Design of passenger airplanes with taking into account their operation within the fleet

Pavel Zhuravlev,
Moscow Aviation Institute (Engineering University),
Moscow, Russia
Design stages flowchart. Place of Pre-Design stage within the aircraft design process

Fig. 1-2. Airplane design and development

Pavel Zhuravlev, Sevilla 2009
Design stages flowchart. Place of Pre-Design stage within the aircraft design process
First stage of Aircraft Design
(Concept(ual) Design)

Aircraft Performance

Aircraft Parameters

Aircraft Operation

Economical Characteristics

Pavel Zhuravlev, Sevilla 2009
Necessity of taking into the account the operation of aircraft during its design

Main reasons for taking into account operation during design of aircraft:

• Design stage is the stage with relatively low investments and a lot of decisions to be made;

• Each aircraft produced requires a lot of technical and technological innovations, many of which are to be invented and introduced into operation;

• The process of developing a new aircraft takes more and more time over the years passing. Therefore the mistakes made can have dramatically affect the company, the operator and the industry as a whole.
The Relationship between Design Freedom, Knowledge & Cost Committed

Acquisition Timeline

- Pre-milestone 0: Determination of Mission Need and Deficiencies
- Phase 0: Concept Exploration
- Phase I: Program Definition and Risk Reduction
- Phase II: Engineering & Manufacturing Development
- Phase III: Production, Deployment, and Operation Support

Design Timeline:
- Requirements Definition
- Conceptual Design
- Preliminary Design
- Detail Design + Manufacturing

Cost Committed

Knowledge becomes available when time to make decision

Pavel Zhuravlev, Sevilla 2009
Necessity of taking into the account the operation of aircraft during its design

Main reasons for taking into account operation during design of aircraft:

• Design stage is the stage with relatively low investments and a lot of decisions to be made;

• Each aircraft produced requires a lot of technical and technological innovations, many of which are to be invented and introduced into operation;

• The process of developing a new aircraft takes more and more time over the years passing. Therefore the mistakes made can have dramatically affect the company, the operator and the industry as a whole.
How will Airbus implement the vision?

<table>
<thead>
<tr>
<th>Challenges of Vision 2020</th>
<th>Challenges for AIRBUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality and Affordability</td>
<td>Lower cost</td>
</tr>
<tr>
<td></td>
<td>Design methods and tools; KBE</td>
</tr>
<tr>
<td></td>
<td>Cabin design</td>
</tr>
<tr>
<td>The Environment</td>
<td>Flexible, up-gradable cabin</td>
</tr>
<tr>
<td></td>
<td>Aerodynamic drag reduction</td>
</tr>
<tr>
<td></td>
<td>Alternative energy</td>
</tr>
<tr>
<td></td>
<td>More Electric Systems</td>
</tr>
<tr>
<td></td>
<td>Low weight structures</td>
</tr>
<tr>
<td></td>
<td>Pylon, engine integration</td>
</tr>
<tr>
<td></td>
<td>High lift noise</td>
</tr>
<tr>
<td></td>
<td>Landing gear noise</td>
</tr>
<tr>
<td>Safety and Security</td>
<td>Passive protection means</td>
</tr>
<tr>
<td></td>
<td>Proactive protection means</td>
</tr>
<tr>
<td></td>
<td>Systems design</td>
</tr>
<tr>
<td></td>
<td>Human factors</td>
</tr>
<tr>
<td></td>
<td>Flight hazard resolution</td>
</tr>
<tr>
<td>The Efficiency of the Air Transport System</td>
<td>Wake Vortex</td>
</tr>
<tr>
<td></td>
<td>Communication</td>
</tr>
<tr>
<td></td>
<td>Navigation</td>
</tr>
<tr>
<td></td>
<td>Surveillance</td>
</tr>
<tr>
<td></td>
<td>Reduce delays</td>
</tr>
</tbody>
</table>
Necessity of taking into the account the operation of aircraft during its design

Main reasons for taking into account operation during design of aircraft:

• Design stage is the stage with relatively low investments and a lot of decisions to be made;

• Each aircraft produced requires a lot of technical and technological innovations, many of which are to be invented and introduced into operation;

• The process of developing a new aircraft takes more and more time over the years passing. Therefore the mistakes made can have dramatically affect the company, the operator and the industry as a whole.

Pavel Zhuravlev, Sevilla 2009
Aeronautics has a long term cycle
Due to the big importance of the Pre-Design stage during the creation of a new aircraft it is necessary to carry out the first stages of design (up to detailed design) basing on the analysis of the results of the future operation of the created aircraft.
Rationalise future challenges

- Micro Environment (aircraft specific)
 - Requirements on
 - Payload/Range
 - Comfort
 - Economics
 - Noise / Emissions
 - ...

- Meso Environment (air transport related)
 - Air traffic
 - Infrastructure
 - Competition
 - Airlines
 - ...

- Makro Environment (Socio-economic)
 - Society
 - Economy
 - Politics
 - Technology
 - Ecology

Modelling of the world context will provide insight and rationale to prioritise the different concepts for the benefit of the end customer as well as for the aircraft manufacturer.

Pres. D. Schmitt EWADE 2005
Aircraft Design is a decision-making process, which involves optimization

- The process of Aircraft Design consists in making sequential design decisions
- The process of making each decision can be formally described as the process of solving an optimization problem
- The general formulation of an optimization problem during aircraft design (design of Complex Aviation Systems (CAS)) is shown on the next slide

Pavel Zhuravlev, Sevilla 2009
General definition of a problem of optimization of aircraft operation

\[W_S(\bar{a}, \tau_K) = \int \sup_{z_1 \in Z_1} \inf_{\bar{b} \in B} \left(\int \inf_{\bar{d} \in D} \inf_{\bar{g} \in G} W_S(\bar{a}, \bar{b}, \bar{d}, \bar{g}, z, \tau_K) dF(z_3) \right) dF(z_1) \]

- \(\bar{a} \) is the multitude of performance and parameters of the designed aircraft (possessed by the operating party)
- \(\bar{b} \) is the multitude of tactical decisions for the designed (considered) aircraft
- \(\bar{d} \) is the multitude of performance and parameters of the competitors’ aircraft
- \(\bar{g} \) is the multitude of strategies of the competitor
- \(S \) is the task which should be carried out
- \(\tau_K \) is the forecasted moment (year) of start of the operation (start of planning period)
- \(z \) is the multitude of uncertain factors, which influence the operation.
General definition of a problem of optimization of aircraft operation

\[
W_S(\bar{a}, \tau_K) = \int \sup_{z_1 \in Z_1} \inf_{\bar{b} \in B} \int \inf_{g \in G} \int \inf_{d \in D} \int \inf_{z_3 \in Z_3} \int \inf_{z_4 \in Z_4} W_S(\bar{a}, \bar{b}, \bar{d}, g, z, \tau_K) dF(z_3) \] dF(z_1)

\(z\) is the multitude of uncertain factors, which influence the operation. This multitude can be subdivided into:

- \(z_1\) is the multitude of the uncertain factors (conditions), concerning which there is information only about the range of their values
- \(z_2\) is the multitude of the uncertain factors (conditions), concerning which there is information about the distribution law of their values \(F(z_2)\)
- \(z_3\) is the multitude of the uncertain factors (conditions), concerning which there is information both about the range of their values and the particular values before carrying out the operation
- \(z_4\) is the multitude of the uncertain factors, concerning which there is information both about the distribution law of their values and the particular values before carrying out the operation;

Pavel Zhuravlev, Sevilla 2009
Modeling of operation of various types of aircraft on a network of routes

$h(a_1)$ is the multitude of routes where aircraft of type 1 is capable to carry out passenger air transportation

$h(a_2)$ is the multitude of routes where aircraft of type 2 is capable to carry out passenger air transportation

V_{12} is the competition area

Pavel Zhuravlev, Sevilla 2009
Initial data

Dependency of passenger flow (mln. pass km) depending on range of air passenger transportation and average quantity of passengers per flight

Flight range, km	0-250	250-500	500-750	750-1000	1000-1250	1250-1500	1500-1750	1750-2000	2000-2500	2500-3000	3000-3500	3500-4000	4000-4500	4500-5000	5000-5500	5500-6000	6000-6500	6500-7000	7000-7500	7500-8000	more than 8000	
Range of passenger air transportation, km																						
0-6	41	119	134																			
10-14	41	139	115	625	110	174	133	625	110	174	133	625	110	174	133	625	110	174	133	625	110	174
18-22	33	65	110	716	1230	2180	285	346	716	1230	2180	285	346	716	1230	2180	285	346	716	1230	2180	
26-30	50	132	282	202	282	897	1150		202	282	897	1150										
30-34	39	36	76	47	154	58	1186	898	47	154	58	1186	898									
34-38	64	47	136	50	118	137	156	1289	461													
38-42	171	129	53	121	390	230	83	946	342													
42-46	207	82	64	292	638	196	317	114	538	220												
46-50	454	225	222	77	81	231	137	901	257													
50-54	422	205	83	84	180	365	332	249	552	180												
54-58	192	718	108	309	104	117	152	419	427													
58-62	475	575	455	143				196	285	400												
62-66	1003	588	355	463	304	163		755	273													
66-70	290	842	1413	403	427			401	517													
70-74	810	1970	1751	1368	359	174	335		273	744	188											
74-78	910	722	531	404	699	198	207	209	548													
78-82	862	1910	908	399	649	529		300	331													
82-86	1003	3995	649	529				316	208													
86-90	2519	862	404	404	81	316	208															
90-120	1580	1600	3604	1318	8798	13172	7922	2310	842	2257	379	381	910	2600								
120-150	3356	2564	4044	4056																		
150-200	3151	2601	4044	4056																		

Average annual passenger flow, mln. pass. km.

Pavel Zhuravlev, Sevilla 2009
3D Graphical representation of a transportation network

Passenger traffic flow

Number of passengers

Range

Pavel Zhuravlev, Sevilla 2009
Groups of tasks, which should be solved to model the operation of aircraft

- Operation of a single aircraft on a single route (includes selecting the best type of aircraft)
- Operation of a single aircraft type on a multitude of routes
- Operation of an aircraft fleet on a network of routes (transportation network) during a short given period of time (e.g. one year) (static problem of aircraft fleet creation and optimization)
- Operation of an aircraft fleet on a network of routes (transportation network) during a long period of time. Consideration of a number of time-slices on the global time-scale (quasi-dynamic problem of aircraft fleet creation and optimization)
- Operation of an aircraft fleet on a network of routes (transportation network) during a long period of time (dynamic problem of aircraft fleet creation and optimization)

Problems concerned with operation of a single aircraft type

Problems concerned with optimization of aircraft fleet operation

Pavel Zhuravlev, Sevilla 2009
General Problem Definition and Breakdown

Creation of a rational fleet of passenger airliners

Optimization of air route multitudes for each type \((N_{\text{pass}}^{\text{max}}, L_d)\) and quantity of types in the fleet \((m)\)

Criterion:
Total expenses for fleet operation

\[W_S = F(S, a) = \sum H_i(S_i, a_i) \]

Optimization of airplane parameters and performance and organization of airplane operation (required quantity of airplanes of one type)

Criterion:
Total expenses on transportation on the multitude of the routes served by the regarded airplane

\[W_S = H_i = \sum_{a \in D_i} f(S_n, a_i) \]

Optimization of allocation of airplane types on the regarded routes (creation of route multitudes \(D_i\))

Criterion:
Expenses on one flight

\[W_S = f(S_n, a_i) \]

Pavel Zhuravlev, Sevilla 2009
Aircraft is a part of a complex system

If we consider the process of aircraft operation thoroughly it is easy to see that actually an aircraft functions within the framework of a big system (aircraft fleet). Being a part of this system the aircraft fulfills a number of its missions and interacts with other elements of the big system. Therefore if we are to create a model of aircraft operation it is essential to regard its performance as a part of a complex aviation system (CAS) – aircraft fleet.

Pavel Zhuravlev, Sevilla 2009
The red dots mark the routes where type 1 competes with type 2 for carrying passenger transportation.

Number of passengers

$h(a_1)$ is the multitude of routes where aircraft of type 1 is capable to carry out passenger air transportation.

$h(a_2)$ is the multitude of routes where aircraft of type 2 is capable to carry out passenger air transportation.

V_{12} is the competition area.

The red dots mark the routes where type 1 competes with type 2 for carrying passenger transportation.

Pavel Zhuravlev, Sevilla 2009
Assignment of airplanes of \(i\) and \((i+1)\) type within a network of routes

- Multitude of routes where \(i\) type of aircraft is capable to carry out air passenger transportation: \(h_i\)
- Multitude of routes where \((i+1)\) type of aircraft is capable to carry out air passenger transportation: \(h_{i+1}\)
- Multitude of routes where \(i\) and \((i+1)\) types of aircraft compete for carrying out air passenger transportation: \(\mathcal{V}(i;i+1)\)
- Multitude of routes where \((i+1)\) type of aircraft was assigned to carry out air passenger transportation: \(H_{i+1}(f_{j,i} < f_{j,i+1})\)

Number of passengers

\(L\)
The blue bars indicate the routes where type 2 is capable to carry out passenger air transportation. The height of the bar represents the costs of carrying out one flight on a route.

The red bars indicate the routes where type 1 is capable to carry out passenger air transportation. The height of the bar represents the costs of carrying out one flight on a route.

Comparison of various aircraft type operation on the network

Costs of carrying out one flight

Range

Number of passengers

Pavel Zhuravlev, Sevilla 2009
Problem of optimizing the process of standard operation of an aircraft (carrying out a number of flights on given routes by a given type of aircraft) during a given period

• **Objective function** W_s: the total costs of carrying the passengers (f)

• **Initial data**: the quantity of passengers, which should be carried on the considered line during one flight, range of flight and the passenger flow during a given period of time (starting from τ_k), aircraft characteristics and parameters $\bar{\alpha}$

• **Variable**: the (number of) type which is assigned to carry out passenger transportation on the route

• **Main limitation**: the necessity to carry out all air passenger transportation (the passenger flow, which would in fact be transported on a route, should exceed or be equal to the demand) (true for all tasks)
Problem of optimizing the process of standard operation of an aircraft. Creating specialization areas.

The comparison of operation of different aircraft types on the routes is made based on the costs of carrying out a single flight on these routes. As a result every aircraft type is assigned to carry out air transportation on a certain multitude of routes, which is called its “area of specialization”.

\[H_i = \left\{ x_j / f(x_j, a_i) \leq f(x_j, a_k), \forall k \neq i, x_j \in h(a_i), x_j \in h(a_k) \right\} \]

where:

- \(H_i \) is the specialization area for aircraft type \(i \)
- \(f(x_j, a_i) \) are the costs of carrying out one flight on route \(j \) by airplane of type \(i \)
- \(x_j \) are the characteristics of route \(j \)
- \(h(a_i) \) is the multitude of routes where an aircraft of type \(i \) is capable to carry out passenger air transportation

Pavel Zhuravlev, Sevilla 2009
An example of optimization of aircraft performance and parameters after its been assigned to carry out passenger transportation on a number of routes (within its specialization area).

h(a₁) is the multitude of routes where aircraft of type 1 is capable to carry out passenger air transportation

h(a₂) is the multitude of routes where aircraft of type 2 is capable to carry out passenger air transportation

Pavel Zhuravlev, Sevilla 2009
Problem of optimizing the operation of an aircraft on the routes where it has been selected to carry out passenger transportation service

- **Objective function** W_s: the total costs of carrying passengers on all routes (where the considered type of airplane was chosen to transport passengers) during the given period of time

- **Initial data**: performance and characteristics of the optimized aircraft type (including the starting values of its variables) (from the multitude \bar{a}) as well as the data describing the routes where it has been selected to carry out air passenger transportation

- **Variables**: changeable characteristics (parameters and performance) of the airplane (from the multitude \bar{a})

- **Main limitation**: the necessity to carry out all air passenger transportation
Static problem of aircraft fleet optimization

Optimal aircraft fleet with three types of aircraft for year K

The optimization is carried out basing on the forecasts of demand for year K. The objective function are the total costs of passenger air transportation during year K.

Pavel Zhuravlev, Sevilla 2009
Static problem of aircraft fleet creation and optimization

- **Objective function** W_S: total fleet costs for transporting passengers over the considered network within the given period of time (starting from τ_K)
- **Variable**: the quantity of various types of aircraft
- **Initial data**: the characteristics of the regarded aircraft \bar{a} and the characteristics of the air routes within the considered transportation network
- **Main limitation**: the necessity to carry out all air passenger transportation
“Quasi-dynamic” problem of aircraft fleet optimization. For every time slice the objective function are the total costs for carrying out passenger air transportation in the considered time period.

Quantitiy of aircraft of type i in the optimal fleet during year k

Change of quantity of aircraft of type i in the optimal fleet over the years

Three-type fleet

4th type is introduced into the fleet

5th type is introduced into the fleet

3rd type is discarded from the fleet

Number of passengers

Number of passengers

Number of passengers

1st time slice

2nd time slice

3rd time slice

Years

Pavel Zhuravlev, Sevilla 2009
Quasi-Dynamic problem of aircraft fleet creation and optimization.

- network changes with time (the shape and demand on the network change)
- such problem statement does not take into the account the introduction of new types into the fleet and writing-off (retirement) of old types from the fleet
- quasi-dynamic problem of aircraft fleet creation consists in solving a number of static aircraft fleet creation problems, which are solved under various conditions for various years on a global time-scale. The process of solution of each static problem is conducted separately and independently thus resulting in a number of solutions for a number of “time slices” on the regarded global time-scale.
- the objective function W_s in this case is a multitude of objective functions, each of which is calculated separately for each static problem
Dynamic problem of aircraft fleet creation and optimization.

- network changes with time (the shape and demand on the network change)
- such problem statement should also take into the account the introduction of new types into the fleet and writing-off (retirement) of old types from the fleet
- dynamic problem of aircraft fleet creation consists in solving a number of interconnected static aircraft fleet creation problems. Each of these problems should take into account the previous state of the optimized fleet (the solution of the previous static task) which are solved under various conditions for various years on a global time-scale. The process of solution of each static problem is conducted basing on the results of solution of the previous problems thus resulting in a global solution on the regarded global time-scale.
- the objective function W_S in this case are the total costs of carrying out passenger transportation over the global time period.

Pavel Zhuravlev, Sevilla 2009
Aircraft fleet creation and optimization aspects. Dependence of flight costs and fleet costs on the range of flight and number of transported passengers.

This slide shows how various details affect greatly the aircraft operation. For example, on this slide you can see how the costs of carrying out one flight and costs of carrying out passenger transportation during a long period of time change depending on range of flight and number of passengers onboard. Note that such dependency can only be achieved if we use a cost calculation method which takes into account indirect operational costs. Pavel Zhuravlev, Sevilla 2009
Aircraft fleet creation and optimization aspects. Example of distribution of passenger flow over flight range on domestic and international routes.

Change in passenger traffic flow distribution (peak shift) results in change of requirements for created and optimized passenger aircraft fleet.

Pavel Zhuravlev, Sevilla 2009
Aircraft fleet creation and optimization. Uncertainties in demand for the passenger transportation

Only range of values is normally given in forecasts for passenger air transportation demand. Therefore uncertainties in demand can be classified and regarded as z_I (z_I is the multitude of the uncertain factors (conditions), concerning which there is information only about the range of their values)

Pavel Zhuravlev, Sevilla 2009
Estimation of robustness of the optimum aircraft fleet through changing initial data

Uncertainties of type z_i can be estimated by modeling operation under the extreme conditions (extremely bad and/or good conditions).

Pavel Zhuravlev, Sevilla 2009
One of the examples of how many problems schedule breakdowns and irregularities cause for operators (airlines). It takes a lot of work to fix every particular irregularity.

Pavel Zhuravlev, Sevilla 2009
Taking into account schedule irregularities.

• Since aircraft fleet creation is a long-term planning process it is necessary to find a way of taking into account all possible irregularities and airplane allocation shifts as a whole by means of mathematical modeling.

• This can be achieved by analyzing distribution of values of actual passenger quantities transferred in one flight by aircraft types (since this amount differs from one flight to another).
Taking into account schedule irregularities.

Probability distribution.

Since there is information concerning the average utilization of an aircraft it is possible to say that the mean of distribution would be

\[M_{pasi} = \bar{N}_{pas_i} \]

where:
- \(M_{pasi} \) is the mean distribution
- \(\bar{N}_{pas_i} \) is the average aircraft utilization

Since the quantity of passengers onboard cannot exceed the maximum capacity of an airplane it is possible to say that the standard deviation would be

\[3\sigma = N_{pas_i}^{max} - \bar{N}_{pas_i} \]

where:
- \(N_{pas_i}^{max} \) is the maximum capacity of an airplane

Pavel Zhuravlev, Sevilla 2009
Aircraft fleet creation and optimization. Distribution of quantity of passengers in one flight.

Since we already know the distribution law for the quantity of passengers onboard during one flight we can classify this uncertainty as belonging to \mathcal{Z}_2 group.

Pavel Zhuravlev, Sevilla 2009
Aircraft fleet creation and optimization. Redistribution of passengers between various airplane types.

- Besides carrying out passenger air transportation within the specialization area \(H_i\), every airplane has to carry out transportation on other routes as well. Therefore it is necessary to take into account that some transportation, which initially should have been carried out by smaller airplanes is actually carried out by bigger airplanes.

- Therefore it is necessary to take such transportation into the account basing on the available information.

- One of the important pieces of such information is the average fleet utilization. By using this value it is possible to create probability distributions for all airplane types and look at their interrelations.
Aircraft fleet creation and optimization. Re-distribution of passengers between various airplane types.

\[P \text{ that the number of passengers during a flight will be equal to a certain value} \]

\[R-R \]
The algorithm of passenger traffic flow redistribution

• First of all pairs of aircraft types are considered. The passenger traffic flow can be distributed from the aircraft type \(j \) both onto the bigger type \((i-1)\) and/or smaller type of aircraft \((i+1)\). The redistribution is made if the following conditions are met:

\[
(\bar{N}_{pas_{i+1}} + 3\sigma < N_{pas_j} < \bar{N}_{pas_{i+1}} - 3\sigma) \quad \text{and} \quad (\bar{N}_{pas_{i-1}} + 3\sigma < N_{pas_j} < \bar{N}_{pas_{i-1}} - 3\sigma)
\]

where:

- \(N_{pas_j} \) is the mean distribution for the type, from which the redistribution is made
- \(\bar{N}_{pas_{i-1}} \) is the mean distribution for the bigger type, onto which the redistribution is made
- \(\bar{N}_{pas_{i+1}} \) is the mean distribution for the smaller type, onto which the redistribution is made

Pavel Zhuravlev, Sevilla 2009
The algorithm of passenger traffic flow redistribution

After that the amount of passenger traffic flow to be redistributed is calculated by the following formulas:

\[
G_{\text{redist},i-1} = \frac{P_{i-1}(N_{\text{pasj}}) \cdot G_j}{\sum_{k=i_1}^{i_2} P_k(N_{\text{pasj}})}
\]

\[
G_{\text{redist},i+1} = \frac{P_{i+1}(N_{\text{pasj}}) \cdot G_j}{\sum_{k=i_1}^{i_2} P_k(N_{\text{pasj}})}
\]

where:

- \(G_j\) is the value of passenger traffic flow for the type, from which the redistribution is made
- \(P_{i-1}(N_{\text{pasj}})\) and \(P_{i+1}(N_{\text{pasj}})\) are the probability that the types \((i-1)\) and \((i+1)\) will carry onboard \(N_{\text{pasj}}\) passengers during the flight
- \(\sum_{k=i_1}^{i_2} P_k(N_{\text{pasj}})\) is the total sum of probabilities that all types will carry onboard \(N_{\text{pasj}}\) passengers during the flight
Passenger traffic flow redistribution

• It is necessary to mention that utilization of passenger traffic flow redistribution can change the total fleet costs for carrying out passenger transportation for more than 10%, which proves that this factor has a considerable influence over the fleet operation and should be taken into account.
Example of calculation results for one-type and two-type aircraft fleets.

<table>
<thead>
<tr>
<th></th>
<th>Type 1</th>
<th>Type 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take-off weight, t</td>
<td>147</td>
<td>152</td>
</tr>
<tr>
<td>Wing area, m²</td>
<td>278</td>
<td>280</td>
</tr>
<tr>
<td>Wing aspect ratio</td>
<td>6,33</td>
<td>7,28</td>
</tr>
<tr>
<td>Wing thickness ratio</td>
<td>0,118</td>
<td>0,118</td>
</tr>
<tr>
<td>Fuselage fineness ratio</td>
<td>7,32</td>
<td>7,315</td>
</tr>
<tr>
<td>Flight cruising altitude, m</td>
<td>11500</td>
<td>11500</td>
</tr>
<tr>
<td>Flight cruising speed, kmph</td>
<td>850</td>
<td>850</td>
</tr>
<tr>
<td>Number of seats in one row</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Maximum number of passengers on board, man</td>
<td>251</td>
<td>260</td>
</tr>
<tr>
<td>Wing taper ratio</td>
<td>2,08</td>
<td>2,083</td>
</tr>
<tr>
<td>Design flight range, km</td>
<td>7750</td>
<td>7750</td>
</tr>
<tr>
<td>Maximum payload weight, t</td>
<td>27</td>
<td>26,8</td>
</tr>
<tr>
<td>Maximum flight range, km</td>
<td>8331</td>
<td>9582</td>
</tr>
<tr>
<td>Mass of fuel required for flying over design range, t</td>
<td>43,2</td>
<td>54,4</td>
</tr>
<tr>
<td>Mass of fuel required for long range cruise, t</td>
<td>55,2</td>
<td>77,26</td>
</tr>
<tr>
<td>Operational empty weight, t</td>
<td>76,3</td>
<td>77,26</td>
</tr>
<tr>
<td>Quantity of flight personnel members</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Wing load</td>
<td>529</td>
<td>524, 83</td>
</tr>
<tr>
<td>Power plant construction parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of engines</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Engine specific weight</td>
<td>0,175</td>
<td>0,175</td>
</tr>
<tr>
<td>Reversing degree</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>Design Mach number</td>
<td>0,9</td>
<td>0,9</td>
</tr>
<tr>
<td>Specific fuel consumption at H=0, V=0 km/h</td>
<td>0,38</td>
<td>0,38</td>
</tr>
<tr>
<td>Engine unit-value , million dollars/t</td>
<td>1,4</td>
<td>1,4</td>
</tr>
<tr>
<td>Power plant thrust, t</td>
<td>39,3</td>
<td>31,4</td>
</tr>
<tr>
<td>Thrust of one engine, t</td>
<td>9,83</td>
<td>7,85</td>
</tr>
<tr>
<td>Thrust-to-weight ratio</td>
<td>0,267</td>
<td>0,206</td>
</tr>
<tr>
<td>Part in fleet, %</td>
<td>100</td>
<td>27,6</td>
</tr>
</tbody>
</table>

Ratio of quantities of airplanes of different types in the fleet

Pavel Zhuravlev, Sevilla 2009
Example of calculation results for three-type and four-type aircraft fleets.

<table>
<thead>
<tr>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take-off weight, t</td>
<td>175</td>
<td>104</td>
</tr>
<tr>
<td>Wing area m²</td>
<td>271</td>
<td>152</td>
</tr>
<tr>
<td>Wing aspect ratio</td>
<td>8.8</td>
<td>11.4</td>
</tr>
<tr>
<td>Wing leading edge sweep angle, deg</td>
<td>16.8</td>
<td>25.4</td>
</tr>
<tr>
<td>Wing thickness ratio near the fuselage</td>
<td>0.172</td>
<td>0.187</td>
</tr>
<tr>
<td>Fuselage fineness ratio</td>
<td>7.03</td>
<td>8.83</td>
</tr>
<tr>
<td>Flight cruising altitude, m</td>
<td>11500</td>
<td>11500</td>
</tr>
<tr>
<td>Flight cruising speed, km/h</td>
<td>850</td>
<td>834</td>
</tr>
<tr>
<td>Number of seats in one row</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Maximum number of passengers on board, man</td>
<td>251</td>
<td>151</td>
</tr>
<tr>
<td>Wing taper ratio</td>
<td>2.08</td>
<td>2.08</td>
</tr>
<tr>
<td>Design flight range, km</td>
<td>7750</td>
<td>8000</td>
</tr>
<tr>
<td>Maximum payload weight, t</td>
<td>21</td>
<td>16.4</td>
</tr>
<tr>
<td>Maximum flight range, km</td>
<td>8016</td>
<td>9000</td>
</tr>
<tr>
<td>Mass of fuel required for flying over design range, kg</td>
<td>68</td>
<td>27.5</td>
</tr>
<tr>
<td>Mass of fuel required for long range cruise, kg</td>
<td>77</td>
<td>34.5</td>
</tr>
<tr>
<td>Operational empty weight, t</td>
<td>83</td>
<td>49</td>
</tr>
<tr>
<td>Quantity of flight personnel members</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Wing load</td>
<td>646</td>
<td>684</td>
</tr>
</tbody>
</table>

Power plant construction parameters

<table>
<thead>
<tr>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
<th>Type 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take-off weight, t</td>
<td>180</td>
<td>108</td>
<td>69</td>
</tr>
<tr>
<td>Wing area m²</td>
<td>271</td>
<td>215</td>
<td>168</td>
</tr>
<tr>
<td>Wing aspect ratio</td>
<td>8.82</td>
<td>8.9</td>
<td>9.01</td>
</tr>
<tr>
<td>Wing leading edge sweep angle, deg</td>
<td>16.85</td>
<td>25.68</td>
<td>34.78</td>
</tr>
<tr>
<td>Wing thickness ratio near the fuselage</td>
<td>0.172</td>
<td>0.174</td>
<td>0.16</td>
</tr>
<tr>
<td>Fuselage fineness ratio</td>
<td>7.03</td>
<td>7.03</td>
<td>8.83</td>
</tr>
<tr>
<td>Flight cruising altitude, m</td>
<td>11500</td>
<td>11500</td>
<td>10800</td>
</tr>
<tr>
<td>Flight cruising speed, km/h</td>
<td>850</td>
<td>825</td>
<td>810</td>
</tr>
<tr>
<td>Number of seats in one row</td>
<td>9</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Maximum number of passengers on board, man</td>
<td>251</td>
<td>150</td>
<td>160</td>
</tr>
<tr>
<td>Wing taper ratio</td>
<td>2.08</td>
<td>2.08</td>
<td>2.08</td>
</tr>
<tr>
<td>Design flight range, km</td>
<td>7750</td>
<td>7750</td>
<td>4000</td>
</tr>
<tr>
<td>Maximum payload weight, t</td>
<td>21</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Maximum flight range, km</td>
<td>8500</td>
<td>8300</td>
<td>5600</td>
</tr>
<tr>
<td>Mass of fuel required for flying over design range, kg</td>
<td>68</td>
<td>42</td>
<td>20</td>
</tr>
<tr>
<td>Mass of fuel required for long range cruise, kg</td>
<td>77</td>
<td>50</td>
<td>27</td>
</tr>
<tr>
<td>Operational empty weight, t</td>
<td>83</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>Quantity of flight personnel members</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Wing load</td>
<td>664</td>
<td>591</td>
<td>411</td>
</tr>
</tbody>
</table>

Pavel Zhuravlev, Sevilla 2009
Example of analysis of the calculation results.
Conclusions

• A method has been developed for creating and optimizing the performance and parameters of passenger aircraft with taking into account their operation within a complex passenger air transportation system (multi-type aircraft fleet).

• This method also allows testing various new concepts of aircraft.

• The offered approaches allow to solve both the static problem (for a short limited period of time – “time-slice”) and dynamic problem of optimization of aircraft fleet (optimization with taking into account the long-term functioning peculiarities).

• The appropriate methods were introduced for taking into account the uncertainties of forecasts and conditions of operation of the created aircraft fleet.

Pavel Zhuravlev, Sevilla 2009
Thank you for your attention. Are there any questions?