Presented by

Dieter SCHMITT

Vice-President Research & Technology AIRBUS SAS

- The Airbus A380 Towards a New Future for Air Transport

The future has arrived

A380 Family

159 firm orders16 customers

4380

(end April 2006)

111111

A38

21st Century flagship

560t 555 seats 8000 nm EIS 2006

590t 150 t 5620 nm EIS 2008

Page 4

© AIRE

A380 Cabin layout

- 2 full decks
- 4 aisles

A360 main deck, Economy Class sealing configuration

Providing more capacity, more comfort

Upper deck - true widebody cabin 2-2-2 business class, common product with Airbus long range family

Large innovation potential

The lowest cost by far

Advanced systems & manufacturing processes Advanced materials

A380

WON

Advanced powerplant

June 2007

A380 in 300 seconds

© AIRBUS S.A.S. 2006 - TPB2006

June 2007 F

A380 maintenance advantages

Integrated Modular Avionics

- Common hardware
- Software upgrades onboard
- Flexibility for reconfiguration

Structures

- GLARE and CRFP for less fatigue and corrosion
- Laser Beam Welding
- Standard repair procedures

Onboard Maintenance

..........

- Cockpit server for all Manuals
- E-logbook, Airman, PMATs

Fly-By-Wire

- New Electro-Hydraulic Actuation
- Superior redundancy for High dispatch reliability

Maintenance Programme

- Longer check intervals
- Low scheduled requirements

Electrical system

- Variable frequency
- New Interactive Maintenance

New Hydraulics

- Only 2 circuits, 5000 psi
- Maintenance free accumulators

Leading to 25% lower DMC per seat than the 747-400

© AIRBUS S.A.S. 2006 - TPB2006

The **GREEN GIANT** for our planet

mannet

VANAAAA

The first long-haul aircraft with less than 3 litres per pax/100km fuel consumption*

Over 80 miles per pax per USG

* 5000 nm sector, Typical International Flight Profile, 555 pax © AIRBUS S.A.S. 2006 - TPB2006

June 2007 Page 10

A380 and the environment

A380 vs. 747-400 noise contour

85dB(A) Noise Contour for take-off at FRA as calculated by Lufthansa with input of Boeing and Airbus nominal noise data for same take-off conditions

The A380's double advantage

The technology effect: half the noise per movement

2 *The capacity effect:* fewer movements

June 2007 Page 12

A380 likely routes

Subject to change based on current A380 customer and airport statements - Status as at end of 2005

June 2007 Pa

Page 13

AIRBUS

2010 airport readiness status

By end 2010, 69 airports will be ready for the A380

AIRBUS

A380 airport compatibility is proven

Large airports, for operational checks

Small airports, for performance testing

Medellin, Colombia

Pointe-à-Pitre, Guadeloupe

Tarbes, Southern France

Iqaluit, Canada

More than 20 airports already visited

© AIRBUS S.A.S. 2006 - TPB2006

A380 First flight

A380 Flight tests

• From 27th April 2005 to 8th June 2006

- Aircraft flying : MSN 1, 4, 2, 7, 3
- 430 flights
- 1416 flight hours
- More than 100 pilots, including some 50 airline pilots

A380 Flight tests

• <u>Test objectives</u>

- Check of the aircraft behaviour
 - Direct and normal flight control law
 - Effect of speed, Mach number, altitude, aircraft weight and centre of gravity position
 - All flight phases, from take-off to landing.
- Check of the adequate functioning of the various aircraft systems during the various flight phases.

• <u>Main results</u>

- Excellent aircraft behaviour
- Control laws, and auto flight already very mature
 - -Aircraft behaviour close to simulator
 - -Successful autoland on flight 17, 35 days only after first flight
- Major systems working as intended during normal operations.
- Early safety checks carried out flawlessly
 - -Landing gear gravity extension
 - -Ram air turbine extension and functioning
- ■Engine relight © AIRBUS S.A.S. 2006 - TPB2006

Water trough tests

• 1 acceleration + 1 deceleration at ~70 kt

© AIRBUS S.A.S. 2006 - TPB2006

Frankfurt Airport compatibility checks – 29th October 05

Page 20

AIRBUS

Hot & high campaign in Medellin (Colombia)

Cold weather campaign in Iqaluit (Canada)

Cabin evacuation test – 26th March 06

- Certification requirement : Evacuation must be fulfilled in less than 90 seconds using half the number of doors
- Result : 873 people evacuated in ~80 seconds

© AIRBUS S.A.S. 2006 - TPB2006

June 2007 Page 23

Video A380 Evacuation Test

© AIRBUS S.A.S. 2006 - TPB2006

June 2007

Cabin Virtual First Flight – 10th May 2006

• <u>TEST OBJECTIVES :</u>

- Test all cabin functions on ground with a representative passenger and crew loading during 5 hours on MSN 2.
- 474 passengers
- 22 crew members

Major R&T impacts from Flight Physics

High Reynolds Number W/T Testing

Reduction scatter in the performance figures through the development and application of High Re Test techniques: better prediction and therefore less margins for Performance guarantee (Conventional Tunnel = +/-0.75 % vs +/- 0.25 % in Cryogenic Tunnel) – To be translated into **1.3 dc (0.5 %) drag benefit**

Nacelle anti-ice Cyclone concept

50% reduction in Nacelle Anti-Icing system weight (**100kg**) plus reduced in Anti-Ice System **Maintenance**

Advanced Load Control

Reduction of 2200kg of wing weight through further improvements in Aircraft load control (fatigue/manoeuvre/ turbulence Wing Loads alleviation)

Integrated Wing Design

- VHBR Engine Integration
- High Speed Wing Design
- Advanced CFD Simulation

More In-board loaded wing gave **weight reduction** of **4000kg** (for a slight increase in induced drag) through improved understanding of High Reynolds/Mach wing aerodynamics plus a **drag reduction** of **3-4 dc** (1.5%) through improved wave & installation drag handling.

Methodology for Wake Vortex Prediction

Validated methodology for wake vortex prediction and enabling A380 classified in the same category as B747 (instead of super heavy: +2NM) Benefits for marketing & **Airport capacity**.

Optimal Tail and Empennage

Variable thickness distribution of VTP/HTP gave mass reduction of **350kg**, improve tail flow saved approximately **1.5dc (0.5% of drag)**.

NAMES OF TAXABLE

Droop Nose

Lower drag, improved lift / drag ratio for take-off performance, tailored maximum lift.

Major R&T impacts from Powerplant

Inlet acoustic liner (0-splice)

Automated (FMS) Noise Abatement Departure Procedure

S

1 st

Noise reduction landing gear fairing

> Nacelle anti-ice Cyclone concept

......

Wing over-pressure tube noise suppression

Major R&T impacts from Structure

© AIRBUS S.A.S. 2006 - TPB2006

June 2007 Pag

Page 28

AIRBUS

Major R&T impacts from Systems

SI

Dual air conditioning pack

New concept based on two redundant pack

Integrated and modular avionics (IMA)

AFDX high speed bus network

Cockpit

Interactive man /machine interface

Electrical generation

Solid state power controllers

Variable frequency power generation

Vehicle flight

Control Enhanced vehicle control laws e.g. "Brake to Vacate"

Electro-hydraulic actuators

Two hydraulic (5000 psi) + two electrical channel architecture

On board maintenance systems

Based on open world network

A380 – first feedback

An excellent aircraft, already well appreciated by pilots and which will be very soon appreciated by passengers

© AIRBUS S.A.S. 2006 - TPB2006

une 2007 Pa

The A380: flying today...

... an all-new, 21st century design

... on track in payload and range - and making much less noise

... achieved JAR and FAR certification - to the latest standards

... with true development potential - a future-proof family

... it will be the flagship of the 21st century !

Major R&T impact on A380

- Overall aircraft configuration
- Concurrent Engineering
- KBE for wing design

Some misperception...

- Correctly pointing out A380's lower fuel / seat (than any 747)
- The figures on A380 emissions* are, however, as follows:

A380 vs 747-400 (RR engines)

HC	-96%
CO	-59%
Nox	-25%
smoke	- 9%

* Preliminary emissions certification data from RR

A380-800 / RR Trent 970 vs 747-400 / RR RB211-524H-T

© AIRBUS S.A.S. 2006 - TPB2006