

Presentation for EWADE 2007

A Student Project of a Blended Wing Body Aircraft – From Conceptual Design to Flight Testing

Prof. Dr.-Ing. Dieter Scholz, MSME

Contents

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Introduction

Projects

AC20.30

Summary

Aero. Disciplines

BWB Definition Square-Cube-Law

BWB Projects

Preliminary Sizing

Aerodynamics Flight Mechanics Structures Mass Prediction System Integration

Air Transport System

Ground Handling Emergency Wake Turbulence Interior Design

AC20.30: Test Flights Wind Tunnel Tests Summary

Acknowledgement

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Data for this presentation was obtained from:

Internet Literature Diplomarbeiten / Master Thesis Team Effort at HAW Airbus Personal Communication

Introduction

- 1) Conventional Configuration: "Tube and Wing" or "Tail Aft" (Drachenflugzeug)
- 2) Blended Wing Body (BWB)
- 3) Hybrid Flying Wing
- 4) Flying Wing

The Blended Wing Body aircraft is a blend of the tail aft and the flying wing configurations: A wide lift producing centre body housing the payload blends into conventional outer wings.

The BWB configuration is favoured for ultra large aircraft. Why does physics demand a BWB?

 $m_{MTO} \propto l^3$ $V \propto l^3$ $m \propto l^3$ Geometric Scaling: $S_W \propto L^2$ Landing Field Length and Approach Speed is limited: $\Rightarrow \frac{m_{MTO}}{S_{W}} = const \wedge m_{MTO} \propto l^3 \Rightarrow S_W \propto \sqrt{3}$ Square-Cube-Law

Square-Cube-Law

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

The BWB configuration is favoured for ultra large aircraft. Why does physics demand a BWB?

$$S_W \propto l^3$$

A321 scaled to the same size as the A380.

A321:

$$\frac{n_{MTO}}{S_W} = 727 \text{ kg/m}^2$$

A380-800F: $\frac{m_{MTO}}{S_W} = 698 \text{ kg/m}^2$

Aircraft even bigger => BWB

Selected BWB Projects

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Boeing X-48B

<u>2006</u>: Boeing, NASA, U.S. Air Force. 21 ft span wind tunnel and flight test model. Two X-48B are built. Original:

450 seats, range 7000 NM, span 75.3 m, cruise: high subsonic.

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Boeing BWB-250 ... BWB-550

Boeing: study of BWB aircraft family

Today BWBs are not a topic anymore at Boeing for civil transport!

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

TsAGI (Russia) Integrated Wing Body (IWB)

Best configuration from comparison of four New Large Aircraft configurations based on VELA specification.

> Research sponsored by AIRBUS INDUSTRIE

AIRCRAFT DESIGN, Vol 4 (2001)

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

5th Framework Programme of the European Commision:

1999 - 2002

17 partners: D, F, UK, E, I, NL, CZ, P

Very Efficient Large Aircraft (VELA)

Two datum configurations for a flying wing (VELA 1 and VELA 2). A first step in a long-term work plan will be followed by further research work. Passenger-carrying aircraft.

Multidisciplinary Optimisation of a BWB (MOB) Freighter version.

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

VELA 1

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

VELA 2

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

6th Framework Programme of the European Commision: NACRE with PDA (VELA follow on)

- WP3: Payload Driven Aircraft (VELA 3)
- WP4: Flying scale model for novel aircraft configuration

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

VELA 3

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

HAW Student Project: AC 20.30

Wing profile: MH-45 (Martin Hepperle) t/c = 9.85%, low drag, improved max. lift, low $c_{m, c/4}$, proven even at Reynolds numbers below 200000. Body profile: MH-91.

AC 20.30: geometry is based on VELA 2; student project; sponsor: "Förderkreis"

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

BWB

preliminary sizing

VELA 2 Technical Data

Requirements:

```
3-class seating: 750 pax (22 / 136 / 592)
cargo capacity > 10 t
range: 7500 NM (200 NM to alternate, 30 min. holding, 5% trip fuel allowance)
high desity seating: 1040 pax
cruise Mach number: 0.85
M_{MO} : 0.89
take-off field length < 3350 \text{ m} (MTOW, SL, ISA +15^{\circ}C)
approach speed < 145 kt (here: approach speed = 165 kt)
ICA (300 ft/min, max. climb) > 35000 ft
time to ICA (ISA) < 30 min.
max. operating altitude > 45000 ft (=> cabin \Delta p)
runway loading (ACN, Flex. B) < 70
span < 100 m
wheel spacing < 16 m
```


Preliminary Sizing

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Input Parameters for Preliminary Sizing

Estimation of maximum glide ratio E = L/D in normal cruise

A :	aspect ratio
S _{wet} :	wetted area
S _W :	reference area of the wing
e:	Oswald factor; passenger transports: $e \approx 0.85$

$$E_{max} = k_E \sqrt{\frac{A}{S_{wet} / S_W}}$$

from statistics: $k_E = 15,8$

$$S_{wet} / S_W$$
:
 conv. aircraft
 6.0 ... 6.2

 BWB
 ≈ 2.4

 A:
 conv. aircraft
 7.0 ... 10.0

 VELA 2
 5.2

$$k_E = \frac{1}{2} \sqrt{\frac{\pi e}{c_f}} = 14.9$$

$$\overline{c_f} = 0.003$$

E_{max} = 23,2

Preliminary Sizing

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Input Parameters for Preliminary Sizing

Estimation of maximum glide ratio E = L/D in normal cruise

TsAGI for AIRBUS

Preliminary Sizing

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Input Parameters for Preliminary Sizing

Estimation of maximum lift coefficient take-off and landing

$$C_{L,max} = C_{L,0} + \frac{\partial C_L}{\partial \alpha} \alpha + \frac{\partial C_L}{\partial \eta_W} \eta_W + \frac{\partial C_L}{\partial \eta_B} \eta_B = 0.73$$

Wind tunnel measurements of AC 20.30:

VELA 2

Assumptions:

OEW / MTOW = 0,5 SFC = 1.4 mg/(Ns) approach speed = 165 kt mass of pax and luggage LOFTIN: 0,52 (T/W!) A380: 0,49 VELA 2: $0.55 \rightarrow 0.48$ latest technology assumed (GEnx)

for long distance flying: 97.5 kg per pax

Given:

Wing Area:

1923 m²

VELA 2

VELA 2

Sizing Results:

L/D during 2. segment: 17.0 (higher than conv. due to small lift coefficient and small drag). L/D during missed approach: 11.0 (normal, because landing gear drag dominates, FAR!) $V/V_{md} = 1.09$ (normal: $V/V_{md} = 1.0 \dots 1.316$) => E = 22.8lift coefficient cruise: 0.25 trust to weight ratio: 0.28 (value is slightly high for 4-engined A/C, reason: TOFL and C_i) wing loading: 260 kg/m² (very low for passenger transport, due to low lift coefficient) Initial Cruise Altitude (ICA): 38400 ft (= 11.7 km)83000 kg payload: MTOW: 501000 kg (VELA 2: 691200 kg) Wing Area: 1923 m² (VELA 2: 1923 m² - forced to fit) MLW: 366000 kg OEW: 251000 kg (VELA 2: 380600 kg) Fuel: 167000 kg (VELA 2: 278200 kg?) (for each of the four engines) Thrust: 344 kN

VELA 3

Assumptions:

OEW / MTOW = 0,5 SFC = 1.6 mg/(Ns) approach speed = 165 kt Reserves: LOFTIN: 0,52 (T/W!) A380: 0,49 BWB structural benefits? normal technology level assumed

200 NM to alternate, 30 min. holding, 5% trip fuel allowance

Given:

range:7650 NMMTOW:70000 kgWing Area:2052 m²Wing Loading:341 kg/m² (very low for pass. transp. due to low lift coeff.)mass of pax and luggage:95.0 kg per paxpayload:71250 kg

VELA 3

Given:

VELA 3

Matching Chart

VELA 3

Sizing Results:

```
lift coefficient landing: 0.86
                               (higher than HAW wind tunnel results)
L/D during 2. segment: 15.2
                               (higher than conv. due to small lift coefficient and small drag)
L/D during missed approach: 11.0 (normal, because landing gear drag dominates, FAR!)
L/D_{max}: 20.9
                               (lower than BWB estimate)
V/V_{md} = 1.0
                               => L/D = L/D_{max} (normal: V/V<sub>md</sub> = 1.0 ... 1.316)
lift coefficient cruise: 0.31
                              (value is slightly high for 4-engined A/C, reason: TOFL and C_i)
trust to weight ratio: 0.28
Initial Cruise Altitude (ICA): 37800 ft (= 11.7 km)
MLW:
                    469000 kg
OEW:
                    350000 kg
Fuel:
                    279000 kg
                                         (VELA 3: 282800 kg)
Thrust:
                        481 kN
                                         (for each of the four engines)
```


Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

BWB --brief results from other disciplines

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

AC20.30: CFD with FLUENT

Diplomarbeit: H. Brunswig

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

AC20.30: CFD with FLUENT

path lines

Stalls can easily be handled Usable lift up to AOA of 12° At 22° AOA:

> wings are stalled body continues to produce lift but control surfaces do not deliver control power

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

AC20.30: CFD with FLUENT

Flight Mechanics

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Static Longitudinal Stability Fundamentals

Flight Mechanics

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Positioning of the CG on the Mean **Aerodynamic Chord** (MAC) for required static margin is achieved in conventional design by shifting the wing with respect to the fuselage. This approach is not possible in BWB design!

$$x_{LEMAC} = x_{fg} - x_{cg} + \frac{m_{wg}}{m_{fg}} (x_{wg} - x_{cg})$$

Flight Mechanics

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Static Longitudinal Stability for VELA Configurations

Structures

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Weight Saving Potential of BWB Configurations

Helios - example of an extreme span loader with distributed propulsion (NASA / AeroVironment, Inc.)

Structures

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

VELA 2 - Basic Structural Layout Thesis: T. Kumar Turai

Structures

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

VELA 2 - Doors

Door cut-outs

Side door integration

Mass Prediction

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

VELA 2

Weight Chapter	F. Bansa	T. Kumar Turai	T. Kumar Turai (FEM)		
10 Structure	234669 kg	253529 kg	210070 kg		
20 Power Units	37731 kg	36603 kg	->		
30/40 Systems	19795 kg	23302 kg	->		
50 Furnishings	35313 kg	27588 kg	->		
60 Operator Items	s 35313 kg	39578 kg	->		
			220141		
OWE	362820 Kg	380600 Kg	33/141 Kg		
OWE/MTOW	0.525	0.551	0.488		
Loftin	0.521				
Marckwardt	0.462				
A380-800	0.501				
A340-600	0.475				
Taken for Pre.	liminary Sizing:	0.500			
Result: The BWB design does not significantly improve the OWE/MTOW ratio!					
Latest News: One-shell layout can lead to OWE/MTWO = 0.44 0.46 !					

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

VELA 2 - ATA 21 - Temperature Control & Ventilation

Diplomarbeit: M. Mahnken

Steps in system integration: 1.) System diagram

- 2.) Sizing
- 3.) Routing & ducting

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

VELA 2 - ATA 21 - Pack Sizing

Air Generation Unit (pack): A380 and VELA 2

Steps in system integration:

- 1.) System diagram
- 2.) Sizing
- 3.) Routing & ducting

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

VELA 2 - System Installation Areas

Steps in system integration:

- 1.) System diagram
- 2.) Sizing
- 3.) Routing & ducting

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

VELA 2 - ATA 21 -Positioning of the Mixing Unit

Steps in system integration: 1.) System diagram 2.) Sizing 3.) Routing & ducting

Air Generation Unit is positioned in the transition wing.

Alternative position (above cabin) of the Mixing Unit eliminates riser ducts.

Ducts for recirculation air.

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

VELA 3 - Landing Gear Integration

Twin tandem (Bogie) nose landing gear. Two retraction mechanisms.

Two twin tri-tandem (6-wheel) main landing gears on each side. Special retraction mechanism.

MLG wheel spacing only 11.4 m due to rib location (requirement: wheel spacing < 16 m)

Rule of Thumb: 30 t / MLG wheel => max. MTOW: 720 t

Air Transport System

VELA 3

A cargo loading vehicle drives in between the MLGs. Cargo loading from below with lifting system. Catering from the right.

Water / waste servicing on trailing edge left side.

Ground Handling

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

VELA 2

Cargo loading from the right.

Catering from the right.

Boarding through three bridges.

Fuel truck under right wing.

Towing truck.

Not shown: Electrical ground power unit, air starting unit, air conditioning vehicle, water service truck, lavatory service truck.

Emergency

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

VELA 1 - Emergency Evacuation - Slides - Ditching

Slides on forward doors.

This modification of VELA 1 allows also evacuation after ditching (into the water) through over wing doors.

VELA 1, 2, 3 standard configuration can not be certified, because doors will be submerged.

Wake Turbulence

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Wake Turbulence - Fundamentals

Wing tip vortices cause induced drag, *D*_i.

Wake turbulence cause a danger to following aircraft.

The initial strength of the wake turbulence is based on basic aircraft parameters:

Decay of wake turbulence from a conventional wing and a C-wing.

$$P_{wake} = D_i V = \frac{2g^2}{\pi Ae} \frac{m(m/S)}{\rho V}$$

C-Wing-BWB:

Wake Turbulence - Comparison

with BWB-Data from VELA 3. Result: no major problems expected.

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

VELA 1 - Cabin Layout

Diplomarbeit: S. Lee

Vertical acceleration for pax on outer seats.

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Double Deck BWB

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Underfloor Usage - Artificial Windows

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

BWB Center Wing Shapes from Inside

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

AC20.30

AC20.30

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Test Flights

AC20.30 Parameters

Scale	1:30
Span	3.24 m
Length	2.12 m
MTOW	12.5 kg
Engines	2 electric driven fans
Thrust	2 x 30 N
Power input	2 x 1400 W

AC20.30

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Test Flights

Recorded Parameters

barometric height, two temperatures voltage, current air speed, engine RPM GPS-Coordinates (=> position and ground speed) angle of attack, side slip angle 3 accelerations, 3 rotational speeds position of 4 control surfaces turn coordinator, ping, aerborne camera picture

AC20.30 Flight Test

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

AC20.30

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Euler Angles form Test Flights with "Gyrocube"

 $U = V_T \cos \beta \cos \alpha$ $V = V_T \sin \beta$ $W = V_T \cos \beta \sin \alpha$

$$\begin{aligned} a_x &= \dot{U} + QW - RV + g \sin \Theta & \qquad \text{solved for pitch angle, } \Theta \\ a_y &= \dot{V} + RU - PW - g \cos \Theta \sin \Phi & \qquad \text{solved for roll angle, } \Phi \\ a_z &= \dot{W} + PV - QU - g \cos \Theta \cos \Phi & \qquad \text{check results} \end{aligned}$$

Experience with Measurement Technique:

Simple and inexpensive method.

Drift problems are unknown.

Good results only for manoeuvres with moderate dynamic.

Wind Tunnel Tests

CFD surface stream lines (left) Fluorescend paint in wind tunnel (right).

Lift coefficient dependend on flap angle (wing) and angle of attack.

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Summary

Summary

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

BWB advantages compared to todays advanced aircraft

reduction in weight : better L/D : reduction in fuel consumption : reduction in emissions : reduction in noise : increase of airport capacity :

reduction in DOC :

But:

open certification problems : open design problems : single shell required than: 8% better 10 to 15% better (not apparent from AC20.30) yes, due to L/D yes only with engines on top yes, more than 750 pax per A/C (probably no problems with wake turbulence) down ??% (mostly due to scale effect)

unstable configuration (?), ditching rotation on take-off, landing gear integration, ...

