
A Sequence and Supervisory Control System for Onboard Mission
Management of an Unmanned Helicopter

Florian-M. Adolf∗
German Aerospace Center (DLR), D-38108 Braunschweig, Germany

OVERVIEW

This paper presents a solution to the onboard mission man-

agement problem for UAVs. Inspired by successful ap-

proaches from the mobile robotics domain, the proposed

architecture achieves hybrid control by combining ideas

from the behavior-based paradigm and a three-layered

high-level control architectures. Two main components, a

Sequence Control System and a Supervisory Control Sys-

tem, form the Mission Management System and imple-

ment the essential components of this architecture. It is

open with respect to its interfaces to other onboard com-

ponents (e.g. the obstacle avoidance system). Events and

commands sent by a remote operator or an onboard com-

ponent can be integrated into the system in a plug-and-fly

fashion. An operator can control the UAV at different lev-

els of autonomy, ranging from common joystick control to

execution of prearranged missions. To assure the safe op-

eration of the system, it is characterized by multiple tech-

niques. First, the event-based decision logic is modeled as

a State Chart model for each component. Second, a truth

table of valid external commands assures that only permit-

ted commands are accepted by the event handling. Finally,

a grammar-based plausibility check avoids illegal behavior

commands within a mission plan. The system is imple-

mented onboard the UAVs of the ARTIS program. It is val-

idated in unit tests, and tested in software-in-the-loop and

hardware-in-the-loop simulations.

1 INTRODUCTION

The ARTIS[6] program at the DLR Institute of Flight Sys-

tems is working on innovative mission management con-

cepts for UAVs. One research aspect involves the design

and implementation of decision making components for

onboard mission management. The ultimate goal is to em-

ploy an onboard system that allows different levels of UAV

autonomy for the low-altitude domain (e.g. urban areas).

This paper presents the Mission Management System that

forms the executive part of an architecture which aims on

combining the advantages of the behavior-based paradigm

and a layered architecture. First, we develop a set of ele-

mentary movements that allow the UAV to perform certain

movements like hovering to a location or turning around

a point. Second, a 3T architecture[3] defines the frame-

∗PhD student, Institute of Flight Systems, Systems Automation De-

partment, florian.adolf{at}dlr.de.

work for the mission management in order to handle sys-

tem complexity while being flexible and fast enough for up-

dates and extensions. The highest level of UAV autonomy

is implemented by a deliberative layer that comprises of-

fline and online planning algorithms in order to solve high

level tasks (e.g. a search mission). A skill layer stores the

elementary behaviors that can be used by the deliberative

layer’s planning algorithms.

These system features require a safe coordination between

multiple events. Therefore, the Mission Management Sys-

tem’s decision logic is modeled using UML State Chart di-

agrams which can be verified using abstract tests (e.g. path

coverage or event sequences).

The safe and robust operation plays a major role for this

onboard system. Consequently, certain safety precautions

are built into the Mission Management System.

The software, generated from the State Chart model, is val-

idated against certain functional scenarios using Unit Test

techniques. Moreover, the implemented code is validated

in both software-in-the-loop and hardware-in-the-loop sim-

ulations.

In the following chapters, the underlying problems of on-

board mission management, embedded high level architec-

tures and their implementation issues are discussed. Then

the design of the ARTIS Mission Management System is

presented, followed by discussions on the implemented

system and future work.

2 PROBLEM DESCRIPTION

For many UAVs, remote joystick control and planning mis-

sions is performed by an operator at a ground control sta-

tion [10] [5]. The operator either directly commands the

UAV to a location using a joystick (remote control) or a

position command. With an onboard world model and path

plannning capabilities, more ”intelligence” is brought to

the onboard system such that an operator might issue com-

plex commands directing the vehicle to fly back to base or

search for an object.

This implies different abstraction levels within the onboard

system such that levels of autonomy can be achieved. The

level of autonomy at which an operator commands the UAV

might vary over time, depending on the situation and task.

Moreover, the design and implementation of different lev-

els of control necessitates provisions for operational safety

3295



and certain user requirements. In particular, the system

operator must remain ”in the loop” at all levels of auton-

omy. Also, the operational environment is characterized by

events that can occur in an unknown order and at sporadic

time instances. It must implement input checks for syntac-

tical plausibilities and even semantic correctness, wherever

possible.

There are several functional requirements with respect to

predictability of decisions and traceability of internal states

at execution time. For example, the system has to react ap-

propriately when the safety pilot switches between manual

and computer-based flight control. The system has to be

extensible for new flight maneuvers, planning algorithms

for onboard mission planning, and interfaces for ”smart”

system components like an obstacle avoidance system.

In reference to the system’s autonomy level, it has higher

authority over the flight control system for which the es-

tablished design process has to remain untouched. The

interface for data exchange with the flight control system

demands real-time algorithms.

Finally, testing the system is mission critical throughout

its development stages and before its deployment. High

level control systems can embed several different kinds of

techniques, such as approximation algorithms or classical

planning from the field of artificial intelligence. Hence,

the testing strategy has to cope with both user and saftey

requirements, as well as, characteristics of these different

components.

3 RELATED WORK

Onboard Mission Management has gained increased atten-

tion in recent years [22] [8] [17] [21]. More self-reliance

and decision making autonomy for UAVs poses questions

regarding suitable decision making architectures, system

modeling techniques, and system validation and verifica-

tion methods. Therefore, the ARTIS program considers an-

swers to these questions to be major challenges in research

for high level control of UAVs.

To solve the complex problems that arise, different high

level control architectures have been proposed, and some

of them have been deployed on UAV systems. Knowledge-

based systems establishing the concept of a cognitive pro-

cess as decision making entity were presented in the UAV

domain[11] [19]. Some other concepts are based on the

behavior-based paradigm, [26] which means that a set of

elementary behaviors (so-called skills, such as movement

primitives) is combined in such a way that a new emer-

gent behavior is created. Others prefer layered architec-

tures [9] comprising distinct system modes, also known

as hybrid control [7]. At this point, for the ARTIS pro-

gram, it remains uncertain which architectural concept to

choose. Since the control architecture is a mission crit-

ical design decision, these architectural concepts will be

discussed with respect to the UAV domain and the require-

ments discussed in chapter 2.

Using knowledge-based systems, classical AI spent over

five decades trying to model human-like intelligence. In-

spired by these systems, several research projects seek to

produce a human-like thinking process (also known as cog-

nition) in order to achieve high level control in UAV deci-

sion making systems[11] [19]. A commonly used cogni-

tive architecture is implemented in SOAR[13]. Since real-

time properties are one crucial design aspect for a UAV

decision making system, a real-time derivate of SOAR,

Hero-SOAR, would be a suitable implementation. How-

ever, there are major implementation issues related to cog-

nitive production systems[16]. First, ”chunking”, a pattern

matching technique, might be hard to confine with respect

to execution time and memory usage. Second, real-time re-

flexive actions (a direct connection of a sensor to an actua-

tor) invoke a high-variance of unpredictable AI techniques.

Furthermore, problems were experienced when trying to

effectively coordinate and mediate reflexive behaviors with

the overall deliberative behavior of the system. If the re-

flexive actions can bypass the normal deliberation mecha-

nisms, it may be difficult or impossible for the deliberation

processing to reason about and affect the real-time reaction.

Hence, the architecture for any UAV decision making sys-

tem should particularly focus on ”embedding real-time in

AI” rather than ”embedding AI in Real-time”[16]. More-

over, a principle shortcoming of the cognitive approach is

the emphasis on representation at a high, symbolic level.

This yields to control strategies that may make conceptual

sense to a human designer but the intelligence in such sys-

tems belongs to the designer. Additionally, it is question-

able whether humans deploy a complex thinking process

for every intended behavior rather than think in a more re-

active way[2].

These disadvantages were addressed by the behavior-based

control with the Subsumption Architecture[24] [4], which

did not necessarily seek to produce cognition. It rather uses

a hierarchy of fast reactive loops where each loop is capable

of executing a distinct behavior and higher reactive loops

modify the behavior of lower ones. The concept of arbitra-

tion allows to automatically select among behaviors, and

the so-called action-oriented perception frames the percep-

tual input according to the task. Some approaches intercon-

nect elementary behaviors and superposition them which

results in a new, emergent system behavior. The ultimate

goal in many behavior-based approaches is to enable robot

learning techniques such that a system can ”learn” which

behaviors must be compiled together in order to achieve a

goal. Since the world is an implicit model, the behavior-

based approach shows advantages with respect to design

simplicity, implementation elegance and inherently more

robustness against failures. Behaviors use little or even no

internal state variable to model the environment and thus

are less computing-intensive than deliberate counterparts.

Hence, a behavior-based system qualifies for the high level

architecture as it enables ”AI in Real-time”[16]. Admit-

tedly, one of the side effects in many approaches is that

they produce black-box systems. When behaviors are in-

terconnected it is almost impossible to explain the sys-

3296



tem behavior. Moreover it is hard to achieve a notion of

optimality[18]. In a practical sense, debugging a behavior-

based system is known to be hard, since the overall behav-

ior emerges from the interaction of many layers of asyn-

chronous control.

UAVs are currently supposed to be semi-autonomous, re-

motely guided, assistant systems rather than anthropoid,

autonomous systems. One of the key requirements of hav-

ing several levels of system autonomy cannot be achieved

with solely deliberate nor reactive architectures. Deliberate

architectures relate ”autonomy” to human-like intelligence

and rational acting, whereas reactive architectures consider

it as a system’s ”ability to act independently in the real

world environment” [14]. Thus, for UAVs it is worthwhile

to achieve a combination of the advantages of a knowledge-

based and a behavior-based architecture. Current trends in

the robotic development created architectures that combine

both ideas into one system.

The goal of the TCA[23] is to combine deliberation and re-

activity in such a way that the system detects changes in its

environment and makes appropriate responses. For exam-

ple, deliberative aspects of TCA can be used to plan moves

based on certain constraints, whereas the reactive compo-

nents detect and handle deviations arising from sensor and

actuator uncertainty. TCA provides designers with control

constructs for developing behaviors and software utilities

for implementing the necessary control decisions. How-

ever, this architecture does not itself provide behaviors for

a particular task.

Inspired by the Subsumption Architecture[24] [4] and em-

pirical observations, the 3T architecture[3] separates intel-

ligent control into three interacting layers (or tiers). The

first layer comprises a set of so-called reactive skills, that

are behaviors (control laws) tightly coupled with environ-

ment through sensor readings and actuators. Skills make

”simple-world” assumptions; such as, the sensor input is

valid and desired goal can be achieved. In order to ac-

complish specific task, the sequencer on the second layer

assembles an appropriate task network of skills by activat-

ing and deactivating respective skills. When more than one

skill is active, they form a so-called task network. The third

layer is the deliberative layer, which comprises a planner

that reasons about goals, resources and timing constraints

with well known AI techniques. The centralized sequencer

of this architecture does not allow concurrency between

all behaviors and modules in the system. Also, this archi-

tecture does not differ between skills that perform control

commands and abstract skills (e.g. a skill activating lower

skills).

4 MISSION MANAGEMENT SYSTEM

The advantages and the disadvantages of the architectures

discussed before, demand a thorough consolidation into

one embedded architecture for onboard mission manage-

ment. The major requirements with respect to real-time ex-

ecution, predictable system behavior and the need for dif-

ferent levels of (operational) autonomy result in the follow-

ing design decisions:

• The embedded system architecture must be separated

into interacting layers, to enable the implementation

of deliberate and reactive approaches. This leaves

room for a behavior-based reactive layer and allows

several kinds of AI techniques in the deliberative

layer(s).

• The layered architecture chosen for this hybrid con-

trol problem is the 3T architecture. Compared to the

TCA, it offers a more flexible way of modularization,

centralizes the execution of actions and does not rely

on interacting skills.

• The behavior-based paradigm, as a bottom-up strat-

egy for intelligent systems, is worth being considered

for the reactive layer, since it enables real-time execu-

tion and relatively simple behavior development. This

paradigm allows a way to compile elementary prob-

lem solutions (e.g. moving to a position) into a library

of behaviors.

• Known shortcomings of the behavior based approach

with respect to online learning, behavior interaction

and arbitration techniques, are eliminated intention-

ally.

• When behavior interaction and abstract behaviors are

not available in the reactive layer, the discussed disad-

vantages of the 3T approach can be neglected.

As a result, the design concept for the ARTIS onboard mis-

sion management system combines a 3T architecture with

ideas from the behavior-based paradigm. In the next sec-

tions the first component of this architecture, the Sequence

Control System, is described. It implements the sequencing

layer’s executive component and a set of basic behaviors in

the reactive layer.

The SMission Management System’s embedded system is

described from three points of view. In order to highlight

a system wide context, Figure 1 describes the component

organization from an implementation point of view. The

illustrations in Figure 2 outline how 3T’s principle high

level control decomposition boils down to the actual ap-

plication for ARTIS. Finally, Figure 3 shows the decision

logic which is implemented as an UML State Chart model.

4.1 Embedded Architecture

Two basic prerequisites of the proposed architecture in Fig-

ure 2 are implemented in the Sequence Control System. It

comprises a library of basic movement behaviors located

at the reactive layer, followed by an executive component

of the sequencing layer. The Supervisory Control System

implements higher level behaviors and influences the Se-

quence Control System’s mission execution when an oper-

ator on ground issues a high level command or when the

human control is not available. Figure 1 shows that the

Sequence Control System forms the interface to the flight

3297



UAV

Mission Manager

Operator

Digital World Model

Flight Controller

Sensor
Status

+ Reactive 
Commands

Sensor
Fusion

Mission Planning
+ Execution Monitoring

High Level
Commands

Task Planner

Route Planner

• Resources 
• Cooperation
• Communication

Module Manager

Supervisory Control System

Behavior Command Sequence

Event Handler

Sequence Control System

Behavior Pool Direct Commands

Remote Control

Low Level
Commands

User generated
Behavior Sequ.

Behavior 
Command 
Sequence

Health
Management

FIG. 1: The ARTIS Mission Management System shown in the

context of the overall high level system architecture.

Sequencing Layer: Compile behaviors into plans

Example:
Mosaiking
mission.

Mission Time

t0

Take Off Fly To

t1 t2a

Hover

t3

Hover To Hover Fly To

t5 t6

Hover

t7

Land

Photo

t2b

Photo

t4bt4a

Flight Controller Configuration (Task IDs)

Path-based
Flight Control

Velocity/Position-based
Flight Control …

Hover TurnTake off

Reactive Layer: Movement capabilities (skills)

Hover To Fly To Pirouette …

SearchSurveillance

Deliberate Layer: High-level Behaviors using Task-specific Planners

ExploreFly Home …

Land

FIG. 2: ARTIS’ Sequence Control System implements the exec-

utive component of the sequencing layer of this 3T architecture.

The reactive layer contains basic movement behaviors that inter-

face with the flight control system. The Sequencing Layer shows

a mosaicking mission compiled from the behavior set.

control system. It is the unifying building block of the

onboard Mission Manager and takes inputs from various

sources like the ground control station, vision computer or

supervision component.

Furthermore, neither the deliberative layer nor the skills

alone can handle all situations optimally. The Sequence

Control System provides the necessary glue logic and is

the place to store procedural knowledge that neither fits at

the deliberative layer nor at the skill layer. For ARTIS,

this procedural knowledge comprises some of the safety

requirements for flight tests mentioned in chapter 2. For

example, when the safety pilot switches between manual

or computer aided control, the system must stop producing

actuator commands and reset its onboard components into

a defined stand-by state.

Figure 2 demonstrates which behaviors are located at the

skill layer. Depending on which flight controller configu-

ration is used, there are two basic behavior groups. The

first group outputs direct position and velocity commands

to the flight controller. The take-off and the landing behav-

iors use this controller configuration, where they command

a fixed position for the horizontal layer (x and y axis) and

a velocity command on the z axis. These behaviors con-

tain only two state variables, namely the x and y position

ControllerOn

DefaultTransition

MissionControllerO

evControllerOn

SlowDown

evAutoPilot

evManualPilot

StandBy

evManualPilot

evStandStillevLanded

MissionMode

evManualPilot

evMissionModeOn

evMissionModeStop

evDirectBehaviorCommand

evMissionUpdate

CommandMode

evDirectCommandValid

evDirectCommandValid

evCommandStop

evDirectCommandValid

evManualPilot

evMissionModeOn

FIG. 3: The UML State Chart Model of the Sequence Control

System comprises two composite states: State ”Mission Mode”

for mission plan execution and ”Command Mode” for direct op-

erator commands or commands from onboard components.

they have to maintain. As such, these behaviors are ”reflex-

ive” behaviors in the original sense of the behavior-based

paradigm[24].

The second group is the largest set of behaviors. These pro-

duce trajectory-based control commands which comprise

two tangential trajectory angles and the deviation from this

tangent. At this time, the behavior library contains behav-

iors to wait at a position (”Wait For”), turn on the spot

(”Hover Turn”), to fly along a linear trajectory toward a

location (”Hover To”), to fly around a point along a hori-

zontal circular trajectory (”Pirouette”), and to perform fast

forward flights along an arbitrary trajectory (”Fly To”).

The deliberate layer shows examples of complex behav-

iors. These will alter existing missions or even create new

missions. In this context, mission planning will output the

list of sequential behavior commands shown in Figure 2.

However, the compilation does not necessarily take place

onboard. In fact, at present, missions are compiled by the

ground control station software and sent to the Sequence

Control System. However, there’s still a necessity for a Su-

pervisory Control System when the ground operator issues

a complex behavior command, e.g. to let the UAV fly to a

(predefined) home location.

4.2 Event-based Model

As discussed in Chapter 2, the Mission Management Sys-

tem is exposed to a number of potentially concurrent

events. Hence, the specification and implementation of

the system is modeled as an event-based system. [15]

The majority of event-based systems are modeled using an

industry-wide standard notation, UML1. It supports the ob-

ject oriented design pattern and provides dynamic model-

ing techniques such as state charts, sequence diagrams and

activity diagram. State charts have been extensively studied

such that abstract testing techniques allow to verify a model

1Version 1.2, as defined by OMG (http://www.uml.org/)

3298



(semi-)automatically. Also, there exists good software tool

support which eases the development process significantly.

Moreover, there are tools that provide code generators such

that the implemented code is directly derived from the state

chart-based specification. Otherwise, it is likely that speci-

fication and implementation begin to diverge over time.

Thus, the Mission Management System is modeled as

UML (currently v1.2) State Charts. Basically, State Chart

diagrams (also known as State Machines in UML 2) are fi-

nite automatons with a finite set of states where exactly one

state is active at a time. They depict the dynamic behavior

based on its response to events, showing how the model re-

acts to various events depending on its current state. Events

can trigger a transition into another state, where so-called

guards are the condition that must become true in order to

traverse along the transition. The guards on similar transi-

tions leaving a state must be consistent (deterministic) with

one another.

The UML model of the Mission Management System’s Se-

quence Control System is shown in Figure 3. It has two hi-

erarchical levels where the top level models the procedural

flow for a safe operation. The two composite states, ”Mis-

sion Mode” and ”Command Mode”, model mission plan

processing and direct command execution respectively.

Every state of the top level has a transition to the ”Mission

Controller Off” to handle a manual control event, such that

the Sequence Control System stands by in an idle state. If

the system is in computer-based flight mode (auto mode),

another idle state ”Stand By” lets the UAV hover at its cur-

rent position when the state was entered; including a posi-

tion on the ground. The state ”Slow Down” is necessary

to assure a smooth changeover into ”Stand By” regardless

of the flight maneuver currently being executed. In case

the GCS operator commands the UAV to stop, a transition

from every auto mode state assures that the command is

executed. Among events certain priorities exist. For exam-

ple, an event switching to manual mode is more important

than a stop command and requires processing. The order in

which the event check is performed accounts for this obli-

gation.

The state mission mode contains the actual library of be-

haviors. There are no transitions among behaviors which

assures that not more than one behavior can be active at

a time. This is a major requirement in order to overcome

emergent behaviors caused by interactions. For each be-

havior there exists a termination condition which transits

into the command parser ”Parse Command”. Basically this

state grabs behavior commands from an existing mission

plan. It issues an event for traversing into the appropriate

state. If the mission plan is processed, ”Mission Mode” is

finished.

The ”Command Mode” can be entered from any auto

mode state. It is relatively complex decision to determine

whether a direct command is permitted or not. First, com-

pared to behaviors in ”Mission Mode”, every direct com-

mand may not have a termination condition. For example,

one instantaneous velocity command from the GCS cannot

reach a target condition. For such cases, a quasi infinite

behavior is bounded in execution time, such as the time

passed since a GCS velocity command was received.

Second, it depends on which data is coming on what input

channels. This specific problem is addressed with the static

truth table.This table defines the direct input data channels

for the GCS, vision computer and FLARM2. The columns

represent the data values, either boolean or numeric, for

position, joystick, pattern position, stereo camera-based

avoidance position, or a FLARM-based avoidance veloc-

ities. It names all valid, conflict free combinations explic-

itly. At runtime this table allows checks of every incoming

command.

Likewise the command checks for these low-level direct

commands, missions defined as sequence of behavior com-

mands have to be understood as one single command. Al-

though, for the system it is not possible to reason about

the sense of a mission plan, it is possible to implement a

plausibility check. These checks are implemented using

the EBNF grammar[12] which ignores malformed behav-

ior sequences that cannot be matched against it. EBNF

grammars are formal grammars of logical production rules

that comprise nonterminal symbols, similar to place hold-

ers or variables, and terminal symbols, which are gener-

ated by the grammar. Grammars are widely used to imple-

ment compilers for programming languages, and, as such,

a behavior sequence is a sequential program. The gram-

mar implemented in this context defines production rules

for each behavior command or task flag, such as a ”hover

to” or ”tracker off”. Its root is defined by ”<mission>”

which basically enforces every mission to start with a take-

off behavior and end with a land. It implements some ba-

sic parameter checks, for instance for the ”hover and wait”

command where the waiting time must not be a negative

number. Furthermore, the grammar allows a check for any

necessary preconditions for specific behaviors. For exam-

ple, the trajectory planner for the forward flight needs at

least three of its behavior commands.

4.3 System Testing

The overall complexity of the Mission Management Sys-

tem’s software implementation imposes a thorough test

strategy. The testing process has to account for user re-

quirements (”scenarios”), as they were mentioned in Chap-

ter 2, and must address theoretical issues that can occur in

finite state machine models and State Charts, respectively.

Basically, there are four testing stages during the develop-

ment of the onboard mission management system:

1. Abstract tests assure that the model is free of principle

errors.

2. Unit Tests assess the functionality of individual soft-

ware component or a composite component.

2An integrated device for collision avoidance, http://www.flarm.ch/

3299



3. Simulation provides the infrastructure for operational

tests that assess the overall system integration.

4. Flight Tests provide a practical proof of concept for

the real world application.

In the modeling stage a set of errors can occur. Some re-

late to potentially isolated or unreachable states, as well as,

missing or erroneous triggers and guards. An even more

fundamental problem is the theoretically infinite set of se-

quences that have to be tested in an abstract manner. That

is, regardless of the meaning and function behind events,

states and transitions, the tests must traverse through the

model even if a certain test would make no sense from a

practical point of view.

Abstract tests relate to Model-based testing[25]. In the

case of the Mission Management System, the test model

can be derived from the State Chart model. UML state

charts represent a constructive model[20], such that tests

can make use of its internal structure (known as white-

box testing). These abstract tests can be divided into three

groups, namely the path coverage, transition coverage and

state coverage tests. For each of these groups, a set of event

chains is generated and executed. Once a full coverage

of all possible combinations is reached, the tests are com-

pleted. However, there is no defined final state and states

can have loops, as such infinitely long test chains for path

coverage tests result. Therefore, a relaxation for the path

coverage criteria is implemented such that loops must be

passed only once. This is a strong and feasible criteria[25].

Inspired by some of the best practices in XP[27], the user

requirements are translated into scenarios that are imple-

mented as Unit Tests. The tests focus solely on the ob-

served behavior (known as black-box testing). XP’s test-

first practice allows an ”inside-out” strategy where each

component, for example a trajectory interface, is tested be-

fore a higher component is tested that makes use of this

interface. Technically, the tests implement certain heuris-

tics. For example, if the GCS does not send new velocity

commands, a time out must trigger an appropriate event.

Besides these procedural checks, some behaviors can be

tested using Unit Tests, such as the landing behavior, which

must stop descending when a certain level of lateral or lon-

gitudinal velocity is exceeded. Other scenarios intention-

ally produce illegal commands which the system must ig-

nore. For instance, when the UAV stands on the ground

any direct command must be ignored, except the take-off

command. Furthermore, the system always has to check

against a shortfall of minimum ground distance, which can

be tested easily using simulated data. Essentially, these unit

tests also serve as so-called regression tests[1]. It is possi-

ble to find ”local” bugs, that is, test whether changes in-

troduced new bugs. Then they can ”unmask” previously

existing bugs that were not detected before. Finally, they

potentially uncover unintended side effects with ”remote”

tests, where the change of one part breaks another part of

the software.

Before every flight test, the fully integrated Mission Man-

agement System software is tested in simulation. For AR-

TIS, SITL and HITL simulations are available.The SITL

simulation implements a number of simplifications for the

sake of reducing the computational load on desktop PCs.

Whereas the HITL simulation uses the original onboard

computer hardware and realistic sensor models. Moreover,

the SITL simulation runs in a Simulink model which does

not enforce real-time code execution. Further, most state

chart events are based on thresholds, time outs and distinct

sensor values. With respect to the Sequence Control Sys-

tem, the major difference between SITL and HITL simu-

lations is, that sensor values, timing conditions and event

sequences differ. Logic tests in abstract and unit testing

cannot check the correctness of the effective interface to

real valued state estimates and sensor data. These issues

are addressed during the operational tests in these simula-

tions. Predefined functional tests are executed manually,

then missions that provide a full state coverage are exe-

cuted.

5 FUTURE WORK

In theory many high level control problems of the UAV

domain, like path planning or performing a single maneu-

ver, are considered to be solved. However, integrated ar-

chitectural concepts can rarely be observed in flight tests.

That is why the focus is on the difficulty of bridging theory

and practice, which was the goal in this paper and will be

an important future research aspect within the ARTIS pro-

gram. In order to achieve this goal, a number of research

directions have been identified. In the short term, the on-

board mission management concept will be extended with

complex behavior modules enabling a significantly higher

level of abstraction for UAV control. Moreover, work is un-

derway to explore alternative modeling techniques, such as

Petri Nets. Additionally, behaviors for the deliberate layer

are developed that allow an operator to perform tasks like

object search and tracking, exploration or flying back to a

base.

6 CONCLUSION

This paper presents a solution to the onboard mission

management problem of UAVs. It is implemented in the

unmanned helicopters used by the ARTIS program and

successfully validated, verified and flight tested. This

behavior-based Mission Management System, embedded

into a 3T architecture is a feasible approach and has ad-

vantages over the discussed approaches. The UAV is con-

trolled by a robust, deterministic system that can han-

dle various events and commands coming from multiple

sources. These sources can either be system components

or a remote operator. The presented (semi-)automatic test

process makes testing manageable and allows test execu-

tion in a repeatable way.

Both, the Sequence Control System and the Supervisory

Control System, execute the output of the 3T architec-

3300



ture’s behaviors compositions which allows different lev-

els of UAV autonomy. The behavior-based aspects of the

proposed architecture enable real-time properties through a

direct linkage between sensors and actuators, even for com-

plex maneuvers. New behaviors can be added to the behav-

ior library such that functional extensibility is facilitated

(”plug-and-fly”). Since some concepts of solely behavior-

based approaches, like arbitration or robot learning, are not

eligible for UAV control, they have not been implemented

in the architecture. The State Chart model assures an event-

based behavior with deterministic, predictable actions. The

decision logic can be verified using abstract tests like state

coverage, path coverage and transition coverage tests. The

level of abstraction in the State Chart model allows a conve-

nient way of mission execution and execution monitoring.

The Mission Management System implements several op-

erational safety features. First, an operator can overrule au-

tonomous actions anytime. Second, the system provides a

stand by state which also serves as a fall-back state in case

of errors. Third, the user input is checked against plau-

sibility rules using a truth table and an EBNF grammar.

Regardless of which behavior is executed or what opera-

tor command the system is executing, the system allows no

shortfall of a minimum ground distance, thus avoiding acci-

dental ground strikes. Furthermore, it rejects a malformed

mission plan, that is a plan which could harm the helicopter

during mission execution. By design the Mission Manage-

ment System keeps the operator in the loop. He has the pos-

sibility to intercept any running behavior by different kinds

of commands, ranging from direct velocity commands (e.g.

for remote joystick control), direct position commands, a

single behavior (e.g. land) or a complex behavior com-

mand sequence. Furthermore, at this time, high-level tasks

like mission planning remain operator tasks. It is possible

to implement an ”onboard operator” in case an operator on

ground is not available.

However, the control architecture may reach its limits when

the centralized sequencer needs to implement concurrency

(e.g. multiple deliberate behaviors need to be active).

It does not allow concurrency between all behaviors and

modules in the system. Moreover, known shortcomings of

State Chart models are inherent to the current system. First,

State Charts need constraints to restrict semantics on the in-

put data since these cannot be modeled. Second, UML use

cases are user examples and as such inherently incomplete.

A formal specification of the functional requirements is be

desirable. State Chart models provide only a limited sup-

port for temporal design aspects.

REFERENCES

[1] Hiralal Agrawal, Joseph Robert Horgan, Edward W.

Krauser, and Saul London. Incremental regression

testing. In ICSM, pages 348–357, 1993.

[2] Philip E. Agre and David Chapman. Pengi: an im-

plementation of a theory of activity. In Computation
& intelligence: collected readings, pages 635–644,

Menlo Park, CA, USA, 1995. American Association

for Artificial Intelligence.

[3] R. Peter Bonasso, James Firby, Erann Gat, David Ko-

rtenkamp, David P. Miller, and Marc G. Slack. Ex-

periences with an architecture for intelligent, reactive

agents. Journal of Experimental & Theoretical Artifi-
cial Intelligence, 9(2/3):237–256, April 1997.

[4] R. S. Brooks. A robust layered control system for

a mobile robot. pages 204–213, San Francisco, CA,

USA, 1990. Morgan Kaufmann Publishers Inc.

[5] Joerg S. Dittrich, Florian Adolf, Augusto Langer, and

Frank Thielecke. Mission planning for small uav sys-

tems in uncertain environments. In 2nd European Mi-
cro Aerial Vehicle Conference, Braunschweig, Ger-

many, July 2006.

[6] Joerg S. Dittrich, Andreas Bernatz, and Frank Thi-

elecke. Intelligent systems research using a small

autonomous rotorcraft testbed. In 2nd AIAA ”Un-
manned Unlimited”, number AIAA-2003-6561, San

Diego, CA, September 2003.

[7] M. Egerstedt, X. Hu, and A. Stotsky. A hybrid control

approach to action coordination for mobile robots. In

Proceedings of IFAC 99 14th World Congress, Bei-

jing, China, Jul 1999.

[8] Patrick Fabiani. The ressac autonomous air vehicle

project: Challenges and demonstration platforms. In

5th ONERA-DLR Aerospace Symposium, June 2003.

[9] Michael Freed, Pete Bonasso, K. Michael Dalal, Will

Fitzgerald, Chad Frost, and Robert Harris. An ar-

chitecture for intelligent management of aerial obser-

vation missions. In Infotech@Aerospace, Arlington,

Virginia, 26-29 September 2005.

[10] Lucas Heitzmann-Gabrielli. Mission planning and

dynamic avoidance for groups of autonomous agents.

Trabalho de Graduacao, Instituto Tecnologico de

Aeronautica, Sao Jose dos Campos, Brasil, Nov 2005.

[11] R. Hill, J. Chen, J. Gratch, P. Rosenbloom, and

M. Tambe. Intelligent agents for the synthetic battle-

field: A company of rotary wing aircraft. In Innova-
tive Applications of Artificial Intelligence (IAAI-97),
1997.

[12] ISO-14977. Information technology — syntactic met-

alanguage — extended bnf. 2001. International Or-

ganization for Standardization, ISO/IEC 14977.

[13] John E. Laird, Allen Newell, and Paul S. Rosen-

bloom. Soar: An architecture for general intelligence.

Artif. Intell., 33(1):1–64, 1987.

[14] P. Makowski. Survey on architecures and frameworks

for autonomous robots, November 2004.

[15] Gero Muehl, Ludger Fiege, and Peter Pietzuch. Dis-
tributed Event-Based Systems. Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 2006.

3301



[16] David John Musliner, James Hendler, Ashok K.

Agrawala, Edmund H. Durfee, Jay K. Strosnider, and

C. J. Paul. The challenges of real-time AI. Technical

Report CS-TR-3290, 1994.

[17] A. Piquereau, V. Fuertes, and P. Fabiani. Autonomous

flight and navigation of vtol uavs. In 5th ONERA-
DLR Aerospace Symposium, June 2003.

[18] P. Pirjanian. The notion of optimality in behavior-

based robotics. In Journal of Robotics and Au-
tonomous Systems, 1999.

[19] H. Putzer and R. Onken. COSA – a generic cogni-

tive system architecture based on a cognitive model

of human behavior. Cognition, Technology and Work,

5, 2003.

[20] Bernhard Rumpe. Agile Modellierung mit
UML : Codegenerierung, Testfaelle, Refactoring
(Xpert.press). Springer, November 2004.

[21] Daniel P. Schrage and Eric N. Johnson. The georgia

tech vtol uav testbed - the gtmax, as an open system

for uav research and development. In 59th Annual
Forum of the American Helicopter Society, Phoenix,

AZ, May 2003.

[22] David Hyunchul Shim. Hierarchical Control System
Synthesis for Rotorcraft-based Unmanned Aerial Ve-
hicles’. PhD thesis, University of California, Berke-

ley, 2000.

[23] Reid Simmons. Structured control for autonomous

robots. IEEE Transactions on Robotics and Automa-
tion, 10(1), February 1994.

[24] D. Toal, C. Flanagan, C. Jones, and B. Strunz. Sub-

sumption architecture for the control of robots. In

IMC-13, Limerick, 1996.

[25] Mark Utting and Bruno Legeard. Practical Model-
Based Testing: A Tools Approach. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2006.

[26] Lora G. Weiss. Intelligent collaborative control for

uavs. In Infotech@Aerospace, Arlington, Virginia,

26-29 September 2005.

[27] Graham Wright. Achieving iso 9001 certification for

an xp company. In XP/Agile Universe, pages 43–50,

2003.

3302


	––––––––––––––––––
	<  previous page
	>  next page
	––––––––––––––––––
	Search
	Print
	Print Current Page
	––––––––––––––––––
	Show Thumbnails
	Hide/Show Toolbar
	Hide/Show Menu
	––––––––––––––––––
	© 2007 DGLR
	www.ceas2007.org
	www.dglr.de
	––––––––––––––––––

	host: 1st CEAS  European Air and Space Conference
	paper#: CEAS-2007-460
	paper_title: A Sequence and Supervisory Control System for Onboard Mission Management.
	authors_short: F.M. Adolf


