Aircraft project 2007 Linköpings University

RAVEN BizJet Medivac

Agenda

- Introduction
- Goals
- Requirements
- Results
 - Full scale
 - Demonstrator

Introduction

- Course given in fourth year
- 13 students and 4 different nationalities
- Two different courses collaborates together
 - Aircraft Design
 - Ergonomy Design
- Sponsorized By Linklab and NFFP
- Budget of 20000€

Introduction

Autumn (1 periode)	Spring (2 periode)
Flight Mechanics	
	Aircraft Structural Design and System Integration
Aircraft Conceptual Design	Aircraft Project Course

Linköping University INSTITUTE OF TECHNOLOGY

Goals

- Design a BizJet/Medivac aircraft in full scale
- Design Manufacture Flight a "Dynamically scaled" aircraft based on the full scale study
- Design the interior solution for BizJet and Medivac application
- Why?
 - Simulate the "real" aircraft behavior with reduced risk
 - Extend the flight envelope
 - Understand difficulties with dynamic scalling

Requirements Full Scale

- Two roles: bizjet or medivac
- Quick change (30 min max.)
- Two pilots
- In medivac role:
 - 575 kg payload (max 700kg)
 - Range 1300 nm
 - Two Patients, one doctor and one nurse
 - Enable one stretcher to remain inside while the other is removed
- BizJet Role
 - 4 to 6 passenger
 - Offer space and high class interior
- Able to use runways 800m long (ISA+20)
- Sized around two Williams FJ33 engines

Requirements for Demonstrator

- Dynamic scaling
- Full instrumentation for flight testing
- Endurance minimum 20min
- Full Instrumentation
 - Alpha Beta vanes
 - Pitot Tube
 - IMU
 - Data logger based on FPGA with Linux
 - Potentiometers for all control surfaces
 - Engine monitoring
 - Telemetry with stall speed warning

Work Load

- 400 h/person
- 16 Weeks
- 25 h/week

Linköping University INSTITUTE OF TECHNOLOGY

Dead lines

- 16 February Presentation of Redesign
- 23 March Outer geometry locked
- 18 May Flight test

Linköping University INSTITUTE OF TECHNOLOGY

Project management

inköping University.

Tools

- Sizing Program in excel
- DATCOM
- Matlab
 - Aerodynamics (Tornado from KTH)
 - Flight Mechanics
- Catia V5
- Flight Gear
- OVL (aerodynamic)
- Xfoil (aero)

Project: Raven

G£

General structure

Main door and canopy

Wing: Main specifications

Spars and wing attachment

Main landing gear

Nose landing gear

Back door solution

Back door opening

• Empty plane

Business Jet

• Stretchers

Allfa Europe

Mobile Intensive Care Unit

ECHNOLOGY

Dynamic Scaling

National Aeronautics and Space Administration

Froude-scaling acounts for gravitational-, and inertial effects:

Response according to scale

- Velocities
- Forces
- Angular rates, etc...

INSTITUTE OF TECHNOLOGY

100000

Car top testing

Propulsion

Engine testing

Sandwich technology :

Epow resinto hold it together 3rd Layer of glass fiber Sandwich material (foam or balza) 2nd layer of glass fiber 1st layer of glass fiber **External** painting

Mold Preparation

Wing manufacturing

Linköping l INSTITUTE OF T

Curent Status

- Wing Finish Now...
- Systems instalation and testing need to be completed
- First flight end of June

Linköping University INSTITUTE OF TECHNOLOGY

Conclusion

