag Divergence Mach Estimation*:

メ ADAS Program - A320 - [Wing	Planform]				
File ?					
Geometric Input Data ———					
MTOW [kg] 72676 72676	Section y/(b/2) Chord [m]	XI.e. [m] Epsilon [*] Alpha zl	[*] Xac/c Cm ac	Clalpha[1/*] Clmax t/c	dy/c [%] Cl* Airfoils
Wing Area [m^2]121.22 121.2	1 0 6.552	0 0	-2 0.25 -0.004	0.11 1.7 0.1	2 2.4 1
Wing Span [m] 33.94 33.94	2 0.3 4.345	2.731 -1.5	-2 0.25 -0.004	0.11 1.7 0.1	2 2.4 1 Uther Data
Wing-Fusolage d/b 0.1		9.103 -5	-2 0.25 -0.004	0.11 1.7 0.0	J9 2.4 T
Number of sections 3 🚍	Copy Data Section	Insert Section	Dele	ete Section	Wing Planform Easy Creator
Output Data				Aerodynamic Input	Data ———
Wing Area (m^2) 12	21.24 Wing Panel number	r 1 💽 🚺 M.G.C	. [m] <u>3.57</u>	C _{Lo,} formula Altitude	e (m) 11260 Mach 0.78
Aspect Ratio	9.501 Panel Area [m^2]	27.74 M.A.C	[m] 4.19	Anderson: Subsonic Swept	Wing Compressible 📃 💌
Taper Ratio = ct/cr 🗾	0.182 Taper Ratio	0.663 × l.e.	mac [m] 3.46	✓ Fuselage Effect on L	ift 🔽 Fuselage Effect on Drag
Mean t/c wing [%]	11.6 Sweep Angle L.E.	[*] 28.2 Ymac	[m] <u>6.46</u>	Court Critical and Da	
Chord [m]	Sweep Angle 0.25c	: [*] 23.2 y/(b/2) mac 0.380	Lifest Littical and Dia	ag Divergence Mach Estimation
Aerody No Fuselage Effect CL wing 1.00 CL max wing 1.39 CLa wing 1.39 CLa wing 1.12 αz.l. 0.112 αz.l. 15.9 α wing 15.9 CM_1 (int. Cmac) -0.004 CM_2 (Aer. twist) 0.036 CMac wing 0.032	ynamic Results Fuselage Effec s Factor (C _{Lα} wing (1/*) α [*] wing (*) U factor (Λ=0) (u factor (Λ) (()	t 1 1.978 ? 1 1.117	40 20 00 80 60 40 20 00 0 2 4 6 Alp No Fuselage Effect	8 10 12 14 ha wing [deg]	CC CL C

EWADE 2011 – 10° European Workshop on Aircraft Design education, Naples, Italy 24-27 May, 2011

- Wing Analysis:

A more detailed analysis is possible after the Semiempirical calculation with panels methods:

- Multhopp (for straight wing)
- Vortex Lattice (useful for Swept wing)

This methods allow us to calculate with a good approximation:

- Position of the Aerodynamic Centre
- CLmax with Stall Condition
- Structural Effect as Normal Force, Shear, Bending Moment and Torsion

Università degli Studi di Napoli "Federico II"

Università degli Studi di Napoli "Federico II"

EWADE 2011 – 10° European Workshop on Aircraft Design education, Naples, Italy 24-27 May, 2011

- High Lift Devices:

For this module it's used Semi-empirical approach combined by Torenbeek and Roskam methods.

 $\Delta Cl_{0:}$

EWADE 2011 – 10° European Workshop on Aircraft Design education, Naples, Italy 24-27 May, 2011

- High Lift Devices:

For this module it's used Semi-empirical approach combined by Torenbeek and Roskam methods.

- From 2D calculation to 3D

- High Lift Devices:

For this module it's used Semi-empirical approach combined by Torenbeek and Roskam methods.

- From 2D calculation to 3D
- Flap Type used:
 - Plain
 - Single Slot
 - Fowler
 - Double Slot
- Slat Type:
 - Leading-Edge Plain Flap
 - Slat
 - Krouger Flap
- Take Off and Landing are individually saved

ADAS Modules - High Lift Devices:

EWADE 2011 – 10° European Workshop on Aircraft Design education, Naples, Italy 24-27 May, 2011

- High Lift Devices:

EWADE 2011 – 10° European Workshop on Aircraft Design education, Naples, Italy 24-27 May, 2011

- High Lift Devices:

Università degli Studi di Napoli "Federico II"

ADAS Modules - Ailerons:

Università degli Studi di Napoli "Federico II"

ADAS Modules - Ailerons:

- Fuselage:

This module help the user to design a Fuselage for transport aircraft, contains also a sub-module that allow to approximate very well any type of fuselage shape.

- Basic Passengers Cabin Layout

The first step of Fuselage Design is to choose the Deck Layout:

ADAS Modules - Fuselage:

- Standard Fuselage Layout for Transport Aircraft

The second step is to design the fuselage Shape. It can be done with Standard approach, typical for Transport Aircraft, or Advanced.

For Standard Approach the program need:

With the use of 4 classical polinomial is described the fuselage shape

- Fuselage: - Draw Advanced Fuselage Layout

The alternative method to design a more detailed fuselage layout is to use the Advanced Fuselage Layout toolbox included in ADAS. This sub-module allow to:

- Modify standard fuselage as desired.
- Custom a new fuselage by clicking each point on the picture.

Lateral and plant view are constucted by a Spline through all choosed point.

The sections shapes are default elliptical in all part. But they can be changed by modification of two *control point*, and placed in any part of the fuselage.

Zone with different type of section may be linked by a *transition zone*.

- Fuselage: - Draw Advanced Fuselage Layout

- Fuselage: - Draw Advanced Fuselage Layout

- Fuselage:

- Draw Advanced Fuselage Layout

ADAS Modules - Fuselage: - Advanced Fuselage Layout

Another way to particolarize the fuselage shape is to modify section per section all part, it's also possible here to choose the X position of the passenger's cabin.

ADAS Modules - *Fuselage:* - *Wing-Fuselage Layout* The Third Step is to choose the position of Wing.

ADAS Modules - Fuselage: - Wing-Fuselage Layout

The Third Step is to choose the position of Wing.

ADAS Modules - Fuselage: - Analysis

ADAS Modules - *Nacelle:*

Another possibility of ADAS is to design the Nacelles:

Università degli Studi di Napoli "Federico II"

Università degli Studi di Napoli "Federico II"

AT

ADAS Modules - Performances:

➤ Turbofan model:

The model used for Low Bypass ratio is the *Pratt & Whitney* JT8-D For High Bypass ratio is the *Pratt & Whitney* PW-2037

ADAS Modules - *Performance:*

ADAS Modules - *Performance:*

ADAS Modules - *Performance:*

- Stability and Control:

The analysis of stability and control is divided in two part:

- Horizontal Tail Design Longitudinal Stability and Control
- Vertical Tail Design Directional Stability

- Stability and Control:

The methodologies used for this module:

• Wing Downwash: Roskam approach 1+A1.2 哑 Reproduced from Reference \$ $\frac{\partial \varepsilon}{\partial \alpha} = 4.44 \left[\left(K_A K_\lambda K_h \left(\cos \Lambda_{c/4} \right)^{1/2} \right)^{1.19} \right] \frac{C L_\alpha}{C L_{\alpha M=0}}$ Reproduced from Reference Reproduced from Reference S ÷ 1.3 25 Č. к_а 1.2-.25 C c) A-A L1 CHORD PLANE m

- Stability and Control:

The methodologies used for this module:

- *Stability and Control:* For Horizontal Tail Design CG constraints due to minimum stability (stick free), Control deflection in landing and take off rotation have been considered

Take off Rotation forces

- Min. stab.(SF)
- Control landing
- Take Off Rotation
- Choosen St/Sw

Università degli Studi di Napoli "Federico II"

ADAS Modules - Stability and Control:

- Stability and Control:

Longitudinal Stability and Control:

The equations used for the study of longitudinal stability are taken by classic methodology:

The slope of pitching moment with CL is given by:

$$\frac{dC_m}{dC_L} = \underbrace{\frac{dC_N}{dC_L}\frac{x_a}{c} + \frac{dC_c}{dC_L}\frac{z_a}{c} + \frac{dC_{mac}}{dC_L}}_{\text{Contr. of wing}} + \underbrace{\underbrace{\begin{pmatrix}\frac{dC_m}{dC_L}\end{pmatrix}_{Fus}}_{\text{Contr. of}} - \underbrace{\frac{dC_N_t}{dC_L}\frac{S_t}{S_w}\frac{l_t}{c}}_{\text{horizontal tail}} \eta_t}_{\text{horizontal tail}}$$

- Stability and Control:

Longitudinal Stability and Control: The equation used for the calculation of neutral point is:

$$N_0 = x_{cg(dC_m/dC_L=0)} = x_{ac} - \left(\frac{dC_m}{dC_L}\right)_{Fus}_{Nac} + \frac{a_t}{a_w} \,\overline{V}\eta_t \left(1 - \frac{d\epsilon}{d\alpha}\right)$$

So the Stability Static Margin can be calculated:

$$\frac{dC_m}{dC_L} = x_{cg} - N_0$$

The effect of Thrust on these equations is an additive term calculated by:

• For Propeller: $\left(\frac{d\dot{C}_m}{dC_L}\right)_{N_nT_{c=0}} = \frac{(dC_N/d\alpha)_{pT=0}(1+d\epsilon/d\alpha)l_pS_pN}{S_wca_w}$

$$S_w ca_w$$

• For Jet:

$$\frac{dC_M}{dC_L} = 0.035 \frac{\dot{m}}{\rho \sqrt{2q/\rho}} \frac{l_T N}{S_w c a_w}$$

 $(dC_N/d\alpha)_{pT=0}^*$

.0024Two-bladed propellers.0032Three-bladed propellers.004Four-bladed propellers.005Six-bladed counter-rotating propellers

 $\dot{m} = 0.032 \cdot T/N$

Università degli Studi di Napoli "Federico II"

ADAS Modules - *Stability and Control:*

ADAS Modules - *Stability and Control:*

ADAS Modules - *Stability and Control:*

- Stability and Control:

- Stability and Control:

- Stability and Control:

- Stability and Control:

- + Non linear effects
- + Downwash on wing and Tail effects
- + Effect of Tail position on pressure ratio
- + Pendular Stability

+ Effect of Thrust

ADAS Modules - *Directional Stability and Control:*

The methodologies used for the Vertical Tail contribution on the Yaw Derivative coefficient due to β are from ESDU and Roskam:

• ESDU Approach:

- Stability and Control:

• Roskam Approach need the estimation of the follow contributions:

- Stability and Control:

So the the Yaw Derivative coefficient due to β of vertical tail:

$$Cn_{\beta_V} = -k_V CL_{\alpha_V} \left(1 + \frac{\partial\sigma}{\partial\beta}\right) \eta_V \frac{S_V}{S} \frac{l_V}{b}$$

Where $CL\alpha_V$ is calculated with effective AR_V :

$$AR_{Veff} = J_B[1 + K_{VH}(J_T - 1)]$$

For free stick condition, the hinge moments are estimated with the same methodology used in the Horizontal Tail design (McCormick approach).

$$Cn_{\beta_{Vfree}} = -k_V CL_{\alpha_V} \left(1 + \frac{\partial \sigma}{\partial \beta}\right) \left(1 - \frac{C_{h\beta}}{C_{h\delta}}\tau\right) \eta_V \frac{S_V l_V}{S} \frac{l_V}{b}$$

ADAS Modules - *Stability and Control:*

EWADE 2011 – 10° European Workshop on Aircraft Design education, Naples, Italy 24-27 May, 2011

- Stability and Control:

Lateral Stability (Dihedral effect) :

For the analysis of lateral stability it required after the design of all tailplane also the wing and horizontal tail dihedral angle. The lateral derivative coefficient due to β is founded by:

$$C_{\ell_{\beta}} = \left(C_{\ell_{\beta}}\right)_{W} + \left(C_{\ell_{\beta}}\right)_{\Gamma_{W}} + \left(C_{\ell_{\beta}}\right)_{\varepsilon_{W}} + \left(C_{\ell_{\beta}}\right)_{HT} + \left(C_{\ell_{\beta}}\right)_{\Gamma_{HT}} + \left(C_{\ell_{\beta}}\right)_{\varepsilon_{HT}} + \left(C_{\ell_{\beta}}\right)_{v.tail} + \Delta C_{\ell_{\beta}posW} + \Delta C_{\ell_{\beta}posW} + \Delta C_{\ell_{\beta}tipW} + \Delta C_{\ell_{\beta}tipHT}$$

Where:

• $(C_{\ell_{\beta}})_{w} = -\frac{1+2\lambda}{3(1+\lambda)} \cdot C_{L} \cdot \tan \Lambda_{\frac{c_{4}}{b}}$ • $(C_{\ell_{\beta}})_{posW} = -1.2\sqrt{AR} \frac{z_{w}}{b} 2\frac{a_{fus}}{b}$

•
$$(C_{\ell_{\beta}})_{v.tail} = -a_v \cdot \eta_v \cdot \frac{S_v}{S_w} \cdot \frac{z_v}{b_w}$$

$$C_{l_{\beta}} = -\varepsilon \cdot tan(\Lambda_{c/4})K_{\lambda AR}$$

(a) Max. Ord. on Upper Surface in Plane $\Delta Cl_{\psi} = .0002$ (b) Max. Ord. on Mean Lines in Plane $\Delta Cl_{\psi} = 0$ (c) Max. Ord. on Lower Surface in Plane $\Delta Cl_{\psi} = -.0002$

- Stability and Control:

EWADE 2011 – 10° European Workshop on Aircraft Design education, Naples, Italy 24-27 May, 2011

ADAS Modules - Weight and Balance:

	Weid	ght			
stimated MTOW	N				
MTOW 72676 kg	N* Passengers	150	>	N* Crew Member	5
ructural Mass	Propulsion Group M	Propulsion Group Mass		Fixed Equipment Mass	
lax load Factor 3.2					
Ving 10638.3 kg					
Surface Control 845.8 kg	Engine Type	Turbofan 👤		Aircraft Range	
uselage 6228.4 kg	Engine Sub-Type	High BPR 👤			
lacelles 1493.2 kg	Engine Dry	2072 0 kg		Туре	short mang 💌
anding Gear 3161.4 kg	Engine Dry	2012.0 Kg			
lorizontal Tail 🛛 1316 kg					
/ertical Tail 1484.1 kg					
Details - Composite - Confirm					
otal struct mass 27694.5 kg	Total Prop Group Mass	<mark>5103.5</mark> kg		Total Fixed Equip Mass	10174.6 kg
perational Item Mass	Payload Mass			Fuel Mass	
sircraft Flight				<mark>Es</mark>	timate Max Tank
ype Short UV V	Average Weight of			Max Fuel Capacity	24434.1 It
I* Cockpit Crew 2	Baggage	Baggage 20 - kg		Max Fuel Mass	19547 kg
Residual Fuel 124.2 kg				Llead Fuel	22600
				(Sugg.23604)	23600 1
tal Oper Item	- Total Payload	Confirm			Confirm
ass <mark>593.2 kg</mark>	Mass	14250 kg		Total Fuel Mass	18880 kg
	FINAL MT	-ow			
Calculate M _{OE} 43315.	9 M _{ZF} 57565.9	мтоw	76445	i.9 kg R	eload Data
Ca	Iculator ISA		Unit	Converter	Go To Balance ->

ADAS Modules - Weight and Balance:

	nce
nal MTOW	
MTOW 76445.9 kg N* Passengers 1	50 Seat Layout 33
cg Components Positions	
Wing Position 36 % Fus Length Reload	Calculato
CG Wing 38 % from MAC LE	
CG Fuselage 42 % Fus Length ?	
ircraft Loading Loops	Numerical Results on X
	Xcg/c TOW 0.31
80000	Xcg/c Max 0.23
75000	Forward Xcg/c Max 0.38
70000	Backward Xcg/c ZEW 0.20
65000	
M [kg] 60000	Xcg/c UEW 0.27
55000	Numerical Results on Z
50000	Zcg/c TOW 0.06
45000	
	Zcg/c ZFW 0.08
0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38	
Хсд	Zcg/c OEW -0.02
Passengers take place FRONT - REAR	
Passengers take place REAR - FRONT	
Calculator ISA	Unit Converter Return To Weight

EWADE 2011 – 10° European Workshop on Aircraft Design education, Naples, Italy 24-27 May, 2011

- Weight and Balance:

- Payload Range:

- Payload Range:

- 3D view:

CONCLUSIONS:

- The software allows the conceptual design and a preliminary analysis of the aircraft in less than 1 hour
- The software is USER FRIENDLY with many helps (but also to be improved)
- Many graphs helps user (students) with the comprehension of theory which is behind and to get the feeling of the obtained results
- Some non-linear effects are included (pendular stability, downwash, etc.)
- Students can "play" with the software learning all the links between separate performances and characteristics of the airplane
- The software can be also useful for researchers and people from industry

FUTURE DEVELOPMENTS:

- > The software will be commercialized next year (hopefully)
- Optimization should be included
- Obtaining new semi-empirical laws to be implemented to enhance the software accuracy (both through wind-tunnel tests or through 3D and 2D aerodynamic analysis (panel methods) or CFD (NS) calculations.

THANKS for the ATTENTION