Dr Trevor Young

Mechanical and Aeronautical Engineering University of Limerick Ireland

Design, Build and Fly: An approach to Teaching Aircraft Design

European Workshop on Aircraft Design Education (EWADE) Sevilla: 13 – 15 May 2009

Outline

- 1. Introduction
- 2. The AIAA DBFcompetition
- 3. DBF at University of Limerick (UL)
- 4. Lessons learnt
- 5. Concluding remarks

Design, Build and Fly: An approach to Teaching Aircraft Design

European Workshop on Aircraft Design Education (EWADE) Sevilla: 13 – 15 May 2009

Introduction

Design, Build & Fly: The sequel

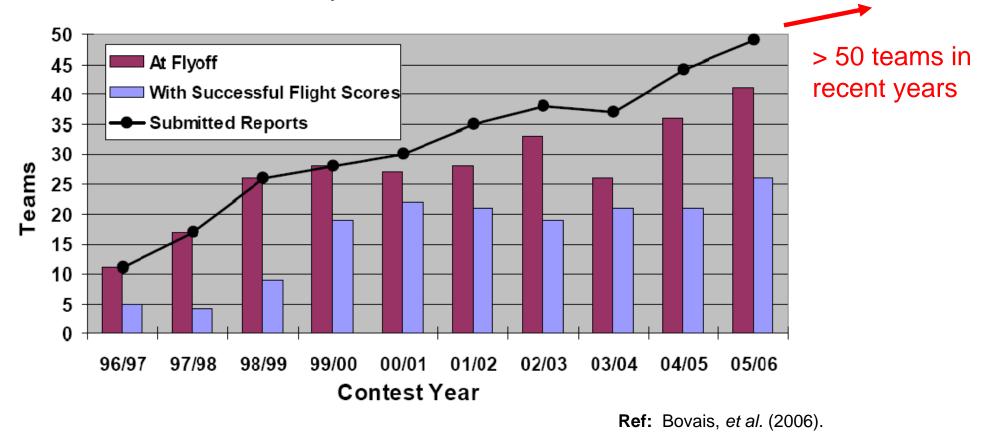
- The presentation is a follow-on to the Samara presentation
- Recap on the AIAA DBF competition
- UL's experience over the past three years
- Concluding remarks

Fig. DBF flight test (January 2009)

AIAA's DBF competition

- Student contest organized by the AIAA, with industry support from Cessna and Raytheon Missile Systems (formerly, the Office of Naval Research).
- Teams compete by designing, building and flying an electric, radio controlled (r/c) aircraft to meet a specification (range, endurance, payload, speed etc.).

Fig. AIAA's DBF website


- Stated goal: It is an engineering challenge not a model airplane contest.
- The winner is determined by the best combination of
 - written report;
 - flight performance; and
 - overall design.

AIAA's DBF competition

Competition history

- Running for 13 years.
- > 50 teams in recent years

AIAA's DBF competition

Typical timetable

- Rules posted: August
- Entry deadline: October
- Report submission: March
- Flight test: April

Cash prizes

\$2500 for 1st \$1500 for 2nd \$1000 for 3rd

Fig. 1st place 2006/07: MIT

Image credit: <u>http://web.mit.edu/aeroastro/news/</u> <u>design-build-flywinners.html</u>

Specification: for 2008/09

Payload (multi-payload and multi-mission)

The air vehicle must be able to accommodate two alternate payloads: #1 One centerline store: 4 litre bottle of water (simulated fuel tank) #2 Two wing stores on each side of 1.5 lb each (simulated rockets)

Other requirements

- The complete system (airframe, payload and support equipment) must be stowed within two 2 ft x 2 ft x 4 ft boxes
- Takeoff distance (100 ft)
- Batteries (NiCad or NiMH; maximum weight of 3 lb)
- Limit on current draw (40 Amp fuse).
- Structural verification (lifted at each wing tip, i.e. roughly a 2.5g load case)
- Safety (inspection undertaken)
- Team makeup & eligibility of r/c pilot

Specification: previous years

Payload: 2007/08

#1 Fourteen ½ litre bottles of 1/2 lb each (simulated passengers)#2 Four weighted blocks (simulated cargo)

Payload: 2006/07 (reported at Samara)

#1 Air sampler system (speed mission)#2 Camera ball system (endurance mission)

Specification: changes each year

Year	Payload	Battery Wt (lb)	Field Length (ft)	Mission/Restrictions
1996/97	Steel, 7.5 lb	2.5	300	Maximum number of Laps
1997/98	Steel, 7.5 lb	2.5	300	Added landing credit
1998/99	Water	none	100	Change payload each lap, 9 ft wingspan limit
1999/2000	Water	5.0	100	Multi-mission Cargo/ferry format, 7 ft wingspan limit, added RAC
2000/01	Steel / tennis balls	5.0	200	Multi-cargo format, 10 ft wingspan limit, RAC
2001/02	Softballs	5.0	200	Multi-mission Position/Passenger Delivery/Return, Timed mission, RAC
2002/03	6"x6"x12" Box, 5 lb	5.0	120*	A/C must disassemble to fit in box, multi- mission Decoy/ Deployment/ Repeater, timed mission, RAC
2003/04	Water	5.0	150	Multi-mission fire bomber/ferry, box disassembly, timed mission, RAC
2004/05	12"x3"dia PVC, 3lb	3.0	150	Multi-mission Sensor Reposition/ Max Utilization/ Re-supply, box disassembly, timed, RAC
2005/06	Variable**	3.0	100	Multi-mission Cargo Flexibility/ Minimum RAC/ Incremental Payload, box disassembly, timed, New RAC

*Distance selected to honor the 100th anniversary of powered flight **12"x4"x4" 5lb wood block, 48 loose tennis balls, 2x2liter pop bottles

Ref: Bovais, *et al.* (2006).

Scoring: 2008/09

The AIAA score is computed as follows:

SCORE = Written Report Score X Total Flight Score

At UL, we used a different scoring:

SCORE = Written Report (50) + Construction (25) + Flight test (25)

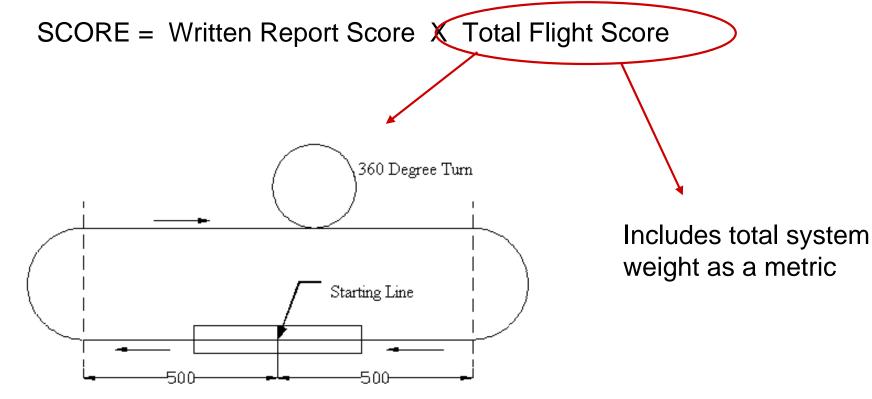


Fig. Assessing the construction

Scoring: 2008/09



Course Layout Shown to Scale

Scoring: previous years

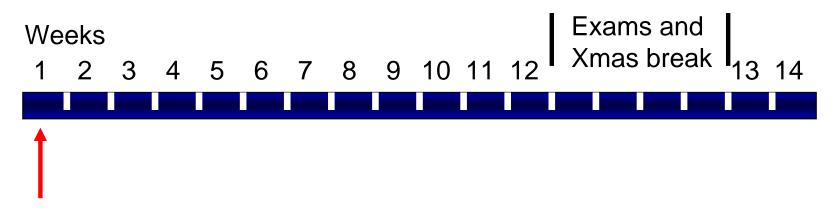
The score was computed as follows:

DBF at University of Limerick

DBF at UL

B.Eng. Aeronautical Engineering at UL

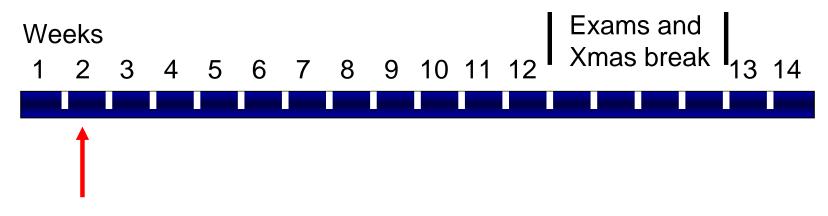
- 4 year professionally accredited academic programme
- Typical class size: 30


Capstone aircraft design module

- First semester, year 4
- Typical 6 credit module
- About 22 hrs of lectures, with 22 hrs of tutorials/laboraties (11 weeks),
- Project work (prior to 2006, this was a "paper" project)

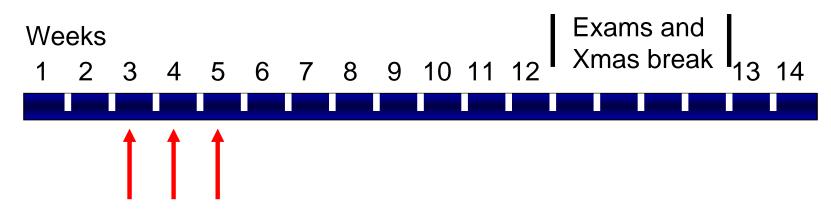
DBF

- Since September 2006 we have adopted the AIAA DBF specification
- But with a modified scoring system
- And, we did not participate in the US (not yet, anyway)

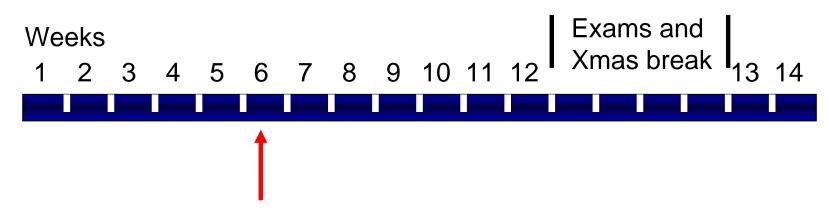


Week 1

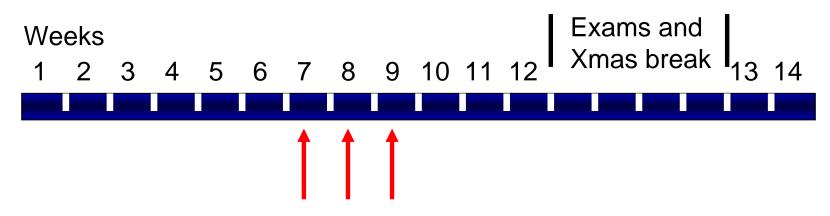
- Announce teams: 2 or 3 teams (allocated by lecturer) of 10-14 members
- Issues specification
- Outline facilities available & contraints (e.g. budget of €1500 per team)
- Students elect team leader



Week 2

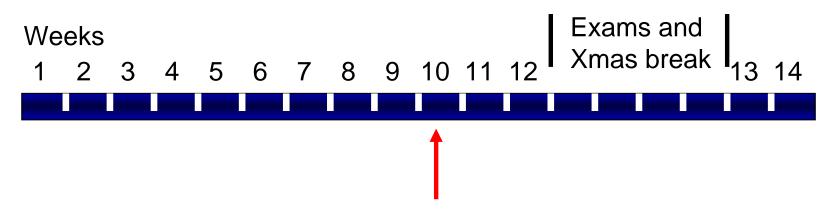

- Students allocate responsibilities (e.g. for powerplant & batteries, aerodymanics, controls, payload, mass & balance, undercarriage, purchasing, etc.)
- Conduct requirements analysis
- Conduct literature search (previous DBF reports, papers etc.)
- Produce concept sketches
- Technical staff makes payload and containers (if needed)

- **Weeks 3-5**
 - Preliminary design
 - Weekly design reviews (attended by 2-4 members of staff, external experts or experienced postgraduate students)



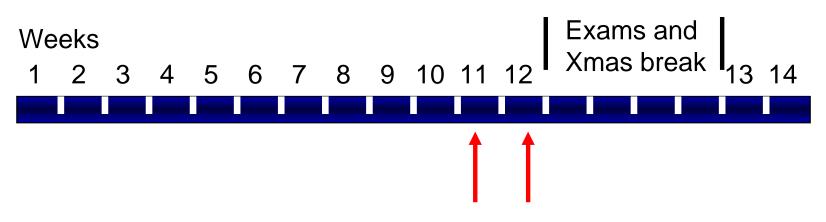
Week 6

- Interim review
- Specify motor (long lead item)
- Preliminary bill or materials (e.g. carbon fibre tubes, foam blocks)
- Initial mass & balance
- Check critical items: tail volumes, undercarriage position



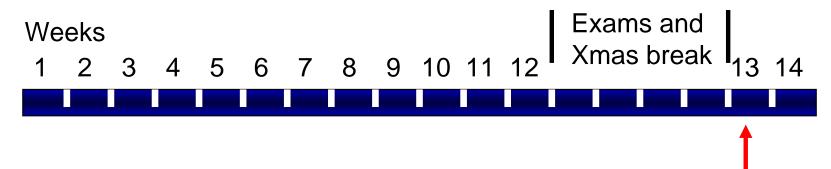
Weeks 7-9

- Detail design (update mass & balance each week)
- Purchasing (maintain running estimate of costs)
- Weekly design reviews
- Guest speakers (e.g. experienced model builder)



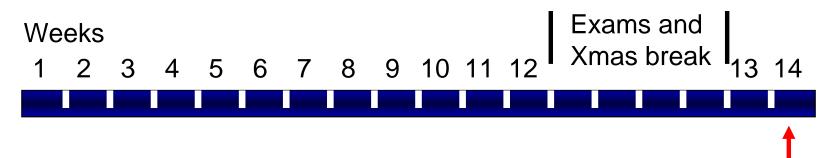
Week 10

- Freeze design (well, try to freeze the design these are student projects!)
- Start build


Weeks 11-12

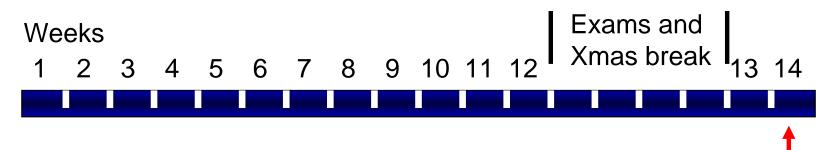
- Manufacture sub-assemblies
- Write report

Fig. Manufacture sub-assemblies


Week 13

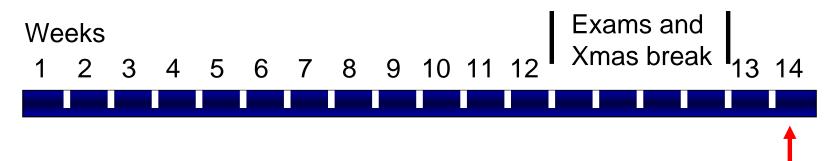
• Final assembly

Fig. Final assembly


Week 14

 Pre-flight evaluation: MTOW, c.g., structural integrity, safety (fuse), engine run, flight controls

Fig. Static load test (approx. 2.5 g)


Week 14

- Pre-flight evaluation: MTOW, c.g., structural integrity, safety (fuse), engine run, flight controls
- Check special requirements e.g. drop stores

Fig. Store drop test

Week 14

- Pre-flight evaluation: MTOW, c.g., structural integrity, safety (fuse), engine run, flight controls
- Check special requirements e.g. drop stores
- Flight test

Fig. Flight test

How difficult is this task?

AIAA success rate

About half of the teams fail to meet the minimum requirements for the competition (Broughton, 2006)

UL experience

Year	Teams	Observations	
2006/07	3	Not one team completed the flight circuit with any payload	
2007/08	2	Team A: completed circuit with ½ payload on first attempt Team B: crashed on first flight	
2008/09	2	White Team: airborne on first attempt, but suffered flight controls problems Green Team: completed the circuit with full payload on first attempt	

Lessons learnt

Is it easy?

No, but that is exactly the point. It has to be an engineering challenge, not something that students can buy in a hobby shop.

Can students get academic credit for their efforts?

- Yes, it can be integrated into a standard curriculum and students can get credits. (Participating in the US competition is complicated due to the requirement to include junior students in the team.)
- Students can be graded as a team or individually.

Does the excercisehave academic value or merit?

In Samara (2007) I argued that a DBF exercise has some advantages over (a) an actual a/c design, (b) a "paper" conceptual design study, particularly for an undergraduate programme?

Lessons learnt

Are student's enthusiastic?

I have not seen this level of enthusiasm in any other course that I have taught

Staff resources?

• Requires at least double the usual staff commitment compared to a conventional classroom module

What skills are developed?

- Technical skills
- Multidisciplinary integration
- Communication, technical drawing, report writing
- Project management
- Team work

Lessons learnt

Time scales

- January is a terrible time of the year to test outdoors (even in Ireland)
- 14 weeks is not enough time (not when students are busy studying other subjects as well)

Changes to be introduced at UL for 2009/10

- We will test in April
- Students will have about 17 weeks for the assignment
- Report will include more engineering analysis (e.g. CFD, FEM) and test (e.g. wind tunnel tests, structural test of spar)
- Number of credits will be increased. It will be part of a new two semester module worth 12 credits).

Concluding remarks

Concluding remarks

There are a lot of similar competitions; whis is this a good format?

- It can be integrated into a standard undergraduate curriculum.
- It is designed to be an engineering challenge.

Stated objectives (from the AIAA DBF rules)

- The contest aims to provide a real-world aircraft design experience for engineering students by giving them the opportunity to validate their analytical studies.
- The goal is a balanced design, possessing good demonstrated flight handling qualities and practical and affordable manufacturing requirements, while providing a high vehicle performance.
- To encourage innovation and maintain a fresh design challenge the design requirements and performance objectives are updated each year

A European competition?

• Several discussions have taken place regarding a European competition, to possibly start in 2010/2011.

Design, Build and Fly (DBF)

Trevor Young 15 May 2009

REFERENCES

Bovais, C. *et al.* Writing the Rules: An inside Look at The AIAA Student Design/Duild/Fly Co 15 Sep. 2006 mpetition. ATIO Conference, 25–27 Sep. 2006, Wichita, Paper no. AIAA 2006-7832.

Broughton, A. T. An Approach to Integration of Academic Studies with Practical Applications: Georgia Tech Design, Build, Fly. ATIO Conference, 25–27 Sep. 2006, Wichita, Paper no. AIAA 2006-7831.

AIAA. "DBF Rules and Vehicle Design", http://www.ae.uiuc.edu/aiaadbf/ [accessed Oct 2006 to Jan 2009].

MIT. "AA team takes 1st place place in AIAA design-build-fly competition", undated, <u>http://web.mit.edu/aeroastro/news/design-build-flywinners.html</u> [accessed 21 May 2007].