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OVERVIEW

A four node quadrilateral shell element with six global and one 
internal degrees of freedom (7-parameter model) based on an 
enhanced assumed strain (EAS) formulation is regarded as a 
master of a class of  shell finite elements particularly applicable 
for the simulation of complex light weight structures exhibiting 
severely nonlinear behaviour. Concepts from the recent litera-
ture have been adapted and refined in view of challenging indus-
trial applications. The formulation includes thickness change 
and allows for large rotations and large strains. The element can 
be employed within commercial codes like ABAQUS, in con-
trast to alternative formulations using seven global densities of 
freedom. The performance of the element is comparable to that 
of solid (or continuum) shell elements. In contrast to the latter, 
existing FE models (with one node level) can be applied without 
any change.  

1. INTRODUCTION 

The present article presents the status quo of one branch of a 
research project in aerospace engineering, called ICONA (Inno-
vative Concepts for Nonlinear Analysis of Light Weight Struc-
tures). The project partners are INTALES Gmbh – Engineering 
Solutions (Innsbruck) as well as three departments of the Uni-
versity of Innsbruck (Civil Engineering, Mathematics, Computer 
Science). The project is supported by EADS Astrium ST (Les 
Mureaux) and TransIT (Innsbruck). It involves a cooperation 
with Delft University of Technology (Aerospace Engineering). 
The research is targeted at an improved treatment of complex 
light weight structures in view of stability analysis, reliability, 
and robustness. Besides element technology it covers the devel-
opment of concepts of sensitivity analysis [1,2], numerical 
methods (domain decomposition, determination of bifurcation 
and limit points, branching analysis) and databases to handle 
input and output parameters for the simulation of various and 
complex load scenarios.  

The project is motivated, amongst others, from experiences with 
the analysis of the frontskirt of ARIANE 5 launcher [3]. One of 
the main problems in this connexion is the exact determination 
of bifurcation and limit points. To overcome this problem in the 
context of Finite Element Method (FEM) it is necessary to 
operate at element as well as at solver level. The present work is 
at an early stage and covers the search for adequate element 
routines containing the required links for an advanced bifurca-
tion and branching analysis (e.g. asymptotic numerical method 
[4]).  

Modern developments in shell element technology tend towards 
solid shell elements. These elements are treated like solid ele-
ments but are optimized for the simulation of shell structures. 
They are available in commercial codes like ABAQUS1. Their 
two major advantages are: 

                                                          
1 Called continuum elements 

1) They can be easily coupled to solid elements (discretization 
of shell intersections, e.g.) 

2) Their formulation is directly derived from 3d continuum 
mechanics and is not restricted to the assumptions of con-
ventional shell theories (plane stress, e.g.)  

Unfortunately, they cannot be used within conventional FE 
models consisting of a single node layer. This fact disagrees 
with some requirements of the industry, who claim the applica-
tion of approved models. In order to circumvent this conflict, we 
search for elements which approach the behaviour of solid 
elements (allowing for thickness change and large strains) on the 
one hand, but can be used like conventional shell elements 
within the existing FE models on the other hand. Elements that 
satisfy these requirements will be addressed as 3d shell ele-
ments. Appropriate formulations have been proposed by several 
authors [5-13] and are still subject to ongoing research activities 
[14,15].  

One important benefit of 3d (and solid) shell elements is the 
possibility to implement arbitrary three-dimensional constitutive 
laws. This involves obvious advantages in view of composite 
and layered structures [16,17] as well as anisotropic damage. 
Moreover, similar elements have been used successfully in fields 
of contact [15] and solid-fluid interaction [18]. The considera-
tion of thickness change suggests describing the shell kinematics 
by vector components [6,7,8,9,11].  This approach simplifies the 
implementation compared to conventional formulations using 
trigonometric functions of rotation angles. In course of the 
linearization of the element equations no assumptions have to be 
made concerning small increments in rotational angles. Thus the 
implementation allows for much larger load increments com-
pared to conventional elements [8]. The latter fact is expected, at 
least, to compensate the increased computational effort arising 
from an additional degree of freedom (dof). 

In a first step a geometrically non-linear element formulation 
has been adopted from the literature [11]. It is based on a first-
order2 approximation of the displacement vector (including 
thickness change) within a continuum mechanics based ap-
proach. In order to represent bending deformations correctly, 
shifting of the midsurface relatively to the top and the bottom 
surfaces is allowed via an enhanced strain field substituting the 
missing term of the curvatures. This yields the simplest formula-
tion satisfying the requirements for 3D shell elements (7-
parameter model). So far a four node quadrilateral version in 
updated lagrangian formulation has been implemented within 
ABAQUS. The implementation is new in that sense that it is 
totally based on the EAS method. I.e. all locking effects are 
eliminated by enhanced strain fields. The underlying concepts 
are partially adopted from the literature: [10,11] (shear and 
membrane locking and [19] (transverse shear locking). The 
treatment of curvature thickness (or pinching) locking [20,21] 
via EAS method is currently under investigation. At the present 
state an isotropic linear elastic constitutive law is used. 

                                                          
2 With respect to the thickness variable 
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2. SHELL MODELS 

The kinematics of a shell structure can be described by a certain 
approximation of the kinematic equations of the three-
dimensional continuum. Shell elements based on this approach 
are exactly equivalent to those obtained by degeneration of solid 
elements (if the same model assumptions are used). In the first 
case the continuum is reduced to the shell structure first and 
discretised after. In the latter case the continuum is discretised 
first and reduced after. Both methods may be addressed as con-
tinuum mechanics based or degenerated solid approach. The 
main disadvantage appears within the consideration of large 
rotations. To obtain linearised incremental equations the as-
sumption of small increments in rotation angles is needed. This 
problem is avoided by an alternative approach (geometrically 
exact or resultant based) which starts from an exact kinematic 
description of a Cosserat surface and does not contain any re-
strictions concerning the size of rotations. The formulation is 
based a priori on a postulation of stress resultants in contrast to 
the definition of stress resultants via thickness integration of the 
three-dimensional stress tensor. For more detailed information 
read [22] and references therein. 

The presented formulation uses the continuum mechanics based 
approach. The use of rotation angles is avoided in view of a 
formulation involving thickness change. The elements based on 
this formulation are designed for large rotations and large 
strains. We arrange the displacement of an arbitrary material 
point of the shell body as a first order approximation with re-
spect to the thickness coordinate: 

(1) ( ) ( ) ( ) ( ) ( )2113210321 ξξξξξξξξ ,,,, uuu +=

αξ  are the natural coordinates of the shell midsurface with the 

corresponding base vectors αA .3 The linear dependence with 

respect to 3ξ  counts for the assumption, that a straight line of 
material points which is orthogonal to the midsurface in the 
undeformed configuration remains straight (but not necessarily 
orthogonal) during deformation. ( )0u  describes the deformation 

of the midsurface and ( )1u  the change of the direction and the 
length of the shell director  

(2) 
21

21
3 2 AA

AA
A

×
×= t

t is the shell thickness. Without any additional kinematic as-
sumption the corresponding shell model is called a 6-parameter 
model, due to the six independent kinematic dofs. The associ-
ated Green-Lagrange strains read 

(3) ( ) ( ) ( )12303
jkjkjkjkE χξχξε ++=

with with the midsurface (membrane) strains αβε , the transverse 

shear strains 32 αα εγ = , the transverse normal strain 33ε  , the 

midsurface curvatures αβχ  and the “transverse shear curvatures” 
( )0

3αχ . All other components are zero, in particularly 33χ  which 

disagrees with the fact, that the transverse stress varies at least 
linearly with respect to 3ξ . This unbalance between transverse 
strain and stress cannot be justified physically and is the reason 
why the 6-parameter model cannot represent a bending configu-
ration correctly. This problem can be circumvented by either 

                                                          
3 Greek indices count from 1 to 2, small Latin indices from 1 to 3. 
Summation convention is used. 

reducing or expanding the ansatz (1).  

The reduced ansatz with fife kinematic dofs (5-parameter model) 

(4) ( ) α
αϑξ Auu 30 +=

conserves the length of the shell director (except for a second 
order term with respect to the rotation angles 1ϑ  and 2ϑ ) and 

thus corresponds to the Reissner-Mindlin kinematic assumption: 
a straight line of material points which is orthogonal to the 
midsurface in the undeformed configuration remains straight 
and unstretched during deformation [22]. Therefore the trans-
verse strain 33E  can be eliminated from the formulation via the 

plain stress assumption ( 033 =S ) which leads to a modified 
constitutive law. The remaining strain components are αβε  and 

αγ . 

The extended ansatz4

(5) ( ) ( ) ( ) 3

23130 auuu qξξ ++=

leads to a 7-parameter model [9,13,14]. Now 33E  varies quad-

ratically with respect to 3ξ  which is consistent with the charac-

teristic of 33S  except for third order terms. The transverse nor-

mal strain 2) 1( 2
33 /−= τε  is governed by the relative thickness 

change 33 Aa /=τ  . The “transverse curvature” 

)(1 4 32
33 qq ξτχ +=  may be interpreted as a displacement of the 

midsurface relatively to the bottom and top surfaces of the shell 
body. The main disadvantage of this model is the fact that every 
material point of the midsurface is provided with seven kine-
matic dofs. This causes an increased computational effort for FE 
calculations based on that model compared to classical shell 
models with 3 (Kirchhoff-Love) or 5 (Reissner-Mindlin) dofs. 
Only in the case of a linear constitutive law, the seventh dof may 
be eliminated by the assumption that its work conjugate coun-
terpart vanishes [9].  

A generally applicable method to avoid the seventh global dof 
was described first by Büchter and Ramm [6]. They start from a 
6-parameter formulation and introduce an additional strain 

variable 33E
~

 via enhanced assumed strain (EAS) method in 

order to eliminate the unbalance of 33E  and 33S . This idea has 

been developed further by a few authors [10,11] but ongoing 
research activities are missing since [12,23].5 It is considered the 
most promising approach view of many large scale applications 
and therefore the origin of the presented formulation (chapter 3).  

                                                          
4 ( )1

3 uAa +=3
5 The most recent results in the field of 7-parameter elements 
[14,15] deal with 7 global dofs 
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3. FINITE ELEMENT DISCRETIZATION 

Originally the EAS method has been developed by Simo et al. to 
eliminate shear and membrane locking in plate elements by 
enhancing the membrane strains [24,25]. The extension to the 
non-linear case has been performed by Andelfinger and Ramm 
[26]. By further developments the method is adequate to treat all 
locking effects [27]. The method is based on the variational 
principle 

(6) 0ext =Π−






 ⋅−⋅∫ δδδ dVESES

eV

u

ij

u
ij

ij
ij ~~

which is derived from the modified Veubeke-Hu-Washizu prin-
ciple [28] by splitting the strains 

(7) ij

u

ijij EEE
~+=

into displacement compatible strains 
u

ijE  and enhanced strains 

ijE
~

 and postulating the orthogonality constraint [24] 

(8) 03 =∫ xdES ij
V

ij~

Both variables (u and E
~

) have to be discretized:6  

(9) 

αM~

BN

=

=⇒=

h

u
hh

E

dEd         u

The nodal displacement vector d  contains the kinematic dofs of 

each node of the element and the Matrix N  the element shape 
functions. B  is the strain-displacement matrix. In the context of 
FE formulation strains and stresses are treated as matrices as 
well.7 The ansatz functions 2LKL ∈M  are not uniquely deter-

mined by the shape of the element. They have to be chosen 
according to the requirements for the enhanced strains (chapter 
4). With respect to the variational index, the enhanced strains 
need not to be continuous between the elements. Therefore the 
coefficients Kα  are determined at element level and need not 

contribute to the global DOFs. 

Linearization yields the incremental linear system of equations 

(10) 







−








=









∆
∆








 + +

int
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1

0
  

F

FFd
nn

u

uGuu

n

~
KK

KKK

αααα

α

with the stiffness matices 

(11) ∫=
eV

T
uu xd 3

BCBK , ∫ ∂
∂=

eV J

KI
u
h
KIJG xd

d
S 3)(

B
K

(12) xd

eV

T
u

3

∫= BCMK α , ∫=
eV

T
u xd 3

MCBK α

and the forces 

                                                          
6 Discretized quantities are indicated by a superscript h, which 
refers to the characteristic element size 
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(14) 
d

F
h

T

∂
Π∂

= ext
ext

( )1dd ∆=∆  and ( )1αα ∆=∆  are first estimations of dn
n ∆+1  and 

α∆+1n
n . The correct values are found by Newton iteration:8

(15) 
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1    and   αα,,

As stated above, the strain parameters α  may be eliminated at 

element level: 

(17) ( ) ( ) ( )( )i
u

ininini dF ∆−⋅=∆ −+−+−−+ 11
int

11111
αααα K

~
K

,
,

,

Thus the incremental system of equations takes the same shape 
than in the case of a purely displacement based formulation: 

(18) int

11

ext
1)(11 FFd

inniin ˆK̂
,

,
−++−+ −=∆

with a “softened” stiffness matrix 

(19) uuGuu
1

αααα KKKKKK̂
−−+=

and a modified internal load vector 

(20) int
1

intint FFF u

~
KKˆ −−= ααα

                                                          
8 n indicates the last converged load increment. i labels the itera-
tion step of the current increment n+1
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4. ENHANCED STRAIN FIELDS 

In order to gain a totally EAS based 7-parameter element, the 

enhanced strain field ijijijE χξε ~~~ 3+=  hast to include all zero 

order components ijε~  and the first order component 33χ~ . The 

zero order components compensate parasitic strain due to lock-
ing phenomena: shear and membrane locking ( αβε~ ), transverse 

shear locking ( 3αε~ ), curvature thickness locking ( 33ε~ ). The first 

order component induces the missing midsurface shift for bend-
ing deformations. The corresponding ansatz functions are con-
tained in the matrix 

(21) 
( ) ( ) ( )

( ) 







=

33

333

000

0

M

NNN
M

ααβ

In detail, for transverse curvature (midsurface shift) [6] 

(22) ( )
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for the membrane strains (shear and membrane locking) [10] 
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for the transverse shear strains (transverse shear locking) [27] 
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and for transverse normal strains (curvature thickness locking) 
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5. OUTLOOK 

The presented element layout is the origin of a sequence of 
element formulations which are considered to approach indus-
trial applicability successively. The most important ones of the 
subsequent steps are the incorporation of Mises plasticity, fol-
lowed by thermo-mechanical coupling. The treatment of shell 
structures with kinks and/or intersections is an open item of 
great practical importance. Eight and nine node derivatives may 
be required in view of cross-checking analyses. Special numeri-
cal efficiency is expected from a one-point integrated implemen-
tation. 
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