
TERRAIN FOLLOWING MINIMUM TIME TRAJECTORY DESIGN FOR UAV 
SWARMS USING MIXED INTEGER PROGRAMMING 

J.W. Vervoorst, T. Kopfstedt 
Diehl BGT Defence GmbH & Co. KG 

Alte Nussdorfer Strasse 13, 88662 Ueberlingen 
Germany 

 

ABSTRACT 

This publication discusses the calculation of time optimal  
mission scenarios for swarms of Unmanned Aerial 
Vehicles (UAV). A typical UAV mission consists of visiting 
a number of waypoints within a partially known 
environment and these tasks can be distributed between 
all members of the UAV swarms so that the complete 
mission can be accomplished in minimum time. In this 
particular case, a multi-level planning algorithm is 
presented that generates 2D or 3D trajectories for each 
member of the UAV swarm. A receding horizon controller 
approach is chosen for the calculation of the time optimal 
trajectories, therefore enabling adaptation to changes in 
the mission scenario or unknown obstacles. 

Index Terms: Mixed Integer Linear Programming, task 
assignment, visibility graphs, receding horizon control 

1. INTRODUCTION 

Unmanned Aerial Vehicles are already used in a variety of 
fields where the deployment of humans is considered too 
dangerous or unnecessary. For example, UAVs serve as 
airborne communication stations, reconnaissance aircraft, 
or even in tactical operations. But all models in use today 
are operated only as pilotless vehicles, still requiring 
several human operators on the ground. In the future, 
UAVs will be able to plan their flight missions 
autonomously, without human intervention. Additionally, 
they will cooperate with other UAVs in large groups, or 
swarms. The complexity associated with managing 
swarms of UAVs can no longer be handled effectively by 
human operators. Thus, planning and control algorithms 
have to be implemented that guarantee safe cooperation 
and distribute workload evenly between all members of 
the swarms, allowing for much faster mission completion.  
 
The planning algorithm presented in this publication is 
able to generate full three dimensional terrain following 
minimum time trajectories for each member of a UAV 
swarm. The terrain following aspect of trajectory 
generation is especially important when trying to avoid 
detection by enemy radar, as is necessary in tactical or 
reconnaissance operations in hostile airspace. Low flying 
and terrain following trajectories usually do not constitute 
the minimum time solution of the optimization problem, 
hence the two optimization criteria are inherently opposite. 
Thus, weighting factors that govern the importance of 
each criterion can be adjusted dynamically during the 
UAV mission in order to address possible changes in the 
mission profile. 
 
A typical UAV mission generally can be described as 
visiting a number of waypoints distributed somewhere on 

a map. These can be points of interest for reconnaissance 
or maybe target locations.  A schematic of the described 
scenario is depticed below in Figure 1. 
 

 
 
FIG 1. UAV mission scenario 
 
The different levels of the complete mission planning 
algorithm are now explained in a little more detail. 
In the first phase of the algorithm, the so called task 
assignment phase, tasks are distributed among all 
members of the UAV swarm. That means that each UAV 
receives an ordered list of waypoints that it has to visit 
during the duration of the mission. When all waypoints 
have been visited, the mission is completed. Waypoints 
are assigned to each UAV by means of a modified 
multidimensional traveling salesman problem (TSP). This 
problem is solved as a Mixed Integer Linear Programming 
(MILP) problem, as it is similarly outlined in [1].  
 
In the next phase, the trajectory planning phase, detailed 
trajectories are generated for each UAV, also by MILP. In 
order to generate truly time-optimal trajectories, it is 
usually necessary to optimize the complete trajectory over 
a fixed horizon, from the starting point all the way to the 
end point. For long distances, this leads to a very complex 
optimization problem that cannot be solved in real time. 
Furthermore, unknown terrain or other changes in the 
mission along the way are not accounted for, and a 
change in the environment will render the previously 
calculated optimal trajectories obsolete. Thus, a receding 
horizon controller is implemented that calculates near-

2091



optimal trajectories iteratively, previously shown for the 
single vehicle case in [2]. It allows navigation in uncertain 
or unknown environments as well as adapting to changes 
in the mission profile. A detailed kinematically constrained 
trajectory is only generated within a small planning 
horizon around the UAVs, while the rest of the trajectory is 
approximated. 
 
Since the mathematical description of obstacles is crucial 
for both the task assignment and the trajectory planning, 
we will discuss it first in chapter 2.  In chapter 3, the task 
assignment algorithm is described and examples for both 
2D and 3D cases are given. Chapter 4 includes all details 
about the trajectory planning part of the mission planning 
tool. Chapter 5 combines task assignment and trajectory 
planning into a complete mission planning algorithm. 
Simulation results for various examples are discussed in 
chapter 6. 
 

2. TERRAIN/OBSTACLE REPRESENTATION 

One of the appeals of using a Mixed Integer Linear 
Programming is the possibility to declare obstacles very 
efficiently. Obstacles of almost arbitrary shape can be 
described by declaring constraints on the optimization 
problem. 

2.1. Obstacles in 2D 

The general approach to the declaration of obstacles shall 
be explained in detail for a very simple obstacle shape, a 
rectangle in the x-y plane.  

In this case, obstacles can be described simply by giving 

their lower left and upper right corner [ ]Tururllll yxyx ,,, . 

The variable objectb  is a binary, and the number M is an 

arbitrary large positive value. 
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 ,  is the position of UAV j  at time k . Index i  

describes the number of obstacles, j  lists the number of 

UAVs in the swarm, k  the number of time steps in the 

planning horizon, and l  enumerates the four inequalities. 

As long as 3≤∑ ijklobjectb  is fulfilled, the UAV is outside 

the obstacle. 

 

2.2. Obstacles in 3D 

By simply adding constraints for the z coordinate, 
rectangles can easily be modified into three dimensional 
obstacles.  
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The total number of constraints has risen to six and we 
now have a cuboid.  
 

 
 
FIG 2. Polygon 3D obstacle 
 
Similarly, we can describe any arbitrarily shaped convex 
obstacle with a number of constraint equations as stated 
above. The volume of the polygon can be described by 
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where A
r

and b
r

are linearly independent. The dimensions 

of A
r

and b
r

depend on the number of constraints 

necessary to describe the bounding surface of the 
obstacle. 
 

3. TASK ASSIGNMENT 

As already mentioned, the Task Assignment problem is 
very similar to the Traveling Salesman Problem (TSP). 
Just as in a TSP, there is a list of waypoints that need to 
be visited once. However, in this case there is not one 
single person, but rather there is a swarm of UAVs that 
split the task between them. Such a multi-dimensional 
TSP is explained in [10].  A similar description of the task 
assignment problem, applied to airplanes, can be found in 
[11] and [12]. 

3.1. Problem Description 

In the case of the regular TSP, all of the waypoints have 
been assigned certain cost values. What is the meaning 
of these cost values? Typically, they describe the 
distances or travel times between waypoints. Therefore, in 
our case the cost values of the waypoints would be the 
flight times between waypoints. For simplicity, the 
distances between waypoints are approximated by 
straight line segments.  
 

In the beginning we have a group of VN  UAVs, their 

x 
y 

z 

2092



respective initial positions initx
r

, as well as their maximum 

velocities maxv . Furthermore, there’s a number WN  of 

waypoints whose positions are known. Waypoint 

coordinates are combined in the matrix W
r

. There’s also a 

number of ON obstacles. Obstacle descriptions are also 

stored, depending on how the obstacles are defined (see 
chapter 2).  

3.2. Visibility Graphs 

A decisive problem for the path planning problem in 
mobile robotics is the detection of visibility. The standard 
robotics problem is the navigation of a system through an 
environment filled with obstacles. In our case this is one of 
several UAVs that is trying to find a free, unobstructed 
path to a waypoint.  
 
So the goal should be to find the shortest route to the 
target despite the obstacles. In order to achieve this, we 
employ so called visibility graphs. A visibility graphs maps 
all possible straight line connections between points that 
are visible to each other, meaning that no obstacle is in 
the path of the connecting line segment. While there are 
several other methods of finding these connections, as 
outlined in [13] and [14], but visibility graphs are widely 
used and very efficient ([15]). Example visibility graphs for 
both 2D and 3D are shown in Figures 3 a) and b). 
 

 

FIG 3. a) Example of a visibility graph in 2D 
              b) Visibility graph in 3D 

3.3. Algorithm 

The visibility graph finds all connections between 
waypoints, but not the shortest connections. In order to 
achieve this, the following algorithm is used: 
 

• Calculation of the visibility graphs between all 
waypoints, the obstacles and the initial positions 
of the UAVs and storing all data in a cost table. 

• Using the Dijkstra algorithm, the shortest 
distances between all waypoints are calculated 
from all combinations and stored in another 
table. 

• All possible waypoint combinations per UAV are 
calculated and the flight distances are added up 
for all ordered permutations. 

• The best permutation of each combination is 
chosen. 

• Data is passed to the optimization to solve for 
the minimum time solution to the task 
assignment problem. 

 
Data is passed on to the optimization through four 
matrices/vectors: 

• The row vector u
r

with size VN  defines what 

UAV is assigned what permutation 

• The time matrix T
r

 with dimension permW xNN  

stores the times at which a waypoint is visited in 
a certain permutation. 

• The visiting matrix V
r

, also with dimension 

permW xNN , shows wether a waypoint is visited 

at all during a certain permutation. 
 

3.4. Optimization 

Goal of the optimization is to find such waypoint 
combinations that: 

- all waypoints are visited once 
- the whole mission is accomplished in a minimum 

amount of time 

3.4.1. Choosing the Permutations 

A binary decision vector b
r

 is introduced to allow choosing 

the correct permutations. b
r

 is of dimension 1xN perm . 

ib
r

is 1 when permutation i is chosen and 0 when it isn’t. 

As already mentioned, every waypoint should be visited 
once, and also every UAV should only be assigned one 
permutation. This can be expressed as follows: 
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Equation (6) makes sure that when summing over every 
permutation, every waypoint is only chosen once 
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The parameter pN is used to enumerate the permutations. 

Permutations assigned to the p -th UAV are numbered 

from pN  to 11 −+pN . Thus, Equation (7) allows only one 

single permutation to be chosen for each UAV. 

3.4.2. Objective Function 

Formulation of the objective function has a large impact 
on the solution of the optimization. In the case described 
here, we want to visit all waypoints in minimum time. The 

a) 

b) 
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objective function for this is defined as: 
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iFDt is the total flight duration for UAV i . The maximum 

total flight duration is therefore the time it takes for the 
longest permutation of the mission to be accomplished. 

That means that 
iFDt is also the overall mission time.  

The second term is the averaged sum over the flight times 
of all UAVs multiplied by a weighting factor. We not only 
want the longest flight time to be minimal, we also want 
the other UAVs to reach their target as quickly as 
possible. 
A task assignment solution for four UAVs and eight 
waypoints is shown in Figure 4. 
 

 
FIG 4. Task Assignment solution 
 

4. TRAJECTORY PLANNING 

In the previous chapter, the optimal mission scenario for a 
swarm of UAVs was found, with our main focus on 
calculating the optimal task assignment. The flight 
trajectories between waypoints were only approximated by 
straight line segments since a design of detailed flyable 
trajectories would have been far to complex at this point. 
Instead, detailed trajectory design is handled in this 
chapter. Using a discrete state space model for the UAV, 
flyable trajectories are generated with respect to velocity 
and acceleration constraints and obstacle and collision 
avoidance. Just like in the task assignment phase, Mixed 
Integer Linear Programming is used in the optimization of 
this planning problem. A basic example of a similar 
problem can be found in [3] and [4]. 
 

4.1. System Description 

Detailed models of aircraft dynamics are typically strictly 
nonlinear and therefore trajectory optimization for these 
systems tends to be rather complex [5]. A basic, yet 
adequate model that can be used for the modelling of a 
UAV is a simple point mass. By using additional 

constraints on speed and turning radius, the behavior of 
an aircraft can be approximated. The discrete time state 
space representation for such a system is: 

(9)   
( )

( )

( )

kz

y

x

kz

y

x

kz

y

x

a

a

a

t

t

t

t

t

t

v

v

v

z

y

x

t

t

t

v

v

v

z

y

x











































⋅

∆

∆

∆

∆

∆

∆

+



























⋅



























∆

∆

∆

=



























+

00

00

00

2/00

02/0

002/

100000

010000

001000

00100

00010

00001

2

2

2

1  

 

4.2. Dynamic Constraints 

As described above, additional constraints are added to 
the system to make it behave like an airplane. These 
constraints are defined as follows. 

4.2.1. Maximum Velocity 

A realistic airplane certainly has a maximum velocity of 
flight, or rather a desired cruising speed at which it should 
fly. Such behavior can be accomplished by adding a 
constrain on the maximum possible velocity. Therefore, 

the following has to be true at all times: maxvv ≤
r

 

 
Mixed Integer Linear Programming, as the name already 
implies, is limited to linear systems. However, taking the 
length of a vector is an inherently nonlinear operation, so 
another way of expressing maximum velocity has to be 
found. Instead, the velocity is mapped onto a finite 
number of unit vectors that are evenly spread out in 
space. 
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Figure 5 shows this method for the planar, two 
dimensional case. 
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FIG 5. Mapping of velocity vector onto 8 and 16 unit  
               vectors 
 

4.2.2. Minimum Turning Radius 

Analog to the description of maximum velocity constraints, 
the same setup can be used to limit the minimum turning 
radius of a UAV. In this case, we limit the maximum 
acceleration that the system can experience. 
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4.3. Obstacle Avoidance 

Obstacle avoidance constraints have already been 
discussed in chapter 2 when the general description of 
obstacles has been explained. 

4.4. Trajectory Planning with Fixed Horizon 

The constraints above can now be used to formulate a 
MILP optimization problem.  
 
In this regard, trajectory planning with fixed horizon can be 
considered the traditional approach to finding time optimal 
trajectories. This means that the complete trajectory is 
calculated from beginning to end point, forming a large 
and complicated optimization that does not take into 
account changing environments. When obstacles are 
added or subtracted, the precalculated optimal solution 
essentially becomes worthless and a recalculation has to 
be performed. 
It does however produce time optimal trajectories 
because the trajectory can be optimized as a whole, thus 
enabling the optimizer to find  a ”closed loop solution”. 
 

4.5. Trajectory Planning with Receding Horizon 

As mentioned above, fixed horizon planning has its 
shortcomings especially in changing or unknown 
environments.  
 
In order to achieve better results in this context, a different 
approach is chosen. Instead of optimizing the complete 
trajectory at once, a Model Predictive Control (MPC) setup 
is chosen. [6] lists the properties of Model Predictive 
Control, also called Receding Horizon Control: 

• At time i  and initial state ix
r

 the optimization is 

performed for only the next PN  time steps. PN  

is the so called planning horizon. 

• The first EN values of the optimal solution are 

used as inputs to the system. EN  is the 

execution horizon. EN  is usually set to 1. 

• In the new initial state 
ENix +

r
the optimization is 

performed again, repeating the process, thus 
taking into account possible changes in the 
environment. 

 
Similar implementations of MPC can also be found in [7] 
and [8]. 
 
To be able to use this approach, we need to overcome a 
problem. As seen in Figure 5, the trajectory is only 
optimized within a small area around the current state, the 
planning horizon. But the total trajectory consists of the 
optimized piece plus the remaining pieces from the 
planning horizon to the goal point. However, that piece is 
unknown and the total distance cannot be calculated. 
Therefore, the remaining trajectory is approximated with 
straight line segments connecting the planning horizon to 
the goal point. 

 
 
FIG 6. Details of Receding Horizon Control 
 
 

4.5.1. Calculation of Cost Maps 

In order to find the shortest distance to the goal point, a 
cost map of the complete environment is calculated, 
calculating and storing the distances of points to the goal 
point (Fig. 6). [6] shows that the shortest distance in an 
environment with convex obstacles is a combination of 
line segments between the points and the corners of the 
obstacles. Thus, the corners of the obstacles are cost 
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points in our cost map. The visibility graph between all 
obstacles and the goal point is calculated and by using 
the Dijkstra algorithm, as outlined in [9], the shortest 
connections between all the points and the goal point are 
calculated and stored as the cost of each point. 

 
 
FIG 7. Calculation of a cost map in 2D 
 

4.5.2. Cost Point Selection 

The length of the trajectory outside the planning horizon 
can now be determined. As detailed in Fig. 1, it is: 

• The distance from 
PNix +

r
,the edge of the 

planning horizon, to a known cost point optx
r

that 

is visible from that point.  

• The distance from that cost point to the goal 
point. This value has already been calculated 
and is stored in the cost map.  

The visibility constraint between 
PNix +

r
 and optx

r
 is very 

important. Because of it, local optimization within the 
planning horizon does indeed have a global influence on 
the whole trajectory, therefore also minimizing the total 
trajectory length. 
Now the planning problem is expressed in MILP form. 
Each UAV can select only one cost point during each 
optimization: 
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with CPN = number of cost points, VN = number of UAVs, 

goalN =2, the next two waypoints. 

Equations (15) and (16) set the cost value and 
coordinates of the chosen cost point. 
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The line connecting the edge of the planning horizon and 
the cost point is described by 
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In order to test visibility, this connection is divided into 

testN  parts: 
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Each part is tested for interference with obstacles using a 

binary variable 
ikmnoptb , very much like in (2). 

 Equations (19) and (20) handle which goal point to use in 
the optimization. If a goal point is reached in the last step 
of the planning horizon or not at all, then only this point 
will be part of the optimization. If a goal point is reached 
within the planning horizon, then goal points are switched 
and the optimization directs the trajectory to the next goal 
point. 
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4.5.3. Cost Function 

The cost function to be minimized is the total trajectory 
lengths of the UAVs, consisting of three parts: 

• The part within the planning horizon, from ix
r

 to 

PNix +
r

 

• The line between 
PNix +

r
 and the selected cost 

point 

• The distance between selected cost point and 
goal point. 

The first part is described by the first part of Equation (21), 
which represents the number of time steps to the goal 
point times the distance traveled per time step. 
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linel  is the distance between 
PNix +

r
 and the selected cost 

point. Since it constitutes the length of a vector, it is 
calculated just as in Equations (10) and (11). 
The third part is simply the stored value of the cost point, 
meaning the distance to the goal point. 
Additionally, the forth part of the objective function is 
added as a penalty term that can be used to influence 
UAV behavior. Large values of α  will force the UAV to 

stay as low as possible during its mission, while simply 
setting α  to zero will result in no penalty for changing 

altitudes. 
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5. SIMULATION RESULTS 

First let’s take a look at a general mission scenario. 
Figure 8 shows an example mission for 4 UAVs in a 2D 
environment with 4 obstacles. This example is also shown 
in Figure 4, where the task assignment solution for this 
particular UAV mission has been presented. 

 
FIG 8. Mission example for UAV swarm 
 
The optimal task assignment distributed the waypoints 
among all four UAVs in such a way that the individual 
flight times were almost identical, making for an ideal 
distribution of tasks. 
Next we take a quick look at 3D trajectories. Two cases 
are being examined. In Figure 9a) the altitude penalty, 
seen in Equation (21), has been set to an extremely high 
level. Therefore, the optimization reaches a better value 
by planning the trajectory around the obstacle instead of 
over it. 

 

 
FIG 9. 3D trajectory behavior 

a) with high penalty term for altitude 

b) with low penalty term for altitude 
 

In this case the primary concern of the UAV is to stay as 
low as possible, even if it means to have a longer flight 
path. 
In Figure 9b) the altitude penalty has been set to a low 
level. Therefore altitude gain is not heavily penalized and 
the focus is on shortening the flight trajectory. The UAV 
will fly over the obstacle instead of around it. 
 

6. CONCLUSION 

This research paper gives a short overview about an 
approach to designing time optimal UAV missions by 
using Mixed Integer Linear Programming. The algorithm 
described here uses a form of receding horizon control to 
simplify the optimization problem and make it more 
capable of real-time calculations. Instead of planning the 
complete trajectory until the finish, only a small section is 
planned in detail iteratively and the rest is approximated 
by straight line segments. Therefore it foregoes the 
extremely complicated and time-consuming calculations 
typically encountered when calculating long trajectories 
with a regular fixed horizon approach.  
Both the task assignment and trajectory planning 
algorithms are shown in detail with accompanying 
examples. Trajectories in both 2D and 3D perform as 
expected. By tuning the parameters of the objective 
function, the emphasis of  UAV behaviour can be changed 
from pure minimum-time trajectories to primarily low 
altitude flight paths to avoid radar detection and the like. 
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