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OVERVIEW 
The paper gives the mathematical concept as well as 
an algorithm that efficiently tackles the optimal path 
problem considering turn restrictions. The internal graph 
representation remains unchanged apart from the 
necessary assignment of turn restriction. The algorithm 
develops Reverse Optimal Path Graphs (ROPGs) that 
are not necessarily cycles-free due to the turn 
restrictions’ requirements. ROPGs enable the 
successor feature (in contrast to the conventional 
predecessor feature), i.e. only one path exploration is 
necessary for a given target β that assigns each road 
uniquely one successor road via the shortest distance 
towards target β. Regardless to which road a driver is 
forced to change, a path recalculation is not necessary 
if the target β remains unchanged. An intensive per-
formance analysis is given. The paper reveals how turn 
restrictions have to be assigned to traffic points such 
that the additional time effort proving turn restrictions 
during the path exploration remains minimum. 

1 INTRODUCTION 
We regard the  All-to-One problem optimal path al-
gorithm that doesn’t start its path exploration (as usual) 
in a specific start point(s) but in the destination β 
scanning the edges in reverse direction and building a 
Reverse Optimal Path Graph ROPG denoted here with 
T(β) ⊆ G. And we take into consideration comparative 
One-toAll algorithms also able to  observe turn 
restrictions. These algorithms start the path exploration 
in start point α and develop an Optimal Path Graph  
OPG denoted here with (α). Notice, we have to aban-
don Optimal Path 

T
Trees because turn restrictions may 

coerce optimal paths to have cycles, e.g. Fig. 1. 
 road net graphs  G= [VG, EG]  

with traffic points (vertices) VG and the roads  
(edges) EG ⊆ VG

2 and we assume a given 
 road cost function  l : EG → R+   

denoting the effort l (r) traversing road r (length, 
time). 

OPG and ROPG can be seen as a bunch of overlapping 
optimal paths from all x∈VG to the target β or from α to 
all x∈ VG:  

OPG T (β)= {PG(x, β)}, see  
x V∈
U

G

 in Fig. 2, 

OPG T (α)=  {PG(α, x)}.  
x V∈
U

G

 

 
Fig. 1 Optimal path with a cycle induced by  

turn restrictions  

Concentrating on ROPGs, T (β) we introduce an 
 edge potential function    π : EG → R+  

that uniquely assigns to each road r= (x,y) the 
potential π(r) (length or time) of an optimal path 
PG(x, β)  from x to target β ensuring turn restrictions.  

 Edge successor function    σ: EG → E(T (β)).  
uniquely assigns each road r∈ VG a successor edge 
σ(r) ∈ E(T (β)) via an optimal path to target β.   
Related to  σ, there is an implicit   

 start edge function    ζ: VG → E(T (β)) 
assigning each point x∈ VG an outgoing road  
ζ(x)∈ E(T (β)) that is part of an optimal path from x 
to β. E.g. T (β) In Fig. 2: ζ(5)= 11= (5,4). Obviously, 
ζ(x) can be called optimal road leaving x:  
x∈ VG ⇒   π(ζ (x))=  {π(e)} with  EG || {x] as 

the set of edges EG leaving x. It follows: 
Ge E {x}∈ ||

min

e∈ VG  ⇒  σ(e=(u,v)) = ζ (v). 
An optimal path PG(x, β) leads to β via the edges  

(ζ (x), σ(ζ (x)), σ( σ(ζ (x))), ..., (z, β)) 
with start edge ζ(x) and the last edge  (z, β).  

We refer to Fig. 2 b, where the optimal path  
PG(α=8, β=1) observing turn restrictions is 8 units lon-
ger  than the corresponding path without turn restric-
tions (Fig. 2 a). For Fig. 2 b) it holds e.g. that ζ(8)= 19 =  
optimal road leaving crossing 8.  
The road sequence of  PG(α=8, β=1), (Fig. 2  b), is 
ζ(8)=19, σ(19)= 23, σ(23)= 16, σ(16)= 5, …σ(11)= 9. 

We state already in advance: If an ROPG T (β) does 
exist and a driver has lost his previous optimal path 
coming to an unknown road r, he immediately has with 
T (β) the new successor road σ(r) towards the target β! 
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Fig. 2 The influence of turn restrictions on the Reverse Optimal Path Graph ROPG T (β)  ( ).  
 

2 Problem Formulation 
We start from  
 a digital road map given as connected, directed, and 

finite  graph  G= [ VG, EG ].  
 a fixed start point  α ∈ VG, 
 a fixed target  β ∈ VG, 
 the roads’ lengths (or time).  � :: EG → R+  

 turn restrictions (see 3.1 ) r . 
Let H ⊆ G be an arbitrary sub-graph in G, i.e.   
VH ⊆ VG and EH ⊆ EG ∩ VH

2. Then we denote with  

C(H)=  the cost of sub-graph H. 
Hr E

(r)
∈
∑ l

REVERSE OPTIMAL PATH PROBLEM  
ENSURING TURN RESTRICTIONS: 

 
We call H*= T (β)  Reverse Optimal Path Graph  in G 

with respect to target β and turn restrictions r .  
The formula expresses the following:  
Among all sub-graphs H in G that contain optimal 
paths PG(x, β) in G for all x∈ VG (i.e. PG(x, β) ⊆ H) 
ensuring turn restrictions we look for that one that has 
minimum cost C(H).  

2.1 Solution Prospect 
T (β)  uniquely assigns each vertex x ∈ VG an optimal 
path from x to β. Since PG(x, β) ⊆ T (β) it holds   
PG(x, β)= PT (β) (x, β) ensuring turn restrictions.  
The solution has to include the calculation of  
 π : EG → R+   
 σ: EG → E(T (β))  
 ζ: VG → E(T (β)) (implicitly)  

For an arbitrary vertex x ∈ VG  the road sequence  
ζ(x) → σ(ζ(x)) → σ(σ(ζ(x))) → …. → (z, β) 

has to lead via the edges of an optimal path PG(x, β) ⊆ 
T
s

(β) ensuring turn restrictions.  

3 SOLUTION – ALGORITHM A-1 

3.1 Turn Restrictions 
Regarding a crossing x∈ VG we define restriction as 
follows:  

“if a driver comes via road r1 to crossing x then driving 
away via road r2 is not allowed!” I.e. the tupelo (r1, r2) is 
to assign to crossing x as restriction. We may write (r1, 
r2)∈ r (x), Thus, we define the turn  restrictions as 
follows: 

   

The power set P(EG
2) suffices only the exact notation 

to enable the assignment of several turn restrictions 
(tupelos) to one crossing. E.g. in Fig. 2, r (5)= {(21,11), 
(21,12)}. The deployment is easy because the vertex 
structure is to enlarge only by a pointer to a restriction 
structure. The pointer is NULL if the crossing under 
consideration has no turn restrictions. Otherwise, the 
pointer refers to the first restriction given, e.g., with the 
simple structure called Sperr as follows: 

struct   Sperr {  // e.g. assigned to vertex x ∈ VG 
 int edge1,  
 int edge2;  
 Sperr *  p_Next;  
} 

Turn Restrictions 

r : VG → P(EG
2).. We look for sub-graph H* ⊆ G  with cost  

C(H*)=.

G G
observes r

H G
x V P (x, ) H

H  

{ C(H) }min
∀ ⊆

∈ ⇒∃ β ⊆

. 
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3.2 Algorithm A-1 
Description of   A-1 corresponding to Fig. 3: 

1 Set the potential of all edges to infinite and set each 
edge e itself as successor edge. Set the edge FIFO 
queue Q empty and mark e* to  -1 meaning “the 
start point α hasn’t been reached by the path explo-
ration till now” (backwards from the targt β). Set the 
potential π(e) of  all edges e that directly end in β 
and put them into the queue Q.   

2 Take an arbitrary edge L= (p, i) out from Q and 
remove it from there (at the begin: i = β). 

3 If Q is empty go to 5 (final treatment).   
4 Regard the vertex p of edge L= (p,i) and take all its 

incoming  edges e= (j, p). 
Is edge sequence (e, L) via vertex p a turn 
restriction then go to 2. Are the cost 
 c= potential of L + length of e  
greater or equal than the potential of edge e then go 
to 2. 
Set the potential of e to c. 
Take σ (L)= L as the best successor edge for edge 
e towards target β .  
Is the start point j= α (remember: reverse edge 
scanning) and is c < c* then assign the minimum 
potential edge e* with potential c*  to  α .  
Put edge e into queue Q. 
Go to 2.  

5 If target α has not been reached then there is no 
path PG(α, β) from α to β observing turn restrictions.  
Go to 7. 

6 The  ROPG T (β) has been developed. The total 
function σ  is available and assigns each edge  
e∈ EG a successor edge σ(e) towards target β. End. 

7 Start point α has not been reached. This may hap-
pen if G is not connected or if false turn restrictions 
prevent building a connected path.  

Now, a driver can use the ROPG  T (β) without re-run-
ning A-1 as long as the target β remains unchanged:  
a)  The driver is on any road r:  

σ(r) is the road to optimally drive towards β.  
b) The driver is situated on any crossing x: 

ζ(x)= is the road to optimally drive towards β. 
So far an application really needs the total function  
ζ: VG → EG, the following statements might be intro-
duced into block 6 of A-1: 
∀ x∈ VG: ζ(x)= e* such that π(e*)=  {π(e)}. The 

overall time complexity remains unchanged.  
Ge E {x}∈ ||

min

 

 

∀e = (j,p) ∈EG: { 
(e, L) ∉ r (p): { 

c:= π(L)+l (e); 
c < π(e)⇒ { 
π(e)= c;  
σ(e):= L; 
if(j = α) { 

if(c < c*) { 
 c*= c;  
 e*= e }}; 

Q ∪= {e}; } } } 

∀e ∈ EG: {
π(e)= ∞¸  σ(e)=e }; 

Q= 0; e*= -1; c*= ∞ ; 
∀e= (x, β)∈ EG: { 
π(e)=l (e); Q ∪= {e}}; 

L= (p,i):∈ Q; 
Q \ ={L}; 

e 
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Fig. 3 Algorithm A-1 building an ROPG T (β) 
observing turn restrictions 

3.3 Exactness and Complexity of A-1 
A-1 is an exact algorithm delivering a solution with poly-
nomial time effort O(m2).  

Exactness Proof: (proof by contradiction) 
The critical point is the potential underbidding control in 
block 4 in A-1.  We assume that A-1 calculates  a path 
Pα,β from α to β that is not an optimal one. That means 
that A-1 hasn’t discovered the (ore one of several) 
optimal path PG(α, β) ensuring turn restrictions. I.e. 
there is an edge e’ within an undiscovered path PG(x, 
β), whose potential π(e’) hasn’t been updated during the 
path exploration of A-1. This contradicts to block 3 and 
4: Each edge so far improvable is reached by a 
temporary path wave started in the target β and scan-
ning the edges backwards (their reverse direction). If 
the graph is connected (it is, because Pα,β does exist) 
edge e’ must be reached and it takes place the 
underbidding control improving its potential. Because e’ 
is put into the queue Q (if a potential improvement 
occurs as assumed), e’ is available as successor for 
further possible improvements applied to the incident 
edges e’. This contradicts the assumption that PG(α, β) 
was undiscovered by A-1.  
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Time Complexity Proof:  
We  assign all edges to generations g1, g2, .… as 
follows. 
 g1 is the set of the edges EG(β). Among these edges 

there is one eg1 = (xg1, β)  with minimum potential = 
minimum length l (eg1) coming into the queue Q. 
Clearly, There will be no other edge in the course of 
the optimization that can reach vg1 (reverse direc-
tion!) with a smaller path length measured from the 
target backwards. Thus, this edge will not come 
again into Q. Only for g1 it holds: The other edges 
arriving β also won’t come into Q again because 
negative cycles cannot occur due to the prerequisite 
l: EG → R+ ( no further improvement of their 
potential possible).  

 g2 are the edges  that are successor edges of  g1 
coming into Q for the first time. It holds also here: 
there is an edge eg2 whose potential (cumulative 
length through its predecessor edges) is smallest 
and will not come into the queue Q again.  

 g3  to proceed in relation to g2 explained above,  … 
and so on. 

It follows that each generation has at least one edge 
whose potential cannot be improved and won’t come 
again into Q. That means, that the theoretic maximum 
number of edges each generation steadily decreases at 
least by 1. Since m+(m-1)+(m-2)+ .. + 3+2+1= O(m2), 
m=|E

G
|.  

Thus the worst case complexity is O(m2).   Otime(m
2). 

Remark  
The worst-case complexity O(m2) feigns that A-1 as so 
called Label Correcting Algorithm (LC), [7],  is slower 
than a comparable Label Setting Algorithms (LS), [7],  
having time complexity O(m log m). Nevertheless, run 
time analyses show that LC algorithms outperform LS 
algorithm if all application cases come into considera-
tion (target and start very fare remote as well as near 
together, see 5.2).  

4 Known Solution Approaches Tackling 
Turn Restrictions 

Kirby and Pots [6] solved the turn restriction problem by 
replacing vertices having turn restrictions with directed 
sub-graph as shown in Fig. 4. („expanded networks“)  

 
Fig. 4 Crossing replacement by sub-graphs 

In contrast to A-1, this method  induces a heavy in-
crease of inefficient vertices and edges for the digital 
road mapgraph G and declines the real time perfor-
mance.  
Jiang et al. [5] proposed an interlinked („link-based”) 
data structure used as vertex connection table 
„NodeLink“ together with an edge connection table 
„LinkLink“ that describes the turn restriction, Fig. 5. 

 
Fig. 5 Crossings enlarged with connection 

structures 

Algorithm A-1 doesn’t need structures like above. 
Instead it uses a very simple assignment of turn restric-
tions to vertices VG so far necessary. 

Cadwell [2], Anez et al. [1], and Winter [8] introduced 
the concept of „line graph“: Roads between crossings 
are transferred to vertices and crossings are transferred 
to roads, Fig. 6. The Line graph completely repla ces 
the original graph G. Therefore, run time performance is 
quite better than that of the approaches des cribed 
above. Road lengths are to store as vertex cost 

 
Fig. 6 Graph inverting vertices with edges 

and turn restrictions are to store as edge cost.The 
conversion of graph G into a new graph like above is 
always necessary as far as a graph change is neces-
sary. Algorithm A-1 doesn’t need such a conversion and 
is as efficient as the the algorithm of  [2].  

Flinsenberg [4] proposed an edge-queued algorithm si-
milar to the known A* algorithm. It regards estimated 
cost from the current edge processed to the target. Flin-
senberg takes into account processing all incident road 
pairs with additional turn cost: Turn cost are set very 
high to suppress the path exploration via forbidden 
neighbour roads.  
Against it, A-1 considers only those incident road pairs 
that are really confronted with turn restrictions and an 
additional introduction of cost to prohibit forbidden turns 
are not necessary. 
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5 PERFORMANCE ANALYSIS 

5.1 Test Graphs 
We used random grid graphs G= [VG, EG] , n= |VG|,  
m= |EG|, n ≤ 210.000 (vertices) and m ≤ 838.176 
(edges), with road length function l : EG → R+ and   
0 ≤ l (r) ≤ 40 for all r∈ EG,, Fig. 7. The graphs are 
directed. Each inner vertex v∈VG has four incoming 
edges and four outgoing edges. The graphs are com-
pact and shaped as squares with rows and columns 
corresponding to about n . The correctness of the 
results has been  proved for smaller graphs as they and 
their optimal paths with turn restrictions were displayed 
on the screen. 

5.2 Comparative Algorithms Tackling  
Turn Restrictions 

We consider only those algorithms that explore the 
paths using an edge queuing strategy (suffix _E). Not 
vertices but edges are put into the queue Q. This stra-
tegy enables algorithms to implement  turn restrictions 
as described in 3.1. LS_E_OPG and LC_E_OPG return 
an edge  predecessor list not (as A-1) a successor list. 
It emerges an Optimal Path Graph OPG (α) that can 
be denoted only then as Optimal Path Tree if turn 
restrictions are not observed. 

T

Algorithm LS_E_OPG 
is an edge-queuing  Label-Setting algorithm, i.e. the 
path exploration finishs if the target β has been 
reached. Queue Q is a  priority queue organized as a 
binary heap to efficiently find the minimum potential 
edge. The path exploration begins at the start point α 
and ends if a  minimum potential edge e= (z, β) has 
been fetched from the queue Q (β reached). An OPG 
emerges T (α). The run time decreases (increases)  the 
nearer (more remote (edge number)) start and target 
are situated. It follows, that there is an essential 
performance difference dependent on the remoteness 
of α and β. Fig. 7 shows the great difference between 
LS_E_OPG-max. (great many edges between α and β) 
and LS_E_OPG-min (α and β within the near vicinity) .  
Worst case time effort:  O(m log m) 
Algorithm LC_E_OPG 
is an edge-queuing Label-Correcting algorithm working 
with a queue Q being organized as a FIFO queue (first 
in – first out). The path exploration begins at the start 
point α and ends if no edges can be improved as to 
their potential. It emerges an OPG (α). In contrast to 
LS_E_OPG that can finish if the target has been 
reached, LC_E_OPG needs more time effort even if  α 
and β are situated quite near together. Nevertheless, 
LC-E outperforms LS_E_OPG. 

T

Worst case time effort:  O(m2) 
Algorithm A-1 
Like LC_E_OPG, A-1 is an edge-queuing Label-
Correcting algorithm working with a queue Q being 
organized as a FIFO queue. The path exploration 
begins at the target βand proceeds towards the start 
using the edges’ reverse direction. The performance is 
comparable with that of LC_E_OPG but it emerges an 
ROPG T (β). Thus, the very attractive quality 

“ubiquitous path information” provided by σ is available: 
Each edge e∈ EG has been assigned the successor 
edge towards the target (via an optimal path using the 
following successor edges), i.e. a driver can deliberately 
make detours without a new calculation of the optimal 
path (ROPG). He remains always informed through the 
edges best successor assigned to by σ. 
Worst case time effort:  O(m2) 

5.3 Evaluation  
Algorithm A-1 fulfils the following requirements: 
1. A-1 as LC-algorithm is competitive in time and 

memory compared to algorithm that ensure turn 
restrictions.   

2. The path description of A-1 has to be unique 
although the vertex predecessor assignment may 
not be unique.   

3. Insertion and deletion of traffic regulations mustn’t 
harm the graphs’ vertex and edge table .   

4. Traffic regulations have to observe dynamic storage 
allocation for real-time changes.  
Their internal data representation should abandon 
concepts based on orientation.  

Surprisingly, O(m log m)-algorithm LS_E_OPG 
(average run time, Fig. 7, cannot compete with A-1 and  
LC_E_OPG although the latter ones have a worst case 
time complexity O(m2). The priority queue Q in 
LS_E_OPG requires more maintenance effort than the 
FIFO-queue of  A-1 or LC_E_OPG. This disadvantage 
of LS_E_OPG increases with the circumference of the 
current path exploration wave: A-1 and LC_E_OPG 
need less queue maintenance effort than LS_E_OPG, 
but their number of queue operations is always very 
high independent from the α--β- remoteness.  

6 SUMMARY 
A-1 outclasses  comparative algorithms under conside-
ration observing turn restrictions.  
1) The proposed algorithm A-1 outperforms 

LC_E_OPG and LS_E_OPG as to the  trade-in 
value namely the ubiquitous path information related 
to σ.  

2) Algorithm A-1 outperforms  
LS_E_OPG with respect to the run time effort. 

3) Regarding the simplicity of implementing turn 
restrictions proposed here and the arguments of 1) 
and 2), Algorithm A-1 is a most suitable one for 
navigation applications. 
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Performance Analysis: Reverse Optimal Path Algorithm A-1 Observing Turn Restrictions
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