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SUMMARY 
 
In this paper, a multi-objective particle swarm 
optimization (MOPSO) procedure has been 
developed and applied in the field of aircraft 
requirement analysis. In order to identify useful set-
up schemes for algorithm control parameters, the 
optimisation procedure has been preliminarily 
verified with test-case functions. Moreover, specific 
tools have been implemented to improve MOPSO 
effectiveness in finding Pareto front as wide and 
uniform as possible. The optimization procedure has 
been subsequently applied to the preliminary 
definition of a civil transport aircraft configuration. 
Both maximum takeoff weight and block time have 
been selected as objective functions to be 
minimized. At the end of optimization process, 
useful sensitivity curves, showing cruise speed 
requirement effects on aircraft main characteristics, 
have been obtained. Finally, a comparison with a 
similar task driven by a genetic algorithm has been 
performed in order to highlight some advantages 
offered by MOPSO procedure.  
 
1. INTRODUCTION 
 
In most engineering practice, the design process 
itself can be commonly regarded as a true multi-
disciplinary, multi-objective optimization task[1], 
whose solutions represent a collection of best 
responses that meet different, often conflicting, 
requirements. The complex relationships involving 
design variables, objective functions and constraints 
(non-linear functions, discrete or discontinuous 
design domain etc.) encouraged, in the last years, the 
development of non-conventional, nature-inspired 
optimization methods like Genetic Algorithms 
(GAs) and Particle Swarm Optimization (PSO). 
Both methods are population-based optimizers that 
find solution through a probabilistic search process, 
only guided by a fitness function value. However, 
PSO follows a different approach than GAs, as the 
evolution is obtained through cooperation among 
individuals (renamed particles, in PSO context) 
rather than competition[2]. The effectiveness shown 
by PSO-based technique in many single-objective 

optimization problems[3,4], combined with its 
capability to keep information  about evolution of all 
the particles at the same time, has made the 
extension of PSO technique to multi-objective 
optimization problems (MOPSO) almost a natural 
progression. In particular, this work deals with the 
application of a MOPSO technique in the field of 
aircraft requirement analysis. By using the classical 
Pareto criterion, we can identify a set of optimal, 
non-dominated solutions. Following the Pareto 
statement, a solution is said to be Pareto optimal or 
non-dominated, if it is not possible to improve any 
objective function without deteriorating at least 
another one. The concept of non-dominated solution 
can be easily used to define a fitness function 
driving the optimization process. When we extend 
standard single-objective PSO formulation to multi-
objective problem, particular care must be taken to 
the meaning of “swarm best position” and “single 
particle best position”, as we obtain a set of different 
optimum solutions with the same level of 
goodness[5-8]. Therefore, the proposed MOPSO 
procedure has been applied first to test-case 
functions to analyze different strategies concerning 
the selection of the global best position as well as 
the local best position. Specific tools have been 
developed with the aim to improve MOPSO 
effectiveness in finding a Pareto front as wide and 
uniform as possible. Subsequently, we have 
investigated the MOPSO applicability in the field of 
aircraft requirements analysis. This problem has 
been deemed of great interest by authors as the 
availability of effective tools providing aircraft 
overall characteristics sensitivity for different figures 
of merit it is a very important factor during the 
conceptual design phase. A multi-objective 
optimization technique can be usefully utilized to 
understand how optimum configurations change as 
different objectives are chosen. In particular, 
maximum takeoff weight and cruise speed have been 
selected as objective functions to be minimized. 
Sensitivity curves obtained at the end of the 
optimization process can provide the designer a 
deeper understanding of the speed effect on the 
aircraft configuration, increasing the degree of 
confidence about the proposed speed requirement. 
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Finally, a comparison with results, previously 
obtained by a genetic-based multi-objective 
optimization procedure, has been performed.  
 
2. MOPSO METHODOLOGY 
 
2.1. PSO technique 
The optimization technique based on Swarm Theory 
is a method which takes inspiration from the social 
behaviour of  groups of simple creatures as swarms 
of bees, colonies of ants, flocks of birds etc, that 
exhibit some form of collective intelligence based on 
information exchange.  
The searching for optimal solutions performed with 
PSO  is obtained  defining a population of particles, 
each one exploring the search space and 
communicating results to the rest of group. Each 
particle i at time t has two state variables:      

• current position  ( )tix
• current velocity  ( )tiv

as well as a small memory containing: 
• previous best position  (personal best 

position) 
( )tip

• swarm best position  (global best 
position) 

( )tig

 
At time-step t+1 of the optimization process, the 
particle position is updated according to the relation  
 
(1)  ( ) ( ) ( )1i i it t t+ = + +x x v 1

t ⎦

 
 
where v(t+1) is particle velocity, which is calculated 
as  
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In relation (2) r1 and r2 are random numbers 
uniformly distributed over the range [0,1]; c1 and c2, 
named cognitive and social parameter respectively, 
are quantities that define the influence that ( )tip  and 

 have on the particle velocity; parameter ( )tig ω  

(inertia weight) is a reducing factor for ( )tiv , while 
parameter χ  (constriction factor) is used to limit the 
particle velocity. Both inertia weight and 
constriction factor control swarm exploitation as 
well as exploration capability, heavily affecting  
convergence speed and effectiveness of the 
optimization task[9]. 

The implementation of Pareto Optimality criterion 
makes PSO a helpful method for solving multi-
objective optimization problems. This technique is 
called Multi-Objective Particle Swarm Optimization 
(MOPSO).  
 
2.2. Pareto Optimality  
In a constrained multi-objective optimisation, we 
seek to simultaneously extremise D objectives fi(x),  
i = 1,...,D all depending upon a vector x of K 
decision variables, subject to J constraints cj (x) ≥ 0 , 
j=1,...,J. 
Assuming, for a sake of simplicity, all these 
objectives are to be minimised; the problem can be 
stated as[10]: 
 
(3)                 min !    fi(x)         i=1,…,D                                          
 
subject to:  
 
(4)                      cj(x) ≥ 0   j=1,…,J                                          
 
A decision vector u is said to dominate a decision 
vector v (denoted u ≺ v) if 
 
(5)     fi(u) ≤ fi(v) ∀ i ∈{1,…,D} 
 
and 

 
(6)     ∃ j ∈{1,...,D}: fj(u) < fj(v)  

 
The scope, of a multi-objective optimization 
problem, is therefore to identify a set of non-
dominated solutions. The corresponding objective 
vectors in the objective space are referred to as the 
Pareto front. Pareto optimality concept can be easily 
used to define a MOPSO fitness function that takes 
in account the degree of dominance of each solution 
among the population.  
   
3. ADVANCES IN MOPSO METHODOLOGY  
 
The preliminary application of MOPSO 
methodology to classical multi-objective test 
problems is mainly focused on the proper set-up of 
algorithm control parameters, as well as the 
implementation of specific tools for Pareto front 
improvement.  
 
3.1. Advances in Pareto front finding: the switch 

tool 
Analysing some problems with many sub-optimal 
solutions, the cognitive and social sub-parts of the 
velocity vector can exhibit conflicting responses. 
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This circumstance causes a “suspension” of particles 
far from good solutions; the quality of result is 
seriously compromised if the amount of suspended 
particles is a conspicuous part of the whole swarm.  
Such a situation occurs, for example, when we try to 
solve the two-objective, unconstrained test-case 
DEB-Bimodal[11], defined as follows: 
 

(7)             min!         

      
122

11

/)( xxgf
xf

=
=

1]    1.0[
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2

1

∈
∈

x
x

Figures 1-a and 1-b show function f2 and the 
objective space respectively. The morphology 
analysis of function f2 can be helpful for a better 
understanding of the swarm behaviour in the attempt 
to reach the Pareto front. The bottom of the narrow 
gorge, visible in Figure 1-a, represents the Pareto 
front. The limited extent of this region and its 

position, very close to an edge of design variables 
space, make it almost invisible when compared to 
the bottom of the large concavity forming the 
second, sub-optimal front. 

a)     b)  
 

FIG. 1  DEB-Bimodal 3-D diagram (a) and objective functions domain (b) 

Figure 2 shows the result obtained with 250 particles 
per 100 iterations. In this plot the particles swarm, 
the Pareto front and the objective space are reported 
respectively in black, blue and yellow colour.       
Very few particles reach the optimal region, whereas 
most of them stay restrained in the sub-optimal 
region.       
In order to allow particles to reach the optimal 
region, a simple criterion, acting as a switch that 
inhibits personal knowledge in the velocity vector, 
has been developed. 
Personal knowledge contribution is neglected 
(zeroed) when the following condition is met: 
 

 
FIG. 2  MOPSO application to DEB-Bimodal problem 

(SWITCH OFF) 
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FIG. 3  MOPSO application to DEB-Bimodal problem 
(SWITCH ON) 
9
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In relation (8) φ1=c1r1, φ2=c2r2; x  e x  are the upper 
and lower bounds of the search space; φ1max= c1 , 
φ2max= c2 and a is a user-defined constant value 
acting as a trigger in the elimination of the cognitive 
component. The result obtained with the switch 
implementation is shown in Figure 3. This tool 
allows almost all the particles to reach the optimal 
zone, and consequently a much more homogeneous 
Pareto front is obtained. 
 
3.2. Advances in Pareto front finding: sampling 
density 
In multi-objective optimization problems, the use of 
relation (2) determines the need for a criterion 
affecting the choice of the global best position and 
the personal best position. We refer to the global 
best position as the place of the current Pareto front 
that has the minimal distance from the particle 

whose velocity is being updated. To avoid particles 
crowding in the same regions, a sampling density 
threshold is introduced. This approach resembles in 
some ways ranking methods used in GAs-based 
multi-modal analysis. The sampling threshold 
establishes the maximum number of individuals that 
can be attracted by each known global best position. 
When a global best position counter reach the 
maximum allowed density, particles potentially in 
the same neighbourhood have to move to another 
global best position. The density implementation 
purpose is to find Pareto fronts as more 
homogeneous as possible. The effect of this 
parameter can be retrieved in Figure 4, where the 
objective space and the Pareto front are referred to 
the classical problem POL, available in literature[12]. 
 
3.3. Recovery and turbulence operators 
To increase Pareto front consistency once again, two 
further mechanisms have been introduced in 
MOPSO procedure: recovery and turbulence 
operators.  
Recovery consists of a mechanism that allows 
particles to recover their own cognitive component  
that was removed by switch operator, once a  

a)  b)  
 

FIG. 4  MOPSO application to POL problem: a) without sampling density implementation; b) with sampling density 
implementation 

 

a)  b)
 

FIG. 5  MOPSO application to KURSAWE problem: a) 250 particles without archives; b) 100 particles with archives 
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neighbourhood of a global best solution is reached. 
Turbulence[6] is an operator that introduces a random 
additional contribution to the particle velocity, when 
the mutual distance from the Pareto front is less than 
a specific threshold value. The magnitude of this 
additional contribution is of the same order of the 
particle distance from the Pareto front.      

 
3.4. Memory expansion: archives 
One of PSO specific features is the particle tendency 
to move around the global best position once it has 
reached the Pareto front. In this way, each particle is 
able to discover further solutions belonging to the 
front. The capability to hold these new positions 
greatly help in finding more homogeneous and wider 
fronts, also when less extensive populations are 
used. To keep track of equivalent solutions, we can 
use local arrays (archives) instead of simple memory 
locations[13,14]. In this context, we use two types of 
archives: the first archive is used to store the 
sequence of global best positions; the other one 
stores the sequence of personal best positions. The 
global best position is chosen as previously stated  
(minimum distance from the particle) until the 
number of archived global best positions  is less than 
the swarm size. When the number of stored global 
best positions exceeds it, the more isolated particle 
(i.e. the global best position having the largest 
minimum distance to any other particle) is chosen to 
update velocity. We can use three different strategies 
for personal best selection: i) The oldest personal 
best position; ii) The newest personal best position; 
iii) the more isolated personal best position. 
The effectiveness of these criterions strictly depends 
on the specific optimization problem and therefore a  
proper selection should be made to obtain an 
improved Pareto front. Strategy iii) was selected by 
authors to solve all the following optimization 
problems.   
Figure 5 shows results obtained by using the 

MOPSO methodology to solve Kursawe problem[15]. 
In particular, Figure 5-a shows the Pareto front 
obtained with a population size of 250 individuals 
without archives. Figure 5-b shows the Pareto front 
obtained with a reduced population of 100 
individuals using archives. Figures comparison 
shows archives effectiveness in finding a wider and 
uniform Pareto front with a reduced computational 
cost.  
 
4.  PROBLEM DEFINITION 
 
MOPSO procedure has been applied to define a 
preliminary short/medium range transport aircraft 
configuration powered by turbofan engines, fully 
compliant with given requirements. Maximum 
takeoff weight and block time have been selected as 
the two objective functions to be minimized. In 
order to estimate block time, block fuel and aircraft 
weight, a proper mission profile has been defined: 
3000 km design range + 45 min extended cruise + 
185 km alternate (see Figure 6). 
Authors have already dealt with this problem[16] by 
developing an optimization procedure based on a 
multi-objective genetic optimizer. Therefore, we 
take previously obtained results as terms of 
comparison to evaluate MOPSO effectiveness as an 
alternative tool to be used in the early stage of 
aircraft configuration definition. Design variables 
are summarized in Table 1. A binary version of the 
basic PSO algorithm has been implemented in order 
to handle discrete variables too. This technique, 
introduced by Kennedy et al.[17] has already shown 
its effectiveness in previous works[4]. Constraint 
functions are summarized in Table 2. Proper penalty 
functions have been defined that degrade particles 
fitness whenever one or more constraints are 
violated. 
Starting population is formed by 300 particles 
whereas the optimization process is stopped once the 
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FIG. 6  Mission profile
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200th iteration is reached. As for optimization 
control parameters, cognitive and social parameter 
are 2.8 and 1.3 respectively, inertia weight is 0.8, 
hold constant during all the optimization process, 
whereas k parameter, used to define constriction 
factor[9], is 0.95. As for personal best selection 
strategy, the more isolated one has been used. 
 
5.  RESULTS 
 
Figure 7 shows Pareto curve we get at the end of the 
optimization process. Comparison with previous 
results[16] obtained with a genetic-based multi-
objective optimizer (MOGA) shows MOPSO 
capability to define a wider Pareto front with a 
uniform particles distribution. MOPSO solutions 
appear quite similar to genetic ones for block time 
higher than 3.9 hrs. For lower values, Pareto curve 
appears wider and uniform, moreover MOPSO 
solutions are significantly better than genetic ones. 
Figures 8, 9 show examples of configuration 
evolution along Pareto curve. 
In particular, Figure 8 shows wing planform 
evolution from the slowest configuration to the 
fastest one, whereas Figure 9 shows wing relative 
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FIG. 7  Comparison between Pareto curves obtained 
by MOPSO procedure and a genetic-based multi-

objective optimizer (MOGA) 
Variable, unit  Value 
us variables:  Min max 

eep, deg.   5 35 
change  0.0  0.05 
a, m2  80  130 
er ratio  0.15 0.50 
ect ratio  7.0  9.5 
rust scaling factor (T/Tref)  1.0 1.5 
variables:   
flap deflection, deg.  0, 10, 15, 20 
flap deflection, deg.  25, 30, 35, 40 
ation index  1, 2, 3, 4 a
titude, Flight Level (FL)  290, 300, 310, 320, 

330, 340, 350, 360 

reast, fuselage mounted engines 
reast, fuselage mounted engines 
reast, wing mounted engines 
reast, wing mounted engines  

 

thickness distribution related to the max cruise speed 
and min cruise speed solution. Min DOC 
configuration has the same thickness distribution as 
the max cruise speed one. Figure 10 shows some 
examples of sensitivity curves we can get with a 
multi-objective optimization procedure. 
These curves show how aircraft main characteristics 
Constraints function, unit  Allowable value
te of climb at cruise altitude, m/s  ≥ 1.5 
lanced field length, m  ≤ 1830 
nding field length, m  ≤ 1525 
proach speed, km/h  ≤ 240 
uise range/Design range  ≥ 0.5 
 segment climb gradient  ≥ 0.024 
ssion fuel/ Max fuel capacity  ≤ 1.0 
ing tip chord, m  ≥ 1.0 

   
TAB. 2  Constraint functions 
are affected by the selected requirement. In 

particular, cruise speed effect on operating empty 
weight (OEW), direct operating cost (DOC), fuel 
burned and engine thrust level is shown. Such a type 
of analysis provides the designer with useful 
information concerning aircraft configuration 
evolution and it can be used as a very effective tool 
aimed at the final freeze of requirements. 
Moreover, to evaluate MOPSO effectiveness in 
sampling design domain and final solutions 
reliability as well, three specific solutions (i.e. max 
cruise speed, min DOC and min cruise speed 
solution) have been compared to the similar ones 
provided by the above mentioned MOGA procedure. 
Though solutions provided by both multi-objective 
optimizers lie on the same trend lines, MOPSO 
capability in finding better solutions for block time 
lower than 3.9 hrs (i.e. cruise speed higher than 850 
km/h) is shown again. 
Main configuration data are summarized in Table 3. 
As this procedure provides evolution along Pareto 
curve of constraint functions too, we can identify the 
most demanding ones concerning aircraft sizing. 
Table 3 summarizes these critical requirements in 
italic. 
As we can see, all three configurations lie on the 
boundary of fuel volume as well as second segment 
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MAX CRUISE SPEED MAX CRUISE SPEED 

 
 

FIG. 8  Wing planform evolution along Pareto curve 
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FIG. 9  Wing relative thickness related to max cruise and 
min cruise speed optimum configuration 
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G. 10  Examples of cruise speed effect on aircraft characteristics (OEW, DOC, block fuel and engine thrust scaling 
actor). Comparison between max cruise speed (1), min DOC (2) and min cruise speed (3) optimized configurations 

obtained by MOPSO procedure and a genetic-based multi-objective optimizer (MOGA) 

radient requirement whereas they are fully 
nt with landing distance and residual rate of 
quirement.     

6.  CONCLUSIONS 
 
In this paper, a multi-objective optimization 
procedure, based on Particle Swarm algorithm, has 
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Design variable, unit 

  
Max cruise 

speed 

 
Min DOC 

 

 
Min cruise 

speed 
Wing sweep, deg.   34.9 20.0 5.0 
Average wing relative thickness, t/c  0.107 0.107 0.124 
Wing area, m2  106.8 87.0 84.3 
Wing taper ratio  0.306 0.247 0.455 
Wing aspect ratio  9.28 9.05 9.38 
Engine thrust scaling factor (T/Tref)  1.500 1.150 1.104 
Takeoff flap deflection, deg.  10 10 10 
Landing flap deflection, deg.  40 40 40 
Configuration index  3 3 3 
Cruise altitude, Flight Level (FL)  300 340 340 
Main characteristics, unit     
Max takeoff weight , daN  52090 43715 42466 
Operatine empty weight, daN  29231 23759 22767 
Block fuel, daN  10188 7963 7808 
Cruise speed, km/hr  875 791 748 
Block time, hr  3.828 4.184 4.392 
DOC, c$/pax/km  3.790 3.517 3.589 
Constraint functions, unit     
Mission fuel/Max fuel capacity 0.997 0.995 0.992 
Balanced field length, m  1764 1825 1771 
Landing field length, m  1418 1332 1271 
2nd segment climb gradient 0.0242 0.0255 0.0241 
Approach speed, km/h 240 230 220 
Rate of climb at cruise altitude, m/s  7.82 3.86 3.52 

 
TAB. 3  MOPSO optimized configurations main data 
ed (MOPSO). Preliminary application 
ure to test-case functions has allowed 
proper set of optimization control 
 addition, this analysis has allowed to 
most suitable selection strategy 
bal best as well as local best position. 

 have been developed (e.g. the switch) 
e algorithm effectiveness in finding a 
s wide and uniform as possible. The 
rocedure has then been applied to the 
efinition of a civil transport aircraft 
 Maximum takeoff weight and block 
een selected as the two objective 
be minimized. Results have showed 
procedure effectiveness to define a 
Pareto front. At the end of the 
rocess different sensitivity curves can 
ined that show how aircraft main 
 (empty weight, fuel burned, direct 
ts, etc.) change when different cruise 

ent is selected. These curves provide 
mation concerning the selected 
effect on the aircraft configuration, 
duce uncertainties about cruise speed 
on. In addition, this optimization 
vides evolution of constraint functions 
urve. Therefore, it is possible to show 

the most demanding requirements concerning 
aircraft configuration sizing. 
Finally, a comparison with results previously 
obtained by a genetic-based multi-objective 
optimization technique has been performed. This 
comparison indicates MOPSO capability to provide 
quite similar solutions for block time higher than 3.9 
hrs. For lower values, Pareto curve appears wider 
and uniform, moreover MOPSO solution are 
significantly better than genetic ones. These results, 
combined with Particle Swarm quite simple 
implementation, make MOPSO technique a very 
attractive tool for trade-off studies aimed at the final 
freeze of requirements in the conceptual design 
stage.      
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