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OVERVIEW

In this contribution, orthotropic composite plates under 
uniform uniaxial compression braced by a centrically or 
eccentrically placed longitudinal stiffener are considered. A 
closed-form analytical method for the determination of the 
buckling loads 0

11N of such plates is presented. 
Furthermore, a closed-form solution for the minimum 
bending stiffness minEI  of the stiffener is presented which 
enables the calculation of the bending stiffness such that 
only local buckling of the plate occurs while the stiffener 
itself remains in its original position. The presented 
approaches are in excellent agreement with accompanying 
numerical calculations. Due to their closed-form analytical 
nature, the required computational effort is negligible 
which makes such approaches very suitable for 
preliminary design purposes, extensive parameter studies 
or optimization procedures. 

1. INTRODUCTION 

In modern aircraft structures, stiffened plates and shells 
consisting of laminated composite materials are integral 
structural parts. Since such components must usually be 
classified as being rather thin-walled, the stability 
behaviour especially with respect to buckling is a 
predominant design and analysis aspect. Due to the 
anisotropic behaviour that is an important characteristic of 
such laminated composite materials, the analysis of such 
stiffened anisotropic plates and shells requires refined 
approaches when compared to their isotropic 
counterparts.

Let us consider an orthotropic composite plate 
(characterized by the plate stiffness parameters 11D , 22D ,

12D  and 66D  according to Classical Lamimate Plate 
Theory, see e.g. Jones [1] or Reddy [2]) under uniform 
compressive load 0

11N  (see fig. 1, upper portion). The 
plate has the length a , the width b  and the total thickness 
d , and is subjected to simply supported boundary 
conditions at all four plate edges such that the occurring 
buckling modes exhibit zero values at all edges. An 
orthonormal coordinate system 1x , 2x , 3x  is introduced 
as indicated in fig. 1, upper portion. The plate is braced by 
an eccentrically attached stiffener which is treated as a 
Bernoulli-type beam element with the cross-sectional area 
A , the bending moment of inertia I  about the 2x axis,

and the modulus of elasticity E . The stiffener is located at 
the transverse coordinate bx2  such that plate is 
subdivided into two subplates with the widths bb1
(subplate 1) and 12 bb  (subplate 2).

When dealing with stiffened composite plates in actual 
practical applications, especially in the stages of 
preliminary design and structural optimization, it is firstly of 
highest importance to be able to determine the buckling 
load 0

11N  in a fast closed-form analytical and yet reliable 
manner. Secondly, it is an important task to find a stiffened 
plate design which will exhibit a local buckling pattern 
wherein the stiffener remains more or less immovable and 
where the plate itself buckles locally (fig. 1, lower portion), 
rather than encountering a global buckling shape where 
both the plate and the stiffener buckle. This requirement 
necessitates the determination of the minimum bending 
stiffness minEI  of the stiffener by which a local rather than 
a global buckling mode is enforced.

FIG 1. Structural situation (upper portion), local buckling 
mode when minEIEI  (lower portion).  

Naturally, when the bending stiffness EI  is equal to or 
higher than the minimum bending stiffness minEI , the 
resultant buckling load of the stiffened plate does not 
depend on the properties of the stiffener but is governed 
by the geometry and the material properties of the plate 
exclusively. Furthermore, an increase of EI  beyond the 
minimum bending stiffness minEI  will not lead to an 
increase in the buckling load of the stiffened plate since for 

minEIEI  the buckling behaviour is uncoupled from the 
stiffener properties. These theoretical assumptions are 
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supported by the results given in fig. 2, where the buckling 
loads 0

11N  of centrically and eccentrically stiffened 
stiffened composite plates with the length a 300mm, the 
width b 100mm and the laminate layups S])90/0[( 2
are given. The layer properties were set to 

11E 138000MPa, 22E 8960MPa, 12G 7100MPa, and 
12 0.30. While the first example (fig. 2, upper portion) 

concerns a centrically stiffened plate (i.e. 0.5), the 
second example includes an eccentrically stiffened plate 
with 0.25. For simplicity, in both cases the stiffener has 
the same layup as the plate wherein a rectangular cross-
section with the fixed width Sb 1.0mm and a variable 
height h  was assumed. The center of gravity was 
assumed to coincide with the plate middle plane.  

FIG 2. Buckling loads of compressively loaded 
composite plates with a centric stiffener 
( 0.50, upper portion) and an eccentric 
stiffener ( 0.25, lower portion) for a varying 
height of the stiffener cross-section. 

The graphs in fig. 2 were generated using the Ritz-method 
(see e.g. Turvey and Marshall [3] or Narita and Leissa [4]) 
and show the distribution of the plate buckling load 0

11N  as 
a function of the stiffener height h . The results reveal 
some interesting facts about the stability behaviour of 
stiffened composite plates.

In the case of the stiffened plate with a centric stiffener 
(fig. 2, upper portion), several mode changes occur when 
the stiffener height h  is varied. While in the range 
0 h 2.09mm m 3 global buckling half waves are 
encountered, in the interval 2.09mm h 8.63mm the 
plate buckles globally into two half waves. A further mode 

change occurs in the range between h 8.63mm and 
h 13.34mm where the buckling shape exhibits one single 
global half wave. However, the picture changes completely 
when the stiffener height h  is increased beyond 
h 13.34mm where a purely local buckling mode is 
encountered and the plate buckles into five half waves on 
either side of the stiffener while the stiffener itself remains 
completely straight and enforces a nodal line in the 
buckling shape. As becomes clear from fig. 2, upper 
portion, for values of h 13.34mm the buckling load 0

11N
remains constant and is thus uncoupled from the stiffener 
properties so that with h 13.34mm the minimum bending 
stiffness minEI  of the stiffener can be calculated. 
Needless to say that an increase of h  beyond 
h 13.34mm does not lead to any benefit in the structural 
response with respect to buckling so that for the current 
example of a centrically stiffened plate we may speak of a 
true minimum bending stiffness.

In the case of the eccentrically stiffened plate (fig. 2, lower 
portion), analogous conclusions can be drawn. With 
increasing stiffener height h , a mode change from three 
to two global buckling half waves is encountered at 
h 2.64mm. If a threshold value of h 9.74mm is 
exceeded, the buckling mode switches to a local one 
where subplate 2 enclosed in the interval bxb 2
buckles into three local half waves. Interestingly enough, 
even though a local buckling mode is encountered for 
subplate 2 when h 9.74mm, the buckling load hN 0

11  is 
not fully uncoupled from the stiffener height but shows 
some slight increase when h  is also increased. 
Surprisingly, a further mode change to 4 local half waves 
is encountered at h 9.85mm. Since the buckling load 
shows some slight increase also for values beyond 
h 9.74mm, it is adequate to presently speak of a 
threshold bending stiffness rather than a true minimum 
stiffness beyond which a further increase of the stiffener 
properties is not justified by the achievable improvements 
in the buckling response of the stiffened plate. 

The results included in fig. 2 show that the analysis of the 
structural behaviour of stiffened composite plates is a 
rather complex and challenging task. Having a reasonable 
estimate of the minimum bending stiffness minEI  is of high 
practical importance since in this case the buckling 
analysis of the stiffened plate can be reduced to a local 
plate buckling analysis which can often be done in a 
closed-form analytical manner, rather than performing an 
analysis of the complete stiffened plate which would 
necessitate more complex means of analysis, e.g. by any 
numerical method such as the Ritz-method or the finite 
element method.

From nowadays point of view, the buckling and 
postbuckling analysis of stiffened isotropic and laminated 
composite plates and shells for aircraft applications seems 
to be an established field of scientific investigation where a 
good number of sophisticated and highly efficient 
computational methods has been worked out since the 
beginning of the last century. Very early works in this field 
were presented by Timoshenko [5] in 1921, Way [6] in 
1936, or Barbre [7] in 1939. For a selection of rather 
recent works see e.g. Linde et al. [8], Buermann et al. [9], 
Möcker and Reimerdes [10], or Wittenberg et al. [11]). 
However, even though a solid knowledge on the stability 
behaviour of stiffened aircraft parts is available, it is felt 
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that there is still the need for efficient and accurate closed-
form analysis approaches especially for composite 
structural parts which can be conveniently used in the 
stages of preliminary design where efficiency in terms of 
computational time and effort is a crucial factor. 
Furthermore, judging from the rather recent works of e.g. 
Bedair [12], Mijuskovic et al. [13], or Wittenberg et al. [11], 
the topic of the minimum stiffness of stiffeners attached to 
plates is still a topic of to-date research. In order to 
contribute to this field of investigation, in this contribution 
we will discuss closed-form analytical approaches to the 
analysis of the buckling loads 0

11N  of compressively 
loaded eccentrically stiffened composite plates as given in 
fig. 1, upper portion. Furthermore, a simple closed-form 
solution for the minimum bending stiffness minEI  of the 
stiffener will be presented. This paper is organized as 
follows. In section 2, the closed-form solutions for 0

11N  and 
for minEI  are derived. Results for the buckling behaviour 
of stiffened plates will be discussed in section 3. Section 4 
closes the paper with a summary and some conclusions.  

2. CLOSED-FORM BUCKLING ANALYSIS 

The present analysis approach is based on energetic 
considerations for which an adequate shape function of 
the buckling mode has to be postulated. In order to enable 
a closed-form solution for both the buckling load 0

11N  and 
the minimum bending stiffness minEI , the displacement 
representation should be as simple as possible on the one 
hand, while on the other hand all basic characteristics of 
the buckling problem at hand must be captured. It is 
reasonable to assume that in the state of the onset of 
buckling, only out-of-plane deformations 3u  occur while no 
inplane displacements 1u  and 2u  are encountered which 
usually holds as long as the considered composite plates 
have symmetric layups such that no coupling between the 
inplane and the bending behaviour is active.

2.1. Buckling Analysis for EI < EImin

For a stiffened plate that is simply supported at all four 
edges and where minEIEI , a reasonable and simple 
choice for the functional representation of 3u  in a variable-
separable form was found to be of the following form: 

(1) .sinsin, 211
213 b

x

a

xm
Wxxu

Therein, it is explicitly assumed that in the longitudinal 
direction 1x  the stiffened plate will buckle into an a priori 
unknown number 1m  of half waves so that one single 
sin function is sufficient for the characterization of the 
buckling shape, while in the transverse direction 2x  only 
one half wave is assumed to occur. Note that in the case 
of an unstiffened plate this functional representation for 3u
even describes the exact elasticity solution for the buckling 
behaviour under uniaxial compressive load. Further note 
that the functional dependence of the buckling shape has 
been chosen completely a priori so that the only unknown 
quantity in this approach is the constant W .

The potential energy  that is stored in the stiffened plate 
in the buckled state can be decomposed into the following 
parts. Firstly, we have the potential energy P

i  in the plate 
which can be written as follows: 
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Secondly, the potential energy ST
i  stored in the stiffener 

results in: 
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The contribution of the uniformly distributed inplane normal 
force 0

11N  to the elastic potential reads: 
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Analogously, we have for the contribution of the stiffener 
force F :
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wherein it is assumed that both the plate and the stiffener 
endure the same longitudinal strain so that the stiffener 
force F  and the plate force 0

11N  are related by the 
following condition: 

(6) ,0
11bNF

with the auxiliary quantity  defined as: 

(7) .
bdE

EA

P

Therein, the quantity PE  is the modulus of elasticity of the 
plate with respect to the 1x direction, calculated from the 
laminate extensional stiffness components opA  (with 

6,2,1, po , see Jones [1] or Reddy [2]) as: 
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The total potential energy  in the elastic system in the 
buckled state can then be written as: 

(9) .ST
a

P
a
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i

P
i

The fundamental equation that governs the buckling of 
elastic structures requires that the first variation of the total 
potential energy  in the buckled state vanishes, i.e.: 

(10) .0

Since in the present approach the only unknown quantity 
is the coefficient W , this condition reduces to the 
requirement of a vanishing first partial derivative of  with 
respect to W , and we have: 

(11) .0
W
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Inserting (1) into (2), (3), (4), and (5) with (6) and 
executing (11), after some algebra we achieve the 
following closed-form expression for the buckling load 

0
11N , provided that minEIEI :

(12)

.sin2
sin

2
1

1

sin
2
1

2

2
2

2
1

6612
22

2

224114

4
1

22
1

22

11

EI
a

bm
DD

b

D
b

D
a

m

m

a
N

The relevant number 1m  of buckling half waves can be 
determined from the stationarity requirement 

0/ 1
0
11 mN . It is discovered that the resultant equation 

has only one relevant solution which reads: 

(13) .
sin

24 2
11

22
1

b

EI
D

D

b

a
m

2.2. Buckling Analysis for EI EImin

The overall structural behaviour of the stiffened plate 
changes significantly when the actual bending stiffness 
EI  of the stiffener is equal to or higher than the minimum 
bending stiffness minEI  which, as was pointed out in 
section 1, is more adequately labelled as a threshold 
bending stiffness since in the case of an eccentric stiffener 
a true minimum bending stiffness does not exist. Provided 
that we have minEIEI , the stiffener more or less 
remains in its original position in the state of the onset of 
buckling and as such enforces a nodal line in the occurring 
buckling shape. In this situation, subplate 2 will buckle 
once the critical load 0

11N  is exceeded while subplate 1 will 
offer some elastic rotational support to subplate 2. Hence, 
an idealization of the situation as indicated in fig. 3 is 
advisable where subplate 2 is modelled as a simply 
supported plate with additional elastic rotational restraints 
at the edge at bx2 . The restraint stiffness is labelled 
as k . For convenience, an auxiliary coordinate 2x  is 
introduced as indicated in fig. 3. 

FIG 3. Idealization of the structural situation for a 
stiffener with minEIEI .

For elastically restrained composite plates under 
compressive load, a convenient displacement shape was 
employed by Qiao and Shan [14] who used the following 
formulation for 3u :
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Herein, it is assumed that in the longitudinal direction, one 
single sin function with an a priori unknown number 2m
of buckling half waves is sufficient. In the transverse 
direction, a polynomial of fourth order is assumed to 
adequately describe the buckling shape wherein the free 
constants 1 , 2 , 3  will be adjusted to all underlying 
boundary conditions which can be formulated as follows. 
Firstly, at the loaded edges at 01x  and ax1 , the 
buckling shape has to attain zero values, i.e.: 

(15) .0,,0 213213 xaxuxxu

This condition is identically fulfilled by the sin function in 
the 1x direction. Secondly, at the unloaded edges the 
buckling mode also has to exhibit a nodal line, hence: 

(16) .0,0, 2213213 bxxuxxu

Thirdly, the bending moment 22M  at the unloaded edge at 
02x  is proportional to the plate rotation 23 / xu ,

weighted with the restraint stiffness k :
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Lastly, the bending moment 22M  has to vanish at the 
unloaded edge at 22 bx :
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While the first of (16) is fulfilled identically be the employed 
buckling shape (14), the evaluation of the second of (16) 
and furthermore (17) and (18) leads to the following 
closed-form expressions for 1 , 2 , 3 :
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In the present situation, the potential energy in the buckled 
state  consists of the following portions: 
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wherein P
i  is the energy stored in the plate, S

i  is the 
energy stored in the rotational springs, and P

a  is the 
contribution by the internal forces 0

11N . We may write: 
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(23) .
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Summing up the individual energy portions (21-23) as 
prescribed in (20), inserting the buckling shape (14) with 
(19) and evaluating the buckling condition (11) after some 
algebra leads to the following closed-form solution for the 
buckling load 0

11N :
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The number 2m of buckling half waves can be determined 
as:
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It is important to note that the expression (24) with (25), 
(26) and (27) only depends on known quantities and does 
not require any numerical analysis and as such is of a 
completely closed-form analytical nature.  

The restraint stiffness k  can be straightforwardly 
determined from the principle of virtual work by taking 
subplate 1 as an equivalent beam with the unit width 

'1'1a  in the 1x direction under a virtual edge bending 
moment '1'0, 2122 xxM  (fig. 4).

FIG 4. Idealization of subplate 1 for the determination of 
the elastic restraint stiffness k .

The edge rotation 0, 21 xx  can be determined as 
follows: 
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Herein, PE22  is the modulus of elasticity of the plate with 
respect to the 2x direction, determined from the laminate 
bending stiffness components opD  (Jones [1] or Reddy 
[2]) as: 
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The moment of inertia PI  of the plate can be calculated 
as:
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12
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The restraint stiffness k  is the reciprocal value of the 
edge rotation  so that we eventually have: 
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It is necessary to consider the influence of the longitudinal 
laminate force on subplate 1 by multiplying the restraint 
stiffness k  with a reduction factor as follows: 
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wherein 0
,11N  (with 2,1 ) are the critical buckling loads 

of subplates 1 and 2 with assumed simply supported 
boundary conditions. We have: 
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We eventually arrive at the following refined expression for 
the restraint stiffness k :
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Note that when 21 bb , both subplates buckle 
simultaneously and no restraint stiffness can be mobililzed 
which consequently leads to 0k .

2.3. Determination of the Minimum Stiffener 
Bending Stiffness EImin

A straightforward way to determine the minimum bending 
stiffness of the stiffener is to assume that when the actual 
bending stiffness EI  exactly equals the minimum bending 
stiffness minEI , two buckling modes are possible, namely 
on the one hand the global mode according to section 2.1, 
and on the other hand the local mode according to section 
2.2. The minimum bending stiffness minEI  can then be 
determined from equating the two resultant expressions 
(12) and (24) for the buckling loads 0

11N  which after 
solving for EI  eventually leads to the following 
representation for minEI :
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Therein, the quantities 1  and 2  read: 
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Expression (35) with (36) and (37) allows for a 
straightforward determination of the minimum bending 
stiffness minEI  of the stiffener in a completely closed-form 
analytical manner. Since (35) does not depend on the 
plate length a , this representation for minEI  can be 
considered to be a limit case for sufficiently long stiffened 
composite plates. At the same time (35) provides an upper 
bound for minEI  as the results section will show and as 
such always delivers conservative results.  

2.4. Analysis Formulation for Plates with a 
Centric Stiffener 

If the stiffener is attached at the transverse coordinate 

22
bx , i.e. 5.0 , the calculations of the buckling loads 

and the minimum bending stiffness simplify significantly. If 
the bending stiffness EI  is lower than the minimum 
bending stiffness minEI , the buckling load of the plate 
under compression can be written in a closed-form 
analytical manner as: 
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The number 1m  of buckling half waves reads: 
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The formulation for the minimum bending stiffness is also 
simplified significantly and we have: 
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The special case of an unstiffened composite plate is 
achieved when letting 0EI  and 0  which leads to: 
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This expression is identical to the exact solution for an 
orthotropic composite plate under uniform compressive 
load (see e.g. Reddy [2]).  

In the case that the bending stiffness of the longitudinal 
stiffener is equal to or higher than the minimum bending 
stiffness minEI , the buckling analysis reduces to the 
analysis of a simply supported composite plate with only 
half the width b  since in the case of a centric stiffener we 
have 21 bb  and hence no elastic restraint is active. The 
buckling load in this case can be straightforwardly 
deduced from (44) and leads to: 
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For the number of buckling half waves we have: 
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3. RESULTS AND DISCUSSION 

3.1. Composite Plates 

Let us discuss stiffened composite plates with the 
geometric and material properties as they were also 
employed in the introduction section. It is important to note 
that the expressions (35) and (40) for the minimum 
bending stiffness minEI  require an input concerning the 
cross-sectional area A . As a result, (35) and (40) deliver a 
result for minEI  which of course is also dependent on the 
cross-section of the stiffener due to the moment of inertia 
I . Hence, the employment of (35) and (40) obviously 
requires some iterative process. If we again assume a 
stiffener with a quadrangular cross section with 

hA 1.0mm, we may adequately reformulate the 
requirement minEIEI  as minhh . For an assessment 
of minEI , some initial value 0h  for the stiffener height is 
guessed which allows for an initial estimate of the cross-
sectional area 0A . The expressions (35) and (40) then 
lead to a first estimate 1min,EI  of the minimum bending 
stiffness which in turn allows for an updated value 1min,h .
This value 1min,h  can be used as a renewed input 1h  for 
an updated estimate of 1A  which leads to a refined value 

2min,EI . This process is repeated until convergence is 
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reached such that in the n th iteration step we have 
nn EIEI min,1min, , or presently nn hh min,1min, .

3.1.1. Plates with Centric Stiffeners 

Let us firstly discuss the stability behaviour of 
compressively loaded composite plates with centric 
stiffeners, i.e. with 5.0 . For the example plate with the 
layup S])90/0[( 2 , the development of the solution (40) 
for the minimum bending stiffness minEI  is displayed in 
tab. 1 for the initial value 0h 1.0mm. Even for this rather 
low initial value, a rapid convergence within five iteration 
steps is achieved which demonstrates the robustness and 
simplicity of the presented analysis approach.  

n  1 2 3 4 5 

1min,nh  1.00 11.40 13.04 13.29 13.33 

nhmin,  11.40 13.04 13.29 13.33 13.33 

TAB 1. Iterative determination of the minimum stiffener 
height minh  for a composite plate with the layup 

S])90/0[( 2  with a centric stiffener. 

FIG 5. Comparison of the results for the minimum 
stiffener height minh  (upper portion) and for 
the plate buckling load 0

11N  (lower portion) by 
the present approach and the numerical 
approach by the Ritz-method for a composite 
plate with a centric stiffener and with the layup 

S])90/0[( 2  under compression for a variable 
plate length a .

In order to validate the accuracy of the present approach 
for both the minimum bending stiffness minEI  and the 
buckling load 0

11N , a comparison has been performed with 
a Ritz-approach employing a full double-series expansion 
with respect to both inplane coordinate directions x
using classical sin shapes for the buckling modes. Fig. 5, 
upper portion, shows a comparison of the results for minh
by both the present approach and the Ritz-method for a 
variable plate length a . It becomes obvious that for low 
aspect ratios 

b
a , the solution (40) for minEI  clearly 

overestimates the minimum bending stiffness by far. 
However, obviously the Ritz-solution approaches the 
present solution in an asymptotic manner for higher aspect 
ratios which allows for the conclusion that the solution (40) 
actually characterizes an upper bound for the minimum 
bending stiffness minEI  and at the same time delivers a 
very reliable solution for plates with a sufficiently high 
length a . Hence, the present analysis method for minEI
seemingly is a very conservative approach. It is 
furthermore very important to note that while the present 
solution (40) delivers results in a closed-form manner, the 
employment of the Ritz-method requires an iterative 
means of analysis such that for each guess of EI  the 
buckling mode is visually inspected until the correct value 
for EI  is found at which global buckling switches into a 
local buckling mode. Since one single analysis by the Ritz-
method takes several seconds, depending on the degree 
of the employed series expansion, this is undoubtedly an 
arduous and time-consuming task leading to results which 
heavily depend on the judgement of the engineer. Such an 
approach is of course not suitable for practical application 
purposes which highlights the need e.g. for a closed-form 
analysis method which delivers values for minEI  in a 
reliable yet simple and straightforward manner. 

A comparison between the presented closed-form 
solutions (38) and (45) for the buckling load 0

11N  and the 
results by the Ritz-method can be found in fig. 5, lower 
portion, for a variable plate length a  and several values of 
h . Obviously, there is an excellent agreement between 
both approaches for all values of a  and h . Note that all 
results curves by the present analysis method were 
generated within less than a second on a standard PC, 
while the accompanying numerical results by the Ritz-
method needed about one minute to be generated. This 
again highlights the value of the presently derived analysis 
method due to its closed-form analytical nature. The 
results given in fig. 5, lower portion, display the buckling 
behaviour that is to be expected from plates under 
compression. While for low aspect ratios 

b
a  the buckling 

load 0
11N  tends towards infinite values for all h , with an 

increasing aspect ratio several local maxima which 
correspond to changes in the buckling modes occur, until 
an asymptotic value is approached when 

b
a .

Obviously, (45) indeed describes an upper bound for the 
buckling load of the stiffened plate since for minhh  the 
buckling load is solely governed by the plate properties 
due to local buckling, regardless of the actual stiffener 
properties. As a result, at such points where the buckling 
curves according to (38) and (45) intersect, a 
discontinuous mode change between global and local 
buckling occurs. For the present example, such a mode 
change occurs for instance for h 7.5mm at 
approximately a 100mm.
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3.1.2. Plates with Eccentric Stiffeners 

Let us consider an orthotropic composite plate with an 
eccentric stiffener at 

42
bx  (i.e. 

4
1 ). The geometric 

and material data of plate and stiffener are identical to 
those as employed in the preceding sections. The iterative 
calculation of minh  is documented in tab. 2. As for the 
plates with centric stiffeners, the method converges rapidly 
within 5 iteration steps.  

n  1 2 3 4 5 

1min,nh  1.00 9.16 9.78 9.82 9.83 

nhmin,  9.16 9.78 9.82 9.83 9.83 

TAB 2. Iterative determination of the minimum stiffener 
height minh  for a composite plate with the layup 

S])90/0[( 2  with an eccentric stiffener. 

FIG 6. Comparison of the results for the minimum 
stiffener height minh  (upper portion) and for 
the plate buckling load 0

11N  (lower portion) by 
the present approach and the numerical 
approach by the Ritz-method for a composite 
plate with an eccentric stiffener and with the 
layup S])90/0[( 2  under compression for a 
variable plate length a .

A comparison between the present solution (35) for minEI
respectively minh  and the results by the Ritz-method can 
be found in fig. 6, upper portion, while the results for 0

11N
are compared in fig. 6, lower portion. The results labelled 
as refined approach correspond to the present solution 

given by (35), while the results denoted as simplified
approach were generated assuming a simply supported 
subplate 2, i.e. with a vanishing restraint stiffness 0k .
Obviously, the present approach for eccentric stiffeners 
also leads to conservative results which can be interpreted 
as an upper bound of minEI . As it was the case for plates 
with centric stiffeners, the Ritz-method approaches the 
present solution in an asymptotic sense for sufficiently 
high aspect ratios 

b
a . It is an interesting outcome that the 

deviation between the closed-form analysis and the 
numerical results for lower aspect ratios 

b
a  is clearly not 

as pronounced as it was the case for plates with a centric 
stiffener which is a beneficial feature of the present 
solution (35). It is interesting to note that the assumption of 
a simply supported plate (simplified approach) with 0k
leads to very unsatisfying and at the same time 
unconservative results and, even though being a first 
possible approach from basic engineering intuition and 
from the practical point of view, should not be employed 
for analysis purposes. 

Fig. 6, lower portion, shows a comparison between the 
present closed-form analytical solutions (12) and (24) and 
the numerical results by the Ritz-method for the buckling 
load 0

11N  for several values of the stiffener height h . For 
all h  a very satisfying agreement between both 
approaches is found which lends credibility to the present 
closed-form analysis method. Deviations between both 
approaches are found only for shorter plates with aspect 
ratios 0.1

b
a  for which the presently employed simple 

buckling shape (1) is probably not sufficient for the 
description of the rather complex buckling modes that 
occur for stout plates. Further slight deviations of the 
closed-form analysis equation (12) from the numerical 
results are found for higher values of h  where seemingly 
the assumed symmetry of the buckling shape with respect 
to an imaginary longitudinal axis located at 

22
bx  does 

not deliver the complete picture of the buckling behaviour 
of such stiffened plates. It can be assumed that strong 
stiffeners lead to rather unsymmetric buckling shapes with 
lower amplitudes near the stiffener location so that if a 
higher accuracy of the results were desired, more detailed 
shape functions would have to be employed.  

3.2. Isotropic Plates 

The presented approaches for the buckling load 0
11N  and 

the minimum bending stiffness minEI  can also be 
employed for the buckling analysis of stiffened plates 
consisting of isotropic materials. Let us consider steel 
plates ( E 210000MPa, 30.0 ) with the same 
geometry properties as employed in the preceding 
sections for composite plates. Fig. 7 includes results for 
the minimum bending stiffness minEI  (upper portion) and 
the buckling load 0

11N  (lower portion) of a centrically 
stiffened plate, compared to the results according to the 
Ritz-method. Fig. 8 contains corresponding results for an 
eccentrically stiffened plate with 

4
1 . For brevity, the 

iterative evaluation of the solutions for minEI  is not given 
in tabular form at this point. Needless to say, the 
convergence of the results is as fast as in the orthotropic 
case. Generally speaking, the basic characteristics of the 
resultant plots as given in fig. 7 and fig. 8 are the same as 
they were found for composite plates with centric and 
eccentric stiffeners so that the conclusions as they were 
drawn in section 3.1 in essence also hold for isotropic 
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plates which makes a renewed discussion obsolete at this 
point. Nevertheless, especially the excellent accuracy on 
the one hand with the insignificant involved computational 
effort on the other hand when compared to the purely 
numerical approach should be mentioned which makes the 
presented approaches very trustworthy and efficient when 
dealing with actual practical applications in aircraft analysis 
and design, especially for preliminary design purposes or 
optimization procedures where one and the same analysis 
step has to performed dozens or even hundreds of times.

FIG 7. Comparison of the results for the minimum 
stiffener height minh  (upper portion) and for 
the plate buckling load 0

11N  (lower portion) by 
the present approach and the numerical 
approach by the Ritz-method for a steel plate 
with a centric stiffener under compression for a 
variable plate length a .

4. SUMMARY AND CONCLUSIONS 

In this contribution, novel closed-form analytical solutions 
for the buckling loads 0

11N  of laminated composite plates 
braced by centric or eccentric longitudinal stiffeners have 
been presented. Furthermore, novel closed-form analytical 
approaches to the analysis of the required minimum 
bending stiffness minEI  of the longitudinal stiffeners such 
that local plate buckling occurs rather than a global 
buckling of both the plate and the stiffener have been 
derived. The presented approaches are of a completely 
closed-form analytical nature and do not necessitate the 
involvement of any numerical procedure. Hence, only a 
fraction of the computational time and effort that is 
required for corresponding numerical analysis methods 

has to be spent for the present closed-form analytical 
methods which are found to be in excellent agreement with 
accompanying calculations by the Ritz-method. Hence, the 
presented solutions can be used with confidence 
whenever fast and yet reliable solutions are required for 
the analysis of the buckling behaviour of thin-walled 
laminated composite and isotropic stiffened plates under 
compression.

FIG 8. Comparison of the results for the minimum 
stiffener height minh  (upper portion) and for 
the plate buckling load 0

11N  (lower portion) by 
the present approach and the numerical 
approach by the Ritz-method for a steel plate 
with an eccentric stiffener under compression 
for a variable plate length a .
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