
TERRAIN FOLLOWING MINIMUM TIME TRAJECTORY DESIGN FOR UAV
SWARMS USING MIXED INTEGER PROGRAMMING

J.W. Vervoorst, T. Kopfstedt
Diehl BGT Defence GmbH & Co. KG

Alte Nussdorfer Strasse 13, 88662 Ueberlingen
Germany

ABSTRACT

This publication discusses the calculation of time optimal
mission scenarios for swarms of Unmanned Aerial
Vehicles (UAV). A typical UAV mission consists of visiting
a number of waypoints within a partially known
environment and these tasks can be distributed between
all members of the UAV swarms so that the complete
mission can be accomplished in minimum time. In this
particular case, a multi-level planning algorithm is
presented that generates 2D or 3D trajectories for each
member of the UAV swarm. A receding horizon controller
approach is chosen for the calculation of the time optimal
trajectories, therefore enabling adaptation to changes in
the mission scenario or unknown obstacles.

Index Terms: Mixed Integer Linear Programming, task
assignment, visibility graphs, receding horizon control

1. INTRODUCTION

Unmanned Aerial Vehicles are already used in a variety of
fields where the deployment of humans is considered too
dangerous or unnecessary. For example, UAVs serve as
airborne communication stations, reconnaissance aircraft,
or even in tactical operations. But all models in use today
are operated only as pilotless vehicles, still requiring
several human operators on the ground. In the future,
UAVs will be able to plan their flight missions
autonomously, without human intervention. Additionally,
they will cooperate with other UAVs in large groups, or
swarms. The complexity associated with managing
swarms of UAVs can no longer be handled effectively by
human operators. Thus, planning and control algorithms
have to be implemented that guarantee safe cooperation
and distribute workload evenly between all members of
the swarms, allowing for much faster mission completion.

The planning algorithm presented in this publication is
able to generate full three dimensional terrain following
minimum time trajectories for each member of a UAV
swarm. The terrain following aspect of trajectory
generation is especially important when trying to avoid
detection by enemy radar, as is necessary in tactical or
reconnaissance operations in hostile airspace. Low flying
and terrain following trajectories usually do not constitute
the minimum time solution of the optimization problem,
hence the two optimization criteria are inherently opposite.
Thus, weighting factors that govern the importance of
each criterion can be adjusted dynamically during the
UAV mission in order to address possible changes in the
mission profile.

A typical UAV mission generally can be described as
visiting a number of waypoints distributed somewhere on

a map. These can be points of interest for reconnaissance
or maybe target locations. A schematic of the described
scenario is depticed below in Figure 1.

FIG 1. UAV mission scenario

The different levels of the complete mission planning
algorithm are now explained in a little more detail.
In the first phase of the algorithm, the so called task
assignment phase, tasks are distributed among all
members of the UAV swarm. That means that each UAV
receives an ordered list of waypoints that it has to visit
during the duration of the mission. When all waypoints
have been visited, the mission is completed. Waypoints
are assigned to each UAV by means of a modified
multidimensional traveling salesman problem (TSP). This
problem is solved as a Mixed Integer Linear Programming
(MILP) problem, as it is similarly outlined in [1].

In the next phase, the trajectory planning phase, detailed
trajectories are generated for each UAV, also by MILP. In
order to generate truly time-optimal trajectories, it is
usually necessary to optimize the complete trajectory over
a fixed horizon, from the starting point all the way to the
end point. For long distances, this leads to a very complex
optimization problem that cannot be solved in real time.
Furthermore, unknown terrain or other changes in the
mission along the way are not accounted for, and a
change in the environment will render the previously
calculated optimal trajectories obsolete. Thus, a receding
horizon controller is implemented that calculates near-

2091

optimal trajectories iteratively, previously shown for the
single vehicle case in [2]. It allows navigation in uncertain
or unknown environments as well as adapting to changes
in the mission profile. A detailed kinematically constrained
trajectory is only generated within a small planning
horizon around the UAVs, while the rest of the trajectory is
approximated.

Since the mathematical description of obstacles is crucial
for both the task assignment and the trajectory planning,
we will discuss it first in chapter 2. In chapter 3, the task
assignment algorithm is described and examples for both
2D and 3D cases are given. Chapter 4 includes all details
about the trajectory planning part of the mission planning
tool. Chapter 5 combines task assignment and trajectory
planning into a complete mission planning algorithm.
Simulation results for various examples are discussed in
chapter 6.

2. TERRAIN/OBSTACLE REPRESENTATION

One of the appeals of using a Mixed Integer Linear
Programming is the possibility to declare obstacles very
efficiently. Obstacles of almost arbitrary shape can be
described by declaring constraints on the optimization
problem.

2.1. Obstacles in 2D

The general approach to the declaration of obstacles shall
be explained in detail for a very simple obstacle shape, a
rectangle in the x-y plane.

In this case, obstacles can be described simply by giving

their lower left and upper right corner []Tururllll yxyx ,,, .

The variable objectb is a binary, and the number M is an

arbitrary large positive value.

(1)

()

()

()

()
4

3

2

1

ijk

ijk

ijk

ijk

objecturjk

objecturjk

objectlljk

objectlljk

bMxy

bMxx

bMxy

bMxx

⋅−≥

⋅−≥

⋅+≤

⋅+≤

(2)

4...1 , ...1,...1 ,...1

3

O

4

1

====

≤∑
=

lTkNjNi

b

V

l

objectijkl

[]T
jkjk yx

 , is the position of UAV j at time k . Index i

describes the number of obstacles, j lists the number of

UAVs in the swarm, k the number of time steps in the

planning horizon, and l enumerates the four inequalities.

As long as 3≤∑ ijklobjectb is fulfilled, the UAV is outside

the obstacle.

2.2. Obstacles in 3D

By simply adding constraints for the z coordinate,
rectangles can easily be modified into three dimensional
obstacles.

(3)
()

()
6

5

ijk

ijk

objecturjk

objectlljk

bMzz

bMzz

⋅−≥

⋅+≤

(4) 5

6

1

≤∑
=l

objectijkl
b

The total number of constraints has risen to six and we
now have a cuboid.

FIG 2. Polygon 3D obstacle

Similarly, we can describe any arbitrarily shaped convex
obstacle with a number of constraint equations as stated
above. The volume of the polygon can be described by

(5) 0
rrr

≤+

















⋅ b

z

y

x

A ,

where A
r

and b
r

are linearly independent. The dimensions

of A
r

and b
r

depend on the number of constraints

necessary to describe the bounding surface of the
obstacle.

3. TASK ASSIGNMENT

As already mentioned, the Task Assignment problem is
very similar to the Traveling Salesman Problem (TSP).
Just as in a TSP, there is a list of waypoints that need to
be visited once. However, in this case there is not one
single person, but rather there is a swarm of UAVs that
split the task between them. Such a multi-dimensional
TSP is explained in [10]. A similar description of the task
assignment problem, applied to airplanes, can be found in
[11] and [12].

3.1. Problem Description

In the case of the regular TSP, all of the waypoints have
been assigned certain cost values. What is the meaning
of these cost values? Typically, they describe the
distances or travel times between waypoints. Therefore, in
our case the cost values of the waypoints would be the
flight times between waypoints. For simplicity, the
distances between waypoints are approximated by
straight line segments.

In the beginning we have a group of VN UAVs, their

x
y

z

2092

respective initial positions initx
r

, as well as their maximum

velocities maxv . Furthermore, there’s a number WN of

waypoints whose positions are known. Waypoint

coordinates are combined in the matrix W
r

. There’s also a

number of ON obstacles. Obstacle descriptions are also

stored, depending on how the obstacles are defined (see
chapter 2).

3.2. Visibility Graphs

A decisive problem for the path planning problem in
mobile robotics is the detection of visibility. The standard
robotics problem is the navigation of a system through an
environment filled with obstacles. In our case this is one of
several UAVs that is trying to find a free, unobstructed
path to a waypoint.

So the goal should be to find the shortest route to the
target despite the obstacles. In order to achieve this, we
employ so called visibility graphs. A visibility graphs maps
all possible straight line connections between points that
are visible to each other, meaning that no obstacle is in
the path of the connecting line segment. While there are
several other methods of finding these connections, as
outlined in [13] and [14], but visibility graphs are widely
used and very efficient ([15]). Example visibility graphs for
both 2D and 3D are shown in Figures 3 a) and b).

FIG 3. a) Example of a visibility graph in 2D
 b) Visibility graph in 3D

3.3. Algorithm

The visibility graph finds all connections between
waypoints, but not the shortest connections. In order to
achieve this, the following algorithm is used:

• Calculation of the visibility graphs between all
waypoints, the obstacles and the initial positions
of the UAVs and storing all data in a cost table.

• Using the Dijkstra algorithm, the shortest
distances between all waypoints are calculated
from all combinations and stored in another
table.

• All possible waypoint combinations per UAV are
calculated and the flight distances are added up
for all ordered permutations.

• The best permutation of each combination is
chosen.

• Data is passed to the optimization to solve for
the minimum time solution to the task
assignment problem.

Data is passed on to the optimization through four
matrices/vectors:

• The row vector u
r

with size VN defines what

UAV is assigned what permutation

• The time matrix T
r

 with dimension permW xNN

stores the times at which a waypoint is visited in
a certain permutation.

• The visiting matrix V
r

, also with dimension

permW xNN , shows wether a waypoint is visited

at all during a certain permutation.

3.4. Optimization

Goal of the optimization is to find such waypoint
combinations that:

- all waypoints are visited once
- the whole mission is accomplished in a minimum

amount of time

3.4.1. Choosing the Permutations

A binary decision vector b
r

 is introduced to allow choosing

the correct permutations. b
r

 is of dimension 1xN perm .

ib
r

is 1 when permutation i is chosen and 0 when it isn’t.

As already mentioned, every waypoint should be visited
once, and also every UAV should only be assigned one
permutation. This can be expressed as follows:

(6) ,1

1

=⋅∑
=

j

N

j

ij bV

perm

 WNi ,...,1=

Equation (6) makes sure that when summing over every
permutation, every waypoint is only chosen once

(7) ,1

11

=∑
−

=

+p

p

N

Nj

jb VNp ,...,1=

The parameter pN is used to enumerate the permutations.

Permutations assigned to the p -th UAV are numbered

from pN to 11 −+pN . Thus, Equation (7) allows only one

single permutation to be chosen for each UAV.

3.4.2. Objective Function

Formulation of the objective function has a large impact
on the solution of the optimization. In the case described
here, we want to visit all waypoints in minimum time. The

a)

b)

2093

objective function for this is defined as:

(8) ∑
=

∈
⋅⋅+














=

perm

i
V

N

i

ii
V

FD
Ni

bc
N

tZ

1
),...,1(

max
α

iFDt is the total flight duration for UAV i . The maximum

total flight duration is therefore the time it takes for the
longest permutation of the mission to be accomplished.

That means that
iFDt is also the overall mission time.

The second term is the averaged sum over the flight times
of all UAVs multiplied by a weighting factor. We not only
want the longest flight time to be minimal, we also want
the other UAVs to reach their target as quickly as
possible.
A task assignment solution for four UAVs and eight
waypoints is shown in Figure 4.

FIG 4. Task Assignment solution

4. TRAJECTORY PLANNING

In the previous chapter, the optimal mission scenario for a
swarm of UAVs was found, with our main focus on
calculating the optimal task assignment. The flight
trajectories between waypoints were only approximated by
straight line segments since a design of detailed flyable
trajectories would have been far to complex at this point.
Instead, detailed trajectory design is handled in this
chapter. Using a discrete state space model for the UAV,
flyable trajectories are generated with respect to velocity
and acceleration constraints and obstacle and collision
avoidance. Just like in the task assignment phase, Mixed
Integer Linear Programming is used in the optimization of
this planning problem. A basic example of a similar
problem can be found in [3] and [4].

4.1. System Description

Detailed models of aircraft dynamics are typically strictly
nonlinear and therefore trajectory optimization for these
systems tends to be rather complex [5]. A basic, yet
adequate model that can be used for the modelling of a
UAV is a simple point mass. By using additional

constraints on speed and turning radius, the behavior of
an aircraft can be approximated. The discrete time state
space representation for such a system is:

(9)
()

()

()

kz

y

x

kz

y

x

kz

y

x

a

a

a

t

t

t

t

t

t

v

v

v

z

y

x

t

t

t

v

v

v

z

y

x











































⋅

∆

∆

∆

∆

∆

∆

+



























⋅



























∆

∆

∆

=



























+

00

00

00

2/00

02/0

002/

100000

010000

001000

00100

00010

00001

2

2

2

1

4.2. Dynamic Constraints

As described above, additional constraints are added to
the system to make it behave like an airplane. These
constraints are defined as follows.

4.2.1. Maximum Velocity

A realistic airplane certainly has a maximum velocity of
flight, or rather a desired cruising speed at which it should
fly. Such behavior can be accomplished by adding a
constrain on the maximum possible velocity. Therefore,

the following has to be true at all times: maxvv ≤
r

Mixed Integer Linear Programming, as the name already
implies, is limited to linear systems. However, taking the
length of a vector is an inherently nonlinear operation, so
another way of expressing maximum velocity has to be
found. Instead, the velocity is mapped onto a finite
number of unit vectors that are evenly spread out in
space.

(10)
max

,...,1, max, vlk
T

nlkviv =≤⋅

(11)
























































⋅



























⋅














=

max

maxmax

maxmax

2
sin

2
sin

2
cos

2
cos

2
cos

,

v

vv

vv

lk

n

k

n

lk

n

k

n

l

n

k

i

π

π

ππ

Figure 5 shows this method for the planar, two
dimensional case.

2094

FIG 5. Mapping of velocity vector onto 8 and 16 unit
 vectors

4.2.2. Minimum Turning Radius

Analog to the description of maximum velocity constraints,
the same setup can be used to limit the minimum turning
radius of a UAV. In this case, we limit the maximum
acceleration that the system can experience.

(12)
max

,...,1, max, alk
T

nlkaia =≤⋅

(13)
























































⋅



























⋅














=

max

maxmax

maxmax

2
sin

2
sin

2
cos

2
cos

2
cos

,

a

aa

aa

lk

n

k

n

lk

n

k

n

l

n

k

i

π

π

ππ

4.3. Obstacle Avoidance

Obstacle avoidance constraints have already been
discussed in chapter 2 when the general description of
obstacles has been explained.

4.4. Trajectory Planning with Fixed Horizon

The constraints above can now be used to formulate a
MILP optimization problem.

In this regard, trajectory planning with fixed horizon can be
considered the traditional approach to finding time optimal
trajectories. This means that the complete trajectory is
calculated from beginning to end point, forming a large
and complicated optimization that does not take into
account changing environments. When obstacles are
added or subtracted, the precalculated optimal solution
essentially becomes worthless and a recalculation has to
be performed.
It does however produce time optimal trajectories
because the trajectory can be optimized as a whole, thus
enabling the optimizer to find a ”closed loop solution”.

4.5. Trajectory Planning with Receding Horizon

As mentioned above, fixed horizon planning has its
shortcomings especially in changing or unknown
environments.

In order to achieve better results in this context, a different
approach is chosen. Instead of optimizing the complete
trajectory at once, a Model Predictive Control (MPC) setup
is chosen. [6] lists the properties of Model Predictive
Control, also called Receding Horizon Control:

• At time i and initial state ix
r

 the optimization is

performed for only the next PN time steps. PN

is the so called planning horizon.

• The first EN values of the optimal solution are

used as inputs to the system. EN is the

execution horizon. EN is usually set to 1.

• In the new initial state
ENix +

r
the optimization is

performed again, repeating the process, thus
taking into account possible changes in the
environment.

Similar implementations of MPC can also be found in [7]
and [8].

To be able to use this approach, we need to overcome a
problem. As seen in Figure 5, the trajectory is only
optimized within a small area around the current state, the
planning horizon. But the total trajectory consists of the
optimized piece plus the remaining pieces from the
planning horizon to the goal point. However, that piece is
unknown and the total distance cannot be calculated.
Therefore, the remaining trajectory is approximated with
straight line segments connecting the planning horizon to
the goal point.

FIG 6. Details of Receding Horizon Control

4.5.1. Calculation of Cost Maps

In order to find the shortest distance to the goal point, a
cost map of the complete environment is calculated,
calculating and storing the distances of points to the goal
point (Fig. 6). [6] shows that the shortest distance in an
environment with convex obstacles is a combination of
line segments between the points and the corners of the
obstacles. Thus, the corners of the obstacles are cost

2095

points in our cost map. The visibility graph between all
obstacles and the goal point is calculated and by using
the Dijkstra algorithm, as outlined in [9], the shortest
connections between all the points and the goal point are
calculated and stored as the cost of each point.

FIG 7. Calculation of a cost map in 2D

4.5.2. Cost Point Selection

The length of the trajectory outside the planning horizon
can now be determined. As detailed in Fig. 1, it is:

• The distance from
PNix +

r
,the edge of the

planning horizon, to a known cost point optx
r

that

is visible from that point.

• The distance from that cost point to the goal
point. This value has already been calculated
and is stored in the cost map.

The visibility constraint between
PNix +

r
 and optx

r
 is very

important. Because of it, local optimization within the
planning horizon does indeed have a global influence on
the whole trajectory, therefore also minimizing the total
trajectory length.
Now the planning problem is expressed in MILP form.
Each UAV can select only one cost point during each
optimization:

(14) V

N

i

N

j

CP Nkb

CP goal

ijk
,...,1 , 1

1 1

==∑∑
= =

with CPN = number of cost points, VN = number of UAVs,

goalN =2, the next two waypoints.

Equations (15) and (16) set the cost value and
coordinates of the chosen cost point.

(15) V

N

i

N

j

CPiopt Nkbcc

CP goal

ijkk
,...,1 ,

1 1

=⋅= ∑∑
= =

(16)
V

N

i

N

j

CP

CP

CP

CP

opt

opt

opt

Nkb

z

y

x

z

y

x
CP goal

ijk

k

k

k

k

k

k

,...,1 ,

1 1

=⋅

















=

















∑∑
= =

The line connecting the edge of the planning horizon and
the cost point is described by

(17)

()
()
() 


















−

















=

















+

+

+

kNi

kNi

kNi

opt

opt

opt

line

line

line

P

P

P

k

k

k

k

k

k

z

y

x

z

y

x

z

y

x

In order to test visibility, this connection is divided into

testN parts:

(18)

()
()
()

test

line

line

line

test

kNi

kNi

kNi

test

test

test

Nm

z

y

x

N

m

z

y

x

z

y

x

k

k

k

P

P

P

km

km

km

...1 =

















⋅+



















=

















+

+

+

Each part is tested for interference with obstacles using a

binary variable
ikmnoptb , very much like in (2).

 Equations (19) and (20) handle which goal point to use in
the optimization. If a goal point is reached in the last step
of the planning horizon or not at all, then only this point
will be part of the optimization. If a goal point is reached
within the planning horizon, then goal points are switched
and the optimization directs the trajectory to the next goal
point.

(19) ∑∑
+

==

=

1

1
1

T

Ti

goal

N

i

CP ij

CP

ki
bb

(20) ∑∑
−

==

=

1

11
2

T

i

goal

N

i

CP ij

CP

ki
bb

4.5.3. Cost Function

The cost function to be minimized is the total trajectory
lengths of the UAVs, consisting of three parts:

• The part within the planning horizon, from ix
r

 to

PNix +
r

• The line between
PNix +

r
 and the selected cost

point

• The distance between selected cost point and
goal point.

The first part is described by the first part of Equation (21),
which represents the number of time steps to the goal
point times the distance traveled per time step.

 (21)

()

∑
∑

∑

=

=

+

=

























⋅++

+⋅⋅∆⋅

=

V

j

kjN

j
T

m

jmopt

line

T

k

goalj

zc

lbktv

Z

1

1

1

1
max

α

linel is the distance between
PNix +

r
 and the selected cost

point. Since it constitutes the length of a vector, it is
calculated just as in Equations (10) and (11).
The third part is simply the stored value of the cost point,
meaning the distance to the goal point.
Additionally, the forth part of the objective function is
added as a penalty term that can be used to influence
UAV behavior. Large values of α will force the UAV to

stay as low as possible during its mission, while simply
setting α to zero will result in no penalty for changing

altitudes.

2096

5. SIMULATION RESULTS

First let’s take a look at a general mission scenario.
Figure 8 shows an example mission for 4 UAVs in a 2D
environment with 4 obstacles. This example is also shown
in Figure 4, where the task assignment solution for this
particular UAV mission has been presented.

FIG 8. Mission example for UAV swarm

The optimal task assignment distributed the waypoints
among all four UAVs in such a way that the individual
flight times were almost identical, making for an ideal
distribution of tasks.
Next we take a quick look at 3D trajectories. Two cases
are being examined. In Figure 9a) the altitude penalty,
seen in Equation (21), has been set to an extremely high
level. Therefore, the optimization reaches a better value
by planning the trajectory around the obstacle instead of
over it.

FIG 9. 3D trajectory behavior

a) with high penalty term for altitude

b) with low penalty term for altitude

In this case the primary concern of the UAV is to stay as
low as possible, even if it means to have a longer flight
path.
In Figure 9b) the altitude penalty has been set to a low
level. Therefore altitude gain is not heavily penalized and
the focus is on shortening the flight trajectory. The UAV
will fly over the obstacle instead of around it.

6. CONCLUSION

This research paper gives a short overview about an
approach to designing time optimal UAV missions by
using Mixed Integer Linear Programming. The algorithm
described here uses a form of receding horizon control to
simplify the optimization problem and make it more
capable of real-time calculations. Instead of planning the
complete trajectory until the finish, only a small section is
planned in detail iteratively and the rest is approximated
by straight line segments. Therefore it foregoes the
extremely complicated and time-consuming calculations
typically encountered when calculating long trajectories
with a regular fixed horizon approach.
Both the task assignment and trajectory planning
algorithms are shown in detail with accompanying
examples. Trajectories in both 2D and 3D perform as
expected. By tuning the parameters of the objective
function, the emphasis of UAV behaviour can be changed
from pure minimum-time trajectories to primarily low
altitude flight paths to avoid radar detection and the like.

REFERENCES

[1] C. Schumacher, P. Chandler, M. Pachter,
“Constrained Optimization for UAV Task Assignment”
AIAA Guidance, Navigation, and Control Conference,
Providence, RI, USA, 16-19 August 2004

[2] A. Richards, J. How, “Model Predictive Control of
 Vehicle Maneuvers with Guaranteed Completion
 Time and Robust Feasibility”, American Control
 Conference, Denver, CO, USA, 4-6 June 2003
[3] A. Chaudry, K. Misovec, R. D’Andrea, “Low
 Observability Path Planning for an Unmanned Air
 Vehicle Using Mixed Integer Linear Programming”,
 Proceedings of the IEEE Conference on Decision
 and Control 2004. pp. 3823-3829
[4] M. Earl, R. D’Andrea, “Multi-Vehicle Cooperative
 Control Using Mixed Integer Linear Programming”,
 IEEE Transactions on Robotics. Vol. 21, 2005, pp.
 1158-1167
[5] R. Brockhaus, Flugregelung. Berlin. Springer-Verlag
 2001
[6] J.-C. Latombe, “Robot Motion Planning”. Boston, MA,
 USA: Kluwer Academic Publishers, 1991, pp. 153-
 200
[7] A. Richards, J. How, “Model Predictive Control of
 Vehicle Maneuvers with Guaranteed Completion
 Time and Robust Feasibility”, American Control
 Conference, Denver, CO, USA, 4-6 June 2003
[8] E. Frew, “Receding Horizon Control Using Random
 Search for UAV Navigation with Passive, Non-
 cooperative Sensing”, AIAA Guidance, Navigation,
 and Control Conference, San Francisco, CA, USA,
 August 2005
[9] T. Cormen, “Introduction to Algorithms”. Cambridge,
 MA, USA: The MIT Press, 2001, pp. 595-601, 629-
 635

a)

b)

2097

[10] M. Glocker, O. Stryk, „Gemischt ganzzahlig-
 kontinuierliche Optimalsteuerung: Methoden und
 Anwendungen“, DMV Jahrestagung. Heidelberg,
 September 2004
[11] D. Kingston, C. Schumacher: Time-Dependent
 Cooperative Assignment. American Control
 Conference, Portland, OR, 2005
[12] C. Schumacher P. Chandler, M. Pachter,
 “Constrained Optimization for UAV Task
 Assignment.”, AIAA Guidance, Navigation, and
 Control Conference, Providence, RI, August 2004
[13] M. Eichhorn, „Hindernisvermeidungssystem für ein

Autonomes Unterwasserfahrzeug“, at, Vol. 11, pp.
514-525

[14] G. Dudek, M. Jenkin, “Computational Principles of
Mobile Robotics”, Cambridge, UK: Cambridge
University Press, 2000

[15] Baker, E.: Visibility Computation: Finding the
Shortest Route for Motion Planning. Class Notes,
University of North Carolina at Chapel Hill, Chapel
Hill, NC, 2005

2098

	––––––––––––––––––
	< previous page
	> next page
	––––––––––––––––––
	Search
	Print
	Print Current Page
	––––––––––––––––––
	Show Thumbnails
	Hide/Show Toolbar
	Hide/Show Menu
	––––––––––––––––––
	© 2007 DGLR
	www.ceas2007.org
	www.dglr.de
	––––––––––––––––––

	host: 1st CEAS European Air and Space Conference
	paper#: CEAS-2007-702
	paper_title: Terrain Following Minimum Time Trajectory Design for UAV Swarms Using Mixed Integer.
	authors_short: J.W. Vervoorst, T. Kopfstedt

