EWADE Controlled Flight Beyond Stall The X-31 Aircraft Program

Lilienthal Hanggliding (1894)

Nine months after the **crash of the Birgenair 757** off the coast of the Dominican Republic, the official accident report was published on November 8. The document states that the main reason for the disaster, which cost the lives of 178 passengers and 11 crew, was the failure of the crew to **interpret the signs of impending stall correctly and act accordingly.** The pilots were confused by false speed displays due to a blocked pitot.

Source: Flugrevue 10. Nov. 1996

Military Accidents

• • . .

STALL / SPIN OUT - OF - CONTROL OPERATIONAL ACCIDENTS 1965 - 1986

Total losses (fighter / attack, bomber, trainer, etc): 566 Fatalities per accident: 0.85

Fighter / Attack					
<u>USAF</u>		USN			
F-4	68	F-4	73		
F-100	30	A-4/TA-4	54		
F-111	17	F-8	35		
A-7	14	A-7	33		
F-5	10	EA-6	21		
F-15	10	F-14	18		
A-10	8	T-2	17		
F-16	5	A-6	14		
-					

Total value of fighter / attack losses: \$3.95 Billion

EWADE Poststall Landing Gear, Grashopper, 1973

Hannes Ross Samara, May 2007

EWADE

Lift vs. Angle of Attack

Results from Manned Close-in Combat Simulations at IABG, Germany 1979

Hannes Ross Samara, May 2007

Government / Industry Organization & Program Objectives

- 1. Design, develop, build two "low cost" demonstrator aircraft
- 2. Demonstrate the technical feasibility of Post-Stall maneuvering
- 3. Demonstrate the tactical utility of Post-Stall capability

X-31/Eurofighter Size Comparison

EADS Workshare

EWADE Trailing Edge Trim Power vs. Angle of Attack

Hannes Ross Samara, May 2007

EWADE

Side Force Generation by Thrust Vectoring System

X-31 TV Vane Arrangement

Thrust Vectoring Control Authority

- Improved control authority provides increased safety
- Eliminates inherent design problems such as deep-stall
- Provides for higher yaw accelleration to reduce departures/allow for graceful exit from spin
- Allows for unique entry conditions for additional emergency training

PST Flight Test Milestones

EWADE

High Angle of Attack Manoeuvring

EWADE

1979 Simulation Results

	Guns + SRM	Guns
Engagement Wins	5.4:1	4.2:1

EWADE EXtremely Short Take-Off and Landing (ESTOL) using Thrust Vectoring

Objective

 ESTOL experiments shall demonstrate a reasonable, minimum energy during touch-down and landing

Concept

- High Angle of Attack (AoA) Approach using Thrust Vectoring for Precise Low Speed Control
- Derotation to Land (Reduced Pitch Angle)
- Thrust Vector-Assisted Rotation for High AoA Fly-Away

Approach Trajectory

Natural and Man-Made Landing Approach

X-31 Experimental Aircraft - Exploitation of Configuration and other Project-relevant Data in external Cooperations

Project	Description	Main Partners	X31 - Data used	RESULTS
Frontier (1996-1998)	EU-Research Project on development and verification of multidisciplinary optimisation methodologies	BAe Systems EADS-M – Univ. of Trieste Univ. of Newcastle	Wing lofting	Multipoint optimisation of dimensioning of wing t.e. flaps for supersonic roll performance
JULIUS (1998-2000)	EU-Research Project on development and verification of multidisciplinary simulation analysis tools in HPC environment	BAe Systems EADS-M Dassault Aviation – Univ. of Swansea FhG -IPK	Complete Aircraft CAD Model Structural models of wing and of complete aircraft	Test of CAD-repair procedure Aeroelastic Simulation of flight manoeuvres (e.g. rapid roll, 5g-pull up)
FASTFLO II (1999- 2000)	EU-Research project on development and verifacation of fast CFD analysis tools	NLR DLR EADS-M Saab - FFA	Complete Aircraft CAD Model	Simulation of flow characteristics at high angle of attack by an unstructured Naviers- Stokes solver
TA15 (2002 - 200x) (proposed)	EU research project on vortex flow phenomena	NLR EADS-M Alenia DERA	Complete Aircraft CAD Model	Validation of CFD Methodology wrt to unsteady vortical flow phenomena

Andreas Schütte, Gunnar Einarsson, Axel Raichle, Britta Schöning

Prediction of the Unsteady Behavior of Maneuvering Aircraft by CFD Aerodynamic, Flight-Mechanic and Aeroelastic Coupling

The main objective of this paper is to focus on the necessity for developing an interactive, multidisciplinary engineering tool for predicting the unsteady critical states of complex maneuvering aircraft. Such a simulation environment has to bring together aerodynamics, aeroelasticity and flight mechanics in a time-accurate simulation tool. In order to deliver such a tool in the near future, the DLR Project SikMa-"Simulation of Complex Maneuvers" has been initiated to combine these three disciplines into one simulation environment [18][19].

PAPER NBR – 11 RTO-MP-AVT-123

Figure 14: 3D flow field over the X-31 configuration at 18° angle-of-attack.

END

Reserve Slides

Thrust Vectoring for Civil Aircraft?

EWADE

- T/W ratio for commercial aircraft: 0,25 0,35
- Primarily wing mounted engines: no lever arm for for pitch and yaw
- Fixed engine nozzle, no variable exit area

Application of TV for commercial aircraft doubtful. Blended Wing body concepts could offer a new opportunities.

Program Pay-off's

Development/Demonstration of new technologies:

- Application of the CCV F-104 approach to control law development
- Fully integrated thrust vectoring into the digital FCS System
- Pathfinder for the NARMCO carbon fiber material for the EF
- Opening of a new flight regime: Post Stall Arena
- Demonstration/evaluation of new operational capabilities (PST for CIC)
- Demonstration of precision short field landing techniques
- Development of a microminiaturized Air Data System

Development and Test of a new aircraft

Training of a new generation of engineers from conceptual design through flight test

Development of a Vector nozzle for the EJ 200 engine by ITP in Spain

What we did not (yet) achieve:

EWADE

Samara, May 2007

Elements of the VECTOR Program

Options for High Alfa Landing

High attitude Normal approach angle Low speed Normal sinkrate High Thrust

Normal attitude Steep approach angle Low speed High sinkrate "Low" Thrust

EWADE

How Do We Maintain the Knowledge Base?

(US Data)

Source: Rand Corporation

EWADE Consolidation of European Aerospace Industry !?

Stall (2 Dimensional Calculations)

EWADE

EWADE

Evolution of Thrust/Weight Ratio Fighter and VTOL Aircraft

Das Langbein Fahrwerk

Configuration Selection

Full Scale Thrust Vectoring Test

Samara, May 2007

Vane Manufacturing

EWADE

Comparison X-31 vs. F-18 HARV

X-31, Thrust Vector Vane Attachment Scheme

Drove Aft Fuselage Changes

IBR

EWADE

Nosecone Strakes

EWADE

