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ABSTRACT
We consider the problem of designing residual generators
with least dynamical orders to solve actuator fault detec-
tion and isolation problems for a Boeing 747-100/200 air-
craft. The main result of our analysis is the proof of feasibil-
ity of the complete isolation of all primary actuator/surface
faults in the nominal case by using a minimal number of
additional surface angle sensors. The analysis of the nomi-
nal case provides residual filter specifications which can be
employed in a more realistic design, where robustness as-
pects with respect to external noise (gusts, measurements)
and parametric/flight condition uncertainties are also con-
sidered.

1. INTRODUCTION
In this paper we address the detection and isolation of actu-
ator faults for a Boeing 747-100/200 from the perspective
of fault tolerant control (FTC). The main goal of FTC is to
allow, after a successful identification of occured faults, the
application of appropriate control reconfiguration to ensure
a safe operation of the aircraft in the presence of identified
failures or, in extreme cases, to guarantee a safe landing to
the nearest airport. The most relevant faults for our analy-
sis are related to four categories of primary control surfaces:
elevator, stabilizer, ruder, and ailerons.

In numerous studies, the occurrence of actuator faults for
the Boeing 747-100/200 aircraft has been addressed in a
simplistic way, by assuming that all faults related to a sur-
face category occur simultaneously [11, 8]. For example,
it is typically assumed that all four elevators are simultane-
ously affected by the same fault or, equivalently, each eleva-
tor fault is assimilated with a global fault on all elevator sur-
faces. As a consequence, the typical approach to compen-
sate the elevator faults is to use the stabilizer for the aircraft
altitude control and ignore the possibility to employ, for the
same purpose, the remaining healthy elevator surfaces. For
the purpose of FTC, such a simplifying assumption of si-
multaneous elevator faults prevents exploiting the existing
freedom in using healthy surfaces which could compensate
(fully or partially) the disturbance induced by the faulty sur-
faces.

This way to address the fault occurrence problematic
is clearly not appropriate for the purpose of FTC, where
the precise information on the available healthy actua-
tors/surfaces and faulty ones could be vital for a proper
control reconfiguration. The usually existing redundancy
in control surfaces allows to cope easier with partial fail-

ures providing an increased overall safety. Thus, handling
only complete surface failures is not a realistic option for a
FTC approach.

In this paper we focus on the design of residual genera-
tors with least dynamical orders to solve actuator fault de-
tection and isolation problems for the Boeing 747-100/200
aircraft. The main result of our analysis is the proof of
feasibility of the complete isolation of all primary actua-
tor/surface faults in the nominal case by using a minimal
number of additional surface angle sensors. The analysis
of the nominal case provides residual filter specifications
which can be employed in a more realistic design, where ro-
bustness aspects with respect to external noise (gusts, mea-
surements) and parametric/flight condition uncertainties are
also considered.

The paper is organized as follows. First we shortly
review the solution of the fault detection problem using
scalar output detectors with least dynamical order. The
corresponding design procedure is based on the nullspace
method in combination with dynamic cover techniques.
This method is the basis to design a bank of residual genera-
tors to solve the more involved fault detection and isolation
problems, where a given fault-to-residual influence struc-
ture must be achieved. The design methods of residual gen-
erators for fault detection and isolation have been recently
implemented as robust numerical software, which extends
the Fault Detection Toolbox [18] of DLR. The new tools
served to study the feasibility of a complete fault detection
and isolation of actuator faults for a Boeing 747-100/200
aircraft. Fault detection both at component (actuator) level
as well as at the whole system level are discussed. Residual
synthesis results are presented for detecting and isolating
both longitudinal and lateral axis failures for several influ-
ence structures of increasing complexity. The main result
of this paper is the solution of the complete isolation prob-
lem by employing a minimum number of additional surface
sensors.

2. DESIGN OF LEAST ORDER SCALAR OUTPUT
DETECTORS

Consider the linear time-invariant system described by the
input-output relations

y(s) = Gu(s)u(s) + Gd(s)d(s) + Gf (s)f(s),(1)

where y(s), u(s), f(s), and d(s) are Laplace-transformed
vectors of the p-dimensional system output vector y(t),
mu-dimensional control input vector u(t), mf -dimensional
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fault signal vector f(t), and md-dimensional disturbance
vector d(t), respectively, and where Gu(s), Gf (s) and
Gd(s) are the transfer-function matrices (TFMs) from the
control inputs to outputs, fault signals to outputs, and dis-
turbances to outputs, respectively.

To detect faults, residual generator filters (or fault detec-
tors) having the general form

r(s) = R(s)

[
y(s)
u(s)

]
(2)

are employed, where r(t) is the residual signal generated
from the available measurements y(t) and control inputs
u(t). A residual generator must fulfill two basic require-
ments: (1) to generate zero residuals in the fault-free case,
for arbitrary control and disturbance inputs; (2) to gener-
ate nonzero residuals when any fault occurs in the system.
These requirements can be made precise as follows:

Fault Detection Problem (FDP): Determine a proper and
stable linear residual generator having the general form (2)
such that:
(i) r(t) = 0 when f(t) = 0 for all u(t) and d(t);

(ii) r(t) 6= 0 when fi(t) 6= 0, for i = 1, . . . ,mf .
Besides the above two requirements, it is often required for
practical use that the TFM of the detector R(s) has the least
possible McMillan degree. Note that as fault detector, we
can always choose R(s) as a rational row vector.

The fulfillment of requirement (ii) ensures that faults
produce non-zero residual responses. When designing fault
detectors this requirement for fault detectability is usually
replaced by the stronger request that persistent (constant)
faults produce asymptotically persistent (constant) residu-
als. This requirement is known as strong fault detectability
and has a special importance for practical applications.

Let Gfi
(λ) be the i-th column of Gf (λ). A necessary

and sufficient condition for the existence of a solution of
the FDP is the following one [3, 9]:

Theorem 1 For the system (1) the FDP is solvable iff

rank [Gd(λ) Gfi
(λ) ] > rank Gd(λ), i = 1, . . . ,mf(3)

The requirements (i) and (ii) of the FDP can be easily
transcribed in equivalent algebraic conditions. The condi-
tion (i) is equivalent to

R(s)G(s) = 0(4)

where

G(s) =

[
Gu(s) Gd(s)
Imu

0

]
,(5)

while the detectability condition (ii) is equivalent to

Rfi
(s) 6= 0, i = 1, . . . ,mf(6)

where Rfi
(s) is the i-th column of

Rf (s) := R(s)

[
Gf (s)

0

]
(7)

Enforcing the strong detectability of constant faults is
equivalent to ensure finite non-zero DC-gains for each col-
umn of Rf (s), thus to ask

0 < ‖Rfi
(0)‖ < ∞, i = 1, . . . ,mf(8)

The conditions (4) and (6) (or (8)) lead to a straightfor-
ward design procedure:

FD Least Order Synthesis Procedure
1) Compute a minimal basis Nl(s) for the left

nullspace of G(s).

2) Choose a rational vector h(s) such that

R(s) = h(s)Nl(s)

has least McMillan degree and fulfills (6) (or (8)).

3) If necessary, replace R(s) by m(s)R(s), where
m(s) is chosen to achieve a desired dynamics for
the resulting detector.

The scalar output detector R(s) at Step 2) is determined
as a linear combination of the basis vectors (rows of Nl(s)),
such that conditions (6) or (8) are fulfilled. The above ex-
pression of R(s) represents a parametrization of all possi-
ble detectors and is the basis for the class of nullspace meth-
ods introduced in [4]. While this work relies on using poly-
nomial nullspace bases for Nl(s), an alternative approach
relying on proper rational bases has been proposed by the
author in [14]. The main advantage of this latter method is
to rely exclusively on reliable numerical techniques based
on state-space computations (see Section 4).

3. SOLVING FAULT ISOLATION PROBLEMS
The more advanced functionality of fault isolation (i.e., ex-
act location of faults) can be often achieved by designing a
bank of fault detectors [5] or by direct design of fault iso-
lation filters [16]. Designing detectors which are sensitive
to some faults and insensitive to others can be reformulated
as a standard FDP, by formally redefining the faults to be
rejected in the residual as fictive disturbances.

Let R(s) be a given detector and let Rf (s) be the corre-
sponding fault-to-residual TFM in (7). We denote Ri

fj
(s)

the (i, j) entry of Rf (s). We define the fault influence ma-
trix S, with the (i, j) entry Sij given by

Sij = 1 if Ri
fj

(0) 6= 0

Sij = −1 if Ri
fj

(0) = 0 and Ri
fj

(s) 6= 0

Sij = 0 if Ri
fj

(s) = 0

If Sij = 1 then we say that the fault j is strongly detected
in residual i. If Sij = −1 then the fault j is only weekly
detected in residual i. The fault j is not detected in residual
i if Sij = 0.

The following fault detection and isolation problem
(FDIP) can be now formulated: Given a q × mf fault in-
fluence matrix S determine a bank of q stable and proper
scalar output residual generator filters

ri(s) = Ri(s)

[
y(s)
u(s)

]
, i = 1, . . . , q(9)

such that, for all u(t) and d(t) we have:
(i) ri(t) = 0 when fj(t) = 0, ∀ j with Sij 6= 0;

(ii) ri(t) 6= 0 when fj(t) 6= 0, ∀ j with Sij 6= 0.
In this formulation of the FDIP, each scalar output detec-

tor Ri(s) achieves an influence structure representing the
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i-th row of the desired fault influence structure matrix S.
For example, to achieve the complete isolation of maxi-
mum k simultaneous faults the choice S = Ik is necessary.
In many practical applications such a specification can not
be achieved due to the lack of sufficient number of mea-
surements. If we can assume that the faults occur one at a
time, a so-called week isolation of k faults could be possi-
ble by using a specification matrix whose i-th row contains
all ones excepting the element in column i which is zero.
For example, for 3 faults S is chosen as

S =




0 1 1
1 0 1
1 1 0




If this fault influence specification can be achieved, then the
occurrence of fault i can be detected if all residuals (except-
ing the i-th residual) are non-zero. More insight on how to
specify fault influence matrices can be found in [6].

Let S be a given q×mf fault influence matrix and denote
by G

i

f (s) the matrix formed from the columns of Gf (s)
whose column indices j correspond to zero elements in row
i of S. The solvability conditions of the FDIP build up from
the solvability of q individual FDPs.

Theorem 2 For the system (1) the FDIP with the given
fault influence matrix S is solvable if and only if for each
i = 1, . . . , q, we have

rank [Gd(s) G
i

f (s) Gfj
(s) ] > rank [Gd(s) G

i

f (s) ](10)

for all j such that Sij 6= 0.

The standard approach to determine R(s) is to design for
each row i of the fault influence structure matrix S, a detec-
tor Ri(s) which generates the i-th residual signal ri(t), and
thus represents the i-th row of R(s). For this purpose, the
nullspace method can be applied with G(s) in (5) replaced
by

G(s) =

[
Gu(s) Gd(s) G

i

f (s)
Imu

0 0

]

and with a redefined fault to output TFM G̃i
f (s), formed

from the columns of Gf (s) whose indices j correspond to
Sij 6= 0.

The resulting global detector can be assembled as

R(s) =




R1(s)
...

Rq(s)


(11)

and has a total McMillan degree which is bounded by the
sum of the McMillan degrees of the component detectors.
Note that this upper bound can be effectively achieved, for
example, by choosing mutually different poles for the indi-
vidual detectors.

Using the least order design techniques described in this
paper, for each row of S we can design a scalar output
detector of least McMillan degree. However, even if each
detector has the least possible order, there is generally no

guarantee that the resulting order of R(s) is also the least
possible one. To the best of our knowledge, the determi-
nation of a detector of least global McMillan degree for a
given specification S is still an open problem. A solution
to this problem has been recently suggested in [20] and is
summarized in the following synthesis procedure:

FDI Synthesis Procedure
1) For i = 1, ..., q

1.1) Redefine disturbance vector d to include all
faults fj for which Sij = 0.

1.2) Redefine fault vector f by deleting all faults fj

for which Sij = 0.

1.3) Compute Ri(s) of order νi using the FD Least
Order Synthesis Procedure.

2) Ensure that for νi ≤ νj , the poles of Ri(s) are
among the poles of Rj(s).

3) Form the global detector R(s) according to (11).

It was conjectured in [20] that the McMillan degree of R(s)
resulting with this procedure is the least possible one.

We describe now an improved two steps approach to de-
sign a bank of detectors, which for larger values of q, is po-
tentially more efficient than the above standard approach.
In a first step, we can reduce the complexity of the original
problem by decoupling the influences of disturbances and
control inputs on the residuals. In a second stage, a residual
generation filter is determined for a system without control
and disturbance inputs which achieves the desired fault in-
fluence structure.

Let Nl(s) be a minimal left nullspace basis for G(s) de-
fined in (5) and define a new system without control and
disturbance inputs as

ỹ(s) := Nf (s)f(s),(12)

where

Nf (s) := Nl(s)

[
Gf (s)

0

]
.(13)

The system (12) has generally a reduced McMillan degree
[19] and also a reduced number of outputs p− rd, where rd

is the normal rank of Gd(s).
For the reduced system (12) with TFM Nf (s) we can

determine, using the FDI Synthesis Procedure, a bank of
q scalar output least order detectors of the form

ri(s) = R̃i(s)ỹ(s), i = 1, . . . , q(14)

such that the same conditions are fulfilled as for the original
FDIP. The TFM of the final detector can be assembled as

R(s) =




R̃1(s)
...

R̃q(s)


 Nl(s)(15)

Comparing (15) and (11) we have

Ri(s) = R̃i(s)Nl(s),(16)
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which can be also interpreted as an updating formula of
a preliminary (incomplete) design. The resulting order of
the i-th detector is the same as before, but this two steps
approach has the advantage that the nullspace computation
and the associated least order design involve systems of re-
duced orders (in the sizes of state, input and output vectors).

The above procedure has been used for the example stud-
ied in [21, Table 2], where a 18 × 9 fault influence matrix
S served as specification. Each line of S can be realized
by a detector of order 1 or 2 with eigenvalues {−1} or
{−1,−2}. The sum of orders of the resulting individual
detectors is 32, but the resulting global detector R(s) has
McMillan degree 6. Recall that the ”least order” detector
computed in [21] has apparently order 14.

4. COMPUTATIONAL ASPECTS
For numerical computations state space representation
based algorithms have been developed to serve as basis for
robust software implementations. For this purpose, a state
space realization of (1) is employed

ẋ(t)=Ax(t) + Buu(t) + Bdd(t) + Bff(t)
y(t)=Cx(t) + Duu(t) + Ddd(t) + Dff(t)

(17)

with the n-dimensional state vector x(t). The correspond-
ing TFMs of the model in (1) are

Gu(s) = C(sI − A)−1Bu + Du

Gd(s) = C(sI − A)−1Bd + Dd

Gf (s) = C(sI − A)−1Bf + Df

A numerically sound computational approach to design
scalar output residual generators with least dynamical or-
ders has been proposed recently in [20]. This approach
represents an enhancement of the minimal dynamic cov-
ers techniques introduced in [14], by employing Type I dy-
namic covers (instead Type II covers) to achieve the maxi-
mal order reduction of the resulting detector. A basic com-
putational ingredient to perform Step 1) is a reliable numer-
ical algorithm to compute least order rational nullspaces of
rational matrices using state-space methods [14]. The main
computation in this algorithm is the orthogonal reduction of
the system pencil matrix of the realization of G(s) in (5) to
a Kronecker-like form, which allows to obtain, practically
without any additional computation, a least order rational
nullspace basis. The existence conditions of the solution (6)
can be easily checked using the outcome of the nullspace
computation algorithm [20]. The least order fault detec-
tor at Step 2) can be obtained by selecting an appropriate
linear combination of the basis vectors by eliminating non-
essential dynamics using Type I dynamic covers based or-
der reduction [20, 15]. To perform Step 3), stable coprime
factorization techniques can be used for which reliable nu-
merical algorithms based on pole assignment techniques are
available [12].

The efficient implementation of the enhanced FDI Syn-
thesis Procedure requires an explicit updating of a pre-
liminary design (16). State space realization based com-
putations of Nf (s) in (13) as well as of the resulting least

order detectors Ri(s) in (16) are described in [19]. Re-
markably, the matrices of the underlying state space real-
izations of Nf (s) can be obtained using exclusively orthog-
onal transformations on the system matrices of the origi-
nal state space realization (17). By using these updating
techniques, any need to determine minimal realizations has
been practically eliminated.

For all underlying numerical computations robust numer-
ical software is available in the DESCRIPTOR SYSTEMS
Toolbox [13]. This software served to implement a first ver-
sion of a FAULT DETECTION Toolbox [18], where several
tools are available to solve the main classes of fault detec-
tion problems. The recently developed enhancements have
been implemented in a new function fdsyn which is fully
documented in [19].

5. MONITORING ACTUATOR FAILURES FOR A
BOEING 747

The monitoring of primary actuator failures of an aircraft is
of paramount importance for the aircraft safe operation and
for a continuous situation awareness of pilots. In this sec-
tion we address the fault detection and isolation of all FTC
relevant actuator failures by combining component level
and system level fault monitoring techniques. The main
goal of our analysis is to prove the feasibility of a complete
fault diagnosis system capable to localize individual or si-
multaneous actuator/surface faults.

For our study we consider the Boeing 747-100/200 air-
craft for which a high fidelity nonlinear simulation model
with a full set of control surfaces is available. This model
with 11 primary control surface actuators (4 elevators, 1
stabilizer, 4 ailerons, 2 rudders) has been set up within the
GARTER AG16 as a benchmark for FTC studies. The orig-
inal model [7] with only pilot inputs has been used in sev-
eral fault detection studies [8], with focus on various par-
ticular aspects mentioned in Section 1.

For the Boeing 747-100/200 aircraft several fault scenar-
ios can be of particular interest. For example, the ability to
detect of single primary actuator faults is of critical impor-
tance, since it can be seen as part of the aircraft specification
according to the requirements of FAA/FAR and EASA/CS.
Thus a minimum request from the FTC perspective is the
requirement for the modern aircraft design that no single
failure must lead to a catastrophic consequence.

Simultaneous faults can also occur, especially when sur-
face damages occur. The detection and isolation of simul-
taneous faults requires a more involved residual generation
system and also the availability of a sufficiently large num-
ber of measurements. Although surface angle sensors can
be installed on each control surface, an interesting aspect is
to determine the minimum number of sensors necessary to
completely solve the fault isolation problem. We give an
answer to this problem by combining component level and
system level fault monitoring.

The main goal of our study of detectability and isolabil-
ity of actuator/surface faults was to demonstrate the feasi-
bility of FDI for a complete set of faults. The full isolation
requires placing a minimum number of additional surface
angle sensors. An interesting result of our study is also to

1192



reveal the best achievable isolation capabilities in the ab-
sence of additional sensors.

Only the nominal case is studied corresponding to a nor-
mal cruise flight. The obtained results, consisting of several
designed residual generators and the corresponding fault-
to-residual filter specifications, can serve as meaningful
specifications for a more realistic design where input/output
noise and uncertainties in the model parameters and flight
conditions are also addressed. Finding the minimal number
of additional sensors allowing the isolation of all surface
faults is one of the main achievements of this study.

In what follows, we show first the capabilities of compo-
nent level monitoring, which is traditionally used on present
day aircraft. The intrinsic limitations of this approach, for
example, to detect surface failures leading to loss of ef-
fectiveness, require addressing the FDIP using a system
level monitoring. However, the system level approach has
its own limitations due to the restricted number of avail-
able measurements, therefore a full FDI is not possible un-
less additional surface sensors are used. As can be easily
guessed, the final solution of the FDIP is a combination of
both approaches by employing a minimal number of sen-
sors.

5.1. Component level monitoring

Typically actuators are modelled as first order linear sys-
tems which together with the corresponding control sur-
faces have transfer functions of the form

gu(s) =
K

s + K
(18)

Here the value of K is determined taking into account the
physical rate limits of the respective surface, and represents
an average value applicable to all flight conditions. Typical
choices for the Boeing actuators are: 37/(s + 37) for ele-
vators, 0.5/(s + 0.5) for stabilizer, 50/(s + 50) for ruders
and ailerons. The task of the fault detection at the actuator
level is to detect typical actuator faults like ”stuck actuator”
(also called lock-in place failure), ”actuator runaway” (also
called hard-over failure), ”free-play” (called also float-type
failure), or loss of actuator effectiveness. In what follows
we discuss some aspects of fault detection and isolation for
a generic actuator.

Consider the actuator model (18) for which we would
like to design a fault detector able to detect several fault
types mentioned previously. For this purpose, a simple de-
tector which estimates the deviation of surface position on
the basis of measured control surface position and com-
manded control surface position is given by the simple
observer-like structure

R(s) =
[

1 −gu(s)
]

Note that the dynamics of filter can be arbitrarily assigned
by replacing R(s) with m(s)R(s), where m(s) is an arbi-
trary stable transfer function.

With such a detector, an actuator fault can be easily de-
tected by checking the condition r(t) 6= 0. The stationary

value of the residual signal r(∞) can be used also to esti-
mate the actual DC-gain of the actuator, say g0, and thus the
actuator effectiveness. Since g0 = 1 − r(∞), in the fault-
free case we have g0 = 1. DC-gain values in the range
[ 0, 1 ] indicate a loss of actuator effectiveness with a zero
gain indicating ”free-play”. Values outside this domain in-
dicates either a ”stuck actuator” in a certain position or even
an ”actuator runaway” (i.e., stuck in an extreme position).

The main weakness of this simple fault detection scheme
is that it is not working properly in the case of surface po-
sition sensor failures. This lack of reliability against com-
bined actuator and sensor failure could be a source of false
alarms. Another potential problem is when the actuator is
fault free but the corresponding control surface is damaged.
The associated loss of effectiveness of the actuation/control
surface system can not be detected in this way.

A typical approach to overcome the first weakness is to
add hardware redundancy by increasing the number of sen-
sors to a level which ensures a satisfactory reliability of
measurements. A standard approach is to use a number of
3 sensors in a voting logic for validity checking. This is
the minimum hardware redundancy to guarantee the relia-
bility of monitoring. Interestingly, using model based fault
detection techniques, it is possible to obtain practically the
same level of confidence by using only 2 sensors. Thus, the
model based approach provides a third ”virtual” sensor.

The actuator system with two identical sensors is de-
scribed by the transfer-function matrix

Gu(s) =

[
1
1

]
gu(s)

The fault TFM corresponding to the actuator fault f1 and
two sensors fault f2 and f3 is

Gf (s) = [Gu(s) I2 ]

A possible least order detector for this setup can be chosen
as

R(s) =




1 −1 0
0 1 −gu(s)
1 0 −gu(s)




and can be still realized as a first order system. The result-
ing fault detection system achieves the following fault-to-
residual influence structure

S =




0 1 1
1 0 1
1 1 0




Assuming that the actuator fault and sensor faults occur one
at a time, this structure provides a complete isolation of a
single fault by using the following isolation logic:

– actuator fault occurred if r1 = 0, r2 6= 0, and r3 6= 0;

– first sensor failed if r1 6= 0, r2 = 0, and r3 6= 0;

– second sensor failed if r1 6= 0, r2 6= 0, and r3 = 0.

In this way, the occurrence of each fault can be reliably
detected. For fault identification, the information provided
by either residual signal r1 or r2 can be employed.
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To address the second aspect of loss of control surface
effectiveness a system level analysis could be appropriate
(see next section).

For component level diagnosis more detailed actuator
models can be used, by explicitly modelling the dynam-
ics of all actuator components. Such an approach based on
physical parametric models is also suited to serve for health
monitoring purposes.

Another application of potential interests is to detect the
so-called ”oscillatory failure” (e.g., of a rudder) as a result
of limit cycle oscillations. This type of failure can trig-
ger an aeroelastic resonance behavior of the aircraft with
unacceptably high loads. To detect this type of faults, the
above detection scheme can be supplemented with an ad-
ditional signal analysis based oscillation detection system
(e.g., sub-band filtering followed by Fourier analysis).

5.2. System level monitoring

The monitoring of actuator faults at the system level is
primarily intended to increase overall aircraft safety by de-
tecting fault categories which can not be handled by the
usual component level monitoring. Such faults are, for ex-
ample, the loss of efficiency of control surfaces due to pos-
sible structural damages or as a result of icing.

The study of the nominal cases has as main purpose get-
ting a clear understanding of the intrinsic limitations in
solving the FDIP in an idealized situation. Furthermore, the
achieved fault-to-residual specifications can serve as refer-
ence models for a model-matching formulation of the FDIP
[17], where system variabilities (parametric, flight condi-
tions) are fully considered.

Actuator fault diagnosis for the whole aircraft can be
done in several ways. An approach advocated by several au-
thors is to use so-called multi-models describing the aircraft
in normal flight conditions as well as in faulty situations. A
bank of model detection filters can be designed to ensure
a desired model-to-residual signature allowing the applica-
tion of a simple decision logic to identify the current model
(normal or faulty). The main advantage of this approach
is its simplicity, both because of a simple design of the de-
tectors as well as because of the simple residual evaluation
scheme. As main disadvantage we can mention the need
for a large number of models (and thus detectors) to cover
many faults and combinations of faults. Moreover, differ-
ent levels of actuator efficiency loss are usually represented
as separate models, thus making the number of necessary
detectors increasing exponentially.

The approach we follow in our study is to model actu-
ator faults as additive disturbances. The linearized fault
model of the aircraft corresponding to a given set of pa-
rameter values and a specific flight condition (e.g., straight-
and-level flight) has the standard input-output form (1) and
the detector is designed in the filter form (2). The employed
linearized models have been determined using the nominal
values of the parameters.

The longitudinal and full order linearized state space
models of the aircraft are given in [19] (see also Appendix
A). These models correspond to the following parameter

values: mass = 317,000 kg, center of gravity coordinates:
Xcg = 25%, Ycg = 0, Zcg = 0. The chosen flight con-
dition is a straight-and-level flight at altitude 600 m, with
speed of 92.6 m/s, with a flap setting at 20o and with land-
ing gear up. For more details on the employed model and
for additional references see [19].

5.3. Pitch axis fault monitoring

To detect elevator and/or stabilizer faults, we use the lon-
gitudinal aircraft model in state-space form (17), where the
state, input and output variables are defined as follows:

x =




δq
δVTAS

δα
δθ
δhe







pitch rate [rad/s]
true airspeed [m/s]

angle of attack [rad]
pitch angle [rad]

altitude [m]




,

u =




δeir

δeil

δeor

δeol

δih

δEPR1

δEPR2

δEPR3

δEPR4







right inner elevator [rad]
left inner elevator [rad]

right outer elevator [rad]
left outer elevator [rad]

stabilizer trim angle[rad]
thrust engine #1[rad]
thrust engine #2[rad]
thrust engine #3[rad]
thrust engine #4[rad]




,

y =




δα

δV̇TAS

δθ
δq
δVz

δhe







angle of attack [rad]
acceleration [m/s2]
pitch angle [rad]
pitch rate [rad/s]

vertical velocity [m/s]
altitude [m]




There are no disturbance inputs. The matrices A, Bu, C,
and Du for this model are given in Appendix A. The eleva-
tor and stabilizer fault inputs are defined as

f =




f1

f2

f3

f4

f5







right inner elevator fault[rad]
left inner elevator fault[rad]

right outer elevator fault[rad]
left outer elevator fault[rad]

stabilizer fault[rad]




and thus Bf = Bu(:, 1 : 5) and Df = Du(:, 1 : 5).
The achievable fault influence structure is

S =




1 1 1 1 1
0 0 1 1 1
1 1 0 0 1
1 1 1 1 0

−1 −1 0 0 0
0 0 −1 −1 0
0 0 0 0 −1




From the last three lines of S it can be observed that the
isolation of faults grouped in three groups (f1, f2), (f3, f4)
and f5 is achievable, although all groups are only weekly
detectable.
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System level monitoring can be used as a complemen-
tary tool to the device level monitoring in the case when
sensor fault monitoring is not additionally provided. The
simplest fault detection task is to determine if any actuator
fault in the pitch axis occurred. This comes down to de-
sign a fault detector achieving the trivial influence structure
corresponding to the first row of S

S0 =
[

1 1 1 1 1
]

by using the lowest order dynamics. To design such a de-
tector, the function fdsyn has been used. Using the least
order design option, a first order residual generator can be
determined. The resulting fault-to-residual dynamics is

Rf (s) =
[

10

s+10

10

s+10

10.43
s+10

10.43
s+10

−5.188s+58.45
s+10

]

If we would like to isolate elevator and stabilizer faults,
only the following choice of the influence matrix is achiev-
able

S1 =

[
1 1 1 1 0
0 0 0 0 −1

]

with the second row having only a weak detectability struc-
ture. If we assume that elevator and stabilizer faults can
not simultaneously occur, we can achieve elevator and sta-
bilizer fault isolation by using the specification matrix

S2 =

[
1 1 1 1 1
1 1 1 1 0

]

To isolate (f1, f2, f3, f4) and f5 the following decision
logic can be used:

– elevator fault occurred if r2 6= 0;

– stabilizer fault occurred if r1 6= 0 and r2 = 0.

A residual generator achieving the above specification can
be obtained as a bank of two detectors using the function
fdsyn. Using the least order design option, two first order
detectors can be determined, leading to a residual generator
of total order 2.

Provided we can assume that the groups of faults
(f1, f2), (f3, f4) and f5 do not simultaneously occur, the
achievable specification

S3 =




0 0 1 1 1
1 1 0 0 1
1 1 1 1 0




can be used for week isolation using the following decision
logic:

– inner elevator fault occurred if r1 = 0, r2 6= 0, and
r3 6= 0;

– outer elevator fault occurred if r1 6= 0, r2 = 0, and
r3 6= 0;

– stabilizer fault occurred if r1 6= 0, r2 6= 0, and r3 = 0.

Using the least order design option, three first order de-
tectors can be obtained using the function fdsyn leading
to a detector of total order 3. Note that without the least or-
der design option, a detector of total order 10 results, while
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FIG. 1: Step responses from the faults: f1 = 1, ..., f4 = 1,
f5 = 0.01.

using the standard observer based approach (see for exam-
ple [10]), a detector of total order 15 is to be expected. The
resulting fault-to-residual dynamics is

Rf (s) =




0 0 10

s+10

10

s+10

862.7s−1889

s+10

10

s+10

10

s+10
0 0 −835.1s+2028

s+10

10

s+10

10

s+10

10.74
s+10

10.74
s+10

0




The step responses from the faults are presented in FIG. 1.
A more realistic setting is to add actuator dynamics to

each input actuator-surface channel [8]. As already men-
tioned, the elevator dynamics can be approximated by trans-
fer functions of the form 37/(s + 37), while for the stabi-
lizer dynamics we take 0.5/(s + 0.5) as suggested in [8].
The resulting model has now order 10 and we can achieve
the same influence structure with a bank of three detectors
of total order 6. The step responses from the faults are pre-
sented in FIG. 2.
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FIG. 2: Step responses from the faults with actuator dynam-
ics included: f1 = 1, ..., f4 = 1, f5 = 0.01.

Further enhancement of fault isolation is possible by em-
ploying direct measurements of surface positions. For ex-
ample, with a single additional measurement of the stabi-
lizer surface angle it is possible to achieve the specification

S4 =




1 1 0 0 0
0 0 1 1 0
0 0 0 0 1



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and thus to isolate inner elevator, outer elevator and stabi-
lizer faults. The above specification can be achieved using a
bank of three detectors of total order 5. The step responses
from the faults are presented in FIG. 3.
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FIG. 3: Step responses from the faults with stabilizer angle
measurement.

Finally, for a complete fault isolation it is to be expected
that measurements from all surfaces are necessary. Solv-
ing the fault detection and isolation problem corresponds
to achieve the specification S5 = I5 using the function
fdsyn or employing directly the specially devised func-
tion fdi, available in the FAULT DETECTION toolbox [18].
This latter function is based on the method proposed in [16].
Using this function, we obtain a detector of order 5 which
solves the complete fault detection and isolation problem.
Interestingly, this detector is the same as that one obtained
by using single surface monitoring schemes. This remark-
able result also illustrates the real strengths of the recently
developed minimal degree design techniques [16]. In con-
trast, the methods traditionally used (e.g., using a bank of
5 observer based detectors [10]) could lead to detector of
total order up to 70 in the case when actuator dynamics are
included.

Interestingly, the complete isolation can be also achieved
by choosing a minimal number of three surface measure-
ments: two from the left elevators and one from the stabi-
lizer. The resulting bank of five detectors has a total order
of 7 and achieves the fault-to-residual specification

Rf (s) = diag
(

10

s + 10
,

370

s2 + 47s + 370
,

10

s + 10
,

370

s2 + 47s + 370
,

10

s + 10

)

The step responses from the faults are presented in FIG. 4.

5.4. Gear and roll axes fault monitoring

To detect rudder and/or aileron faults, we consider the
full order (n = 10) aircraft model in state-space form (17).
The definition of state, input and output variables and the
corresponding state space matrices are given in Appendix
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FIG. 4: Step responses from the faults with left elevators
and stabilizer angles measurements.

B of [19]. The aileron and rudder fault inputs are defined as

f =




f1

f2

f3

f4

f5

f6







right inner aileron fault [rad]
left inner aileron fault [rad]

right outer aileron fault [rad]
left outer aileron fault [rad]

upper rudder fault [rad]
lower rudder fault [rad]




For the two inner aileron faults {f1, f2}, two outer
aileron faults {f3, f4}, and two rudder faults {f5, f6}, the
FDIP with the specification

S1 =




1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1




is achievable using a bank of three detectors with global
order 3. The resulting specification for the fault-to-residual
TFM is

Rf (s) =




10

s+10

10

s+10
0 0 0 0

0 0 10

s+10

10

s+10
0 0

0 0 0 0 11.85
s+10

10

s+10




The step responses from the faults are presented in FIG. 5.
We include now the actuator models and add three sur-

face angle sensors for the two right ailerons and for the up-
per ruder. With this sensor location the complete FDIP with
S2 = I6 can be solved to isolate all aileron and rudder fail-
ures. The resulting detector has order 9 and the achieved
specification is

Rf (s) = diag
(

10

s + 10
,

100

s2 + 20s + 100
,

10

s + 10
,

100

s2 + 20s + 100
,

10

s + 10
,
−0.0002566s + 100

s2 + 20s + 100

)

The step responses from the faults are presented in FIG. 6.
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FIG. 5: Step responses from the aileron and rudder faults.
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FIG. 6: Step responses from the aileron and rudder faults.

6. SUMMARY OF ACHIEVED RESULTS AND
NEEDS FOR FURTHER ANALYSIS

The performed nominal analysis of the FDIP for a complete
set of primary flight surfaces shows that a combination of
component level monitoring with a system level monitor-
ing allows the solution of this problem for a set of 11 ac-
tuator/surface failures. Our study demonstrated the inter-
esting fact that by appropriately locating a minimal number
of 6 surface angle sensors the complete isolation of faults
is possible. The resulting orders of the residual generators
are surprisingly low: order 7 for the pitch axis monitoring
and 9 for gear/roll axis monitoring. These figures lower to
3 and 3, respectively, if no actuator models are included in
the design.

By using the proposed least order detector design tech-
niques implemented in reliable numerical software, a seam-
less switching among a large number of different sensor
configurations was possible using a single global model of
larger order. Interestingly, the reliability of employed nu-
merical algorithms allowed us, to recover the same simple
results in the case when sensors are used for all surfaces as
those obtained working with each actuator/surface compo-
nent individually.

The performed nominal design of residual generators
provides valuable insight into the nature of the FDIP for air-
craft actuator failures, demonstrates the feasibility of com-
plete fault isolation, and provides filter specifications which
can be useful in a more realistic design of robust residual
generators.

For a reliable solution of the FDIP, the following aspects
still need a careful consideration:

1. Surface angle sensor faults. To achieve a complete
reliability of the fault monitoring system, it is impor-
tant to also consider possible faults of the surface an-
gle sensors. For example, by adding sensors to all
surfaces, the complete isolation of all actuator faults
is possible, while additionally the isolation of a sen-
sor fault (e.g., stabilizer angle sensor) can be achieved.
With three sensors (e.g., two for left elevators and one
for stabilizer), to achieve the isolation of one sensor
fault, we have to assume that sensor and actuator fault
do not occur simultaneously. A complete analysis of
this aspect is not intended here, but it is important for
practical applications where using the minimum num-
ber of sensors and finding the appropriate location is
always relevant. See Part II of [2] for a recent survey
of sensor location and assignment aspects.

2. Robustness against noisy inputs and noisy mea-
surements. The aspect of noisy inputs and noisy mea-
surements must be considered in a realistic design.
Typical noisy inputs for aircraft are gust turbulences,
which can be taken into account by feeding white
noise into the system via stable and minimum-phase
Dryden spectra filters. Coloring filters driven by white
noise can be used to model noise in sensor measure-
ments. For further details see [8] and literature cited
therein.

3. Robustness against parametric uncertainties. The
robustness of the designed detectors against paramet-
ric uncertainties is important for practical applicabil-
ity. Typical uncertain parameters to be considered for
robustness studies are mass, coordinates of center of
gravity, as well as flight conditions (speed, altitude).
There are many possibilities to enforce the robustness
of the designed detectors [1] and this challenging as-
pect will be considered in further studies. The results
provided in this work can be seen as realistic specifica-
tions of what can be aimed to be achieved in the most
favorable situation.
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A LINEARIZED BOEING 747 LONGITUDINAL
MODEL

A =




−0.4861 0.000317 −0.5588 0 −2.04 · 10
−6

0 −0.0199 3.0796 −9.8048 8.98 · 10
−5

1.0053 −0.0021 −0.5211 0 9.30 · 10
−6

1 0 0 0 0

0 0 −92.6 92.6 0




Bu =




−0.1455 −0.1455 −0.1494 −0.1494 −1.2860

0 0 0 0 −0.3122

−0.0071 −0.0071 −0.0074 −0.0074 −0.0676

0 0 0 0 0

0 0 0 0 0

0.0013 0.0035 0.0035 0.0013

0.1999 0.1999 0.1999 0.1999

−0.0004 −0.0004 −0.0004 −0.0004

0 0 0 0

0 0 0 0




C =




0 0 1 0 0

0 −0.0199 3.0796 −9.8048 8.98 · 10
−5

0 0 0 1 0

1 0 0 0 0

0 0 −92.6 92.6 0

0 0 0 0 1




Du =




0 0 0 0 0 0 0 0 0

0 0 0 0 −0.3122 0.1999 0.1999 0.1999 0.1999

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



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