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OVERVIEW

A thorough knowledge of the damping in a structure as 
well as a relevant method to model it constitutes 
necessary steps for reliable dynamic analyses. A bad
knowledge of the damping may lead to over-estimate or 
under-estimate the dynamic responses inside the
spacecraft with all the potential serious consequences on 
the program and/or the service life of the satellite.

This paper describes an ongoing development with CNES 
of a methodology based on relevant database exploitation 
for deriving structural damping of substructures. The final
purpose, still to be completed, is to define simple empirical 
rules for predicting structural damping per type of 
substructures.

1. INTRODUCTION 

The proposed methodology relies on the exploitation of
spacecraft sine tests and the use of correlated FEM to 
identify local structural damping of substructures or per 
type of substructures. The identification process is based 
on the relationship between the structural modal damping 
identified from the sine test and the associated modal 
strain energy per substructures calculated with the FEM.
Then the structural damping of substructures participating
to the excited modes are obtained by solving a discrete 
inverse problem which is, by nature, an ill-posed problem
(under or over-constraint and ill-conditioned matrix).

A regularization procedure based on Tikhonov method is
proposed and detailed in order to identify realistic values 
of damping. This procedure has been implemented and
automated in order to extract systematically and rapidly
local damping and be able to highlight influent parameters. 

This whole identification process has been applied on 
several types of spacecraft : candidates have been chosen
among the SPACEBUS family for telecommunication 
satellites and among PROTEUS family for observation 
satellites. The first step consists in the identification of 
experimental modal parameters from the sine test 
(resonant frequencies, modal damping and associated 

mode shapes). Then the next step is the correlation of the
corresponding FEM in terms of frequency and MAC
followed by the computation of the modal strain energy per 
substructures. Finally the inverse problem was solved 
using the regularization procedure. 

2. METHODOLOGY 

The selected approach is based on the expression of 

modal structural damping k  with respect to subsystems

structural damping s  and the percentage of modal strain 

energy associated to these subsystems sk )(

(1)
s

sksk )(

The methodology is composed of the following steps :

• Modal identification from measured FRFs
(Frequency Response Functions) during system
sine tests. It may be reduced to natural 
frequencies, modal damping values and modal 
effective parameters. The RTMVI has been used. 

• FEM updating. The usual criteria of frequency
error and MAC have been used as objective
functions.

• Modal strain energy calculation for the
subsystems participating to the identified modes. 

• Extraction of structural damping of the 
subsystems considered, by solving the inverse 
problem given by the equation (1). 

Equation (1) constitutes the typical example of inverse
problem where one wants to estimate a physical property x
that is not accessible through experiment thanks to the
measure of another physical property b and by the
knowledge of a mathematical model of the direct problem 
giving explicitly b  knowing x (noted symbolically A(x)=b).
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2.1. Modal identification

The first step consists in a classical modal identification 
process, which is already an inverse problem. Before 
processing to the identification itself, a certain number of 
questions have to be answered properly to be confident in 
the results.

2.1.1. Test level choice 

The type of test to be chosen for the identification depends 
on the final searched information. The choice can be made 
between low level, intermediate level or qualification runs. 
The advantage of low level runs reside a priori in the 
absence of nonlinearities that can facilitate the 
identification process. But these runs can also be prone to
excessive noise. On the contrary, the qualification runs
lead often to consider higher damping due to non-linear
behaviour of the specimen or boundary conditions 
(physical damping mechanisms are intrinsically complex 
and nonlinear). In the present study, the desired 
information is the damping of substructures with a final aim
of prediction. It has been consequently judged that the 
qualification runs were the best candidates as they can 
provide the most interesting result for the system engineer. 

2.1.2. Adequacy of test data 

The signal quality of experimental data is fundamental for 
the proper measurement of the modal parameters to be 
used for the mathematical model validation.

Low frequency check primarily provides confirmation of 
the proper sensor sensitivity setting which is an indication 
of the correct measurement of the response amplitude. 
From the measured FRF the low frequency response 
amplitude (at least for the measurement in the same 
excitation directions) can be automatically compared with
the nominal rigid-body input and corrective actions applied 
if necessary.  In practice, the low frequency check involves
comparing the error between the measured FRF and the 

second-order function  where a provides the 
rigid body component and b the dynamic amplification 
contribution [4]. 

2ba

Sensor orientation check ensures that the modal 
parameters extraction will not be based on erroneous 
information. This check controls automatically the 
orientation and sign of the accelerometers. It is done by
comparing in all 3 directions the low-frequency responses 
of the accelerometers with the rigid body motion derived 
from the model’s geometry [4]. 

2.1.3.  Modal identification 

The modal identification process has been performed with
the RTMVI method [5] that reduces the identification from 

measured FRFs to natural frequencies , damping kf k

and modal effective parameters . Usual modal 

shapes may be recovered through the modal effective 
parameters.

kMEP

In practice, these parameters are extracted from the 

imaginary part of the FRFs. As explained in [5], the
imaginary part :

• contains amplitude and sign information 

• is closer to the peaks of the natural frequencies 

• minimizes the influence of close modes 

• is not influenced by static and inertia terms as the 
real part is.

It has to be noticed that the damping is the most difficult 
parameter to extract. It is directly related to the sharpness 
of the peak and its identification is very sensitive. 

2.2. Test-Analysis comparison

The comparison between the test measures and the FEM
modal analysis consists in :

• Comparison of natural frequencies, modes 
shapes and modal effective parameters 

• Mode pairing using MAC The main spacecraft
and subsystems modes are identified.

2.3. FEM updating

Once compared with the test results, the FEM has to be 
updated in order to minimize some observed
discrepancies in natural frequencies or mode shapes for
the identified modes. 

This updating process was performed through the
modification of unitless design coefficient on the stiffness 
matrix (the mass matrix has been considered as
sufficiently representative) and has been done through a
robust and efficient optimization strategy using the 
Simplex algorithm [6].

The value of the resulting design coefficient was bounded 
in order to limit the stiffness variation to physical and 
realistic modification.

2.4. Modal strain energy calculation 

If the updating process is judged successful, the FEM is 
considered as sufficiently representative in mass and
stiffness to be used for the modal strain energy

calculation. The calculation of sk )( involves each 

identified modes k and the associated substructures or
subsystems s.

A threshold criterion has been defined to limit the number 
of zones and to avoid introducing some small values
behaving potentially as numerical perturbation in the 
inverse problem resolution. The threshold was fixed to 1% 
of modal strain energy, i.e. the retained zones for the
identified modes have more than 1% of strain energy.

It is clear that the number of identified modes and 
associated zones are generally distinct. The inverse 
problem to solve is consequently over or under-

constrained. In other words, the matrix ks  of equation 

(1) is rectangular with  or .sk sk
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2.5. Extraction of structural damping 

The next step is the resolution of the inverse problem to 

obtain s .

2.5.1. Discrete ill-posed problems 

Discrete inverse problems like equation (1) can be
classified into two categories [3]: 

• Problems that have a unique continuous solution 
x with regard to b. They are said well-posed (in
Hadamard sense) 

• Problems for which the existence, uniqueness
and/or continuity of a solution with regard to the 
measures are not all verified. Physically, it means 
that a measure b with its associated uncertainty,
can result in a wide range of values of x or that an 
arbitrarily small perturbation of the data can 
cause an arbitrarily large perturbation of the 
solution. The problem is thus said to be ill-posed 
(in Hadamard sense). 

The equation (1) is typically an ill-posed problem because

of the uncertainties in ks  and k , which can be 

assimilate to small perturbations. These uncertainties have
various origins : 

• Experimental data contains intrinsically some 
stochastic behaviour. 

• The mathematical model stands for an ideal
representation of physics and is funded on 
simplified assumptions (cabling, equipment, 
thermal control, boundary conditions…). The
updating process is also the result of a
mathematical compromise to minimize a defined 
distance between test and analysis models. The
model itself can also be considered as a source 
of uncertainty.

An important aspect of discrete ill-posed problems is that 
standard method in numerical linear algebra cannot be 
used in a straightforward manner to compute such a
solution. Instead, more sophisticated methods must be 
applied in order to ensure the computation of a meaningful 
solution. One type of methods consists in regularizing the 
problem, that is to say replacing the initial ill-posed 
problem by a new one, close to the first one, but well-
posed.

2.5.2. Regularization of ill-posed problem 

Mathematically, an discrete inverse problem or linear 
least-squares problem described by the equation : 

(2)
2

min bAx
x

 with
mxnA

is said to be ill-posed if both of the following criteria are 
satisfied [2]:

1. The singular value of A decay gradually to zero 

2. The ratio between the largest and the smallest 
nonzero singular values is large 

The first criterion indicates that there is no nearby problem 
with a well-conditioned matrix and with well-determined
numerical rank. The second criterion implies that the 
matrix A is ill-conditioned, i.e. that the solutions are 
potentially very sensitive to perturbations.

Ill-posed problems are mainly undetermined due to the 
cluster of small singular values of A. Hence, it is necessary
to add further physical information about the solution to
stabilize the problem and obtain one unique solution. This
is the goal of regularization techniques. 

This physical information or constraints will be added to 
the initial linear least squares problem by requesting to 
minimize the 2-norm or a semi-norm of the solution.
Hence, the side constraint involves the minimization of the 
following quantity : 

(3)
2

)( Lxx

where L is a linear operator that can either be the identity
matrix or a  [p x n] matrix containing p linear physical
relationships between the components of the solution x.
One important point to notice is that when the side 
constraint )(x is introduced, the solution is now a 

compromise or balance between minimizing )(x and

minimizing the residual norm of equation (2). 

The most common form of regularization method is the 
Tikhonov regularization that expresses the desired

solution asx

(4)
2

2
22

2
minarg LxbAxx

where the regularization parameter controls the relative 
weight between the minimization of the side constraint and 
the minimization of the residual norm. A large equivalent
to a large regularization, will favour a small solution norm
at the cost of a large residual norm and vice versa. 

The choice of is generally done using the so-called the
L-curve method which is a graphical tool plotting the norm 

of the regularized solution 
2

2
Lx  versus the 

corresponding residual norm 
2

2
bAx .  The solution 

computed by Thikhonov regularization is optimal in the 
sense that for a given residual norm, there is no solution
with a smaller seminorm than the Thikhonov solution. By
locating the corner of the L-curve one can compute an 
approximation to the optimal regularization parameter
and thus, compute a regularized solution with a good
trade-off between the two types of errors. A large  will
lead to a small solution seminorm at the cost of a large 
residual norm, while a small will have an inverse effect. 
In other words,  controls the sensitivity of the regularized 
solution to perturbations in A and b.

2813



FIG 1. L-curve principle 

Other solutions exist and are generally based on the SVD. 
The smallest singular values are filtered to avoid 
propagating or amplifying errors and uncertainties. This
filtering can consists in truncating (truncated SVD) the 
singular values or damping (damped SVD) their effect.

2.5.3. Automation of the regularization method 

An automated extraction process has been implemented
with the following inputs : 

• Manual choice of considered modes or automatic 
choice with regard to minimal MAC 

• Manual choice of zones or automatic choice 
based on minimal modal strain energy rate.

This procedure has been implemented under Matlab 
environment.

3. STUDY CASE : SPACEBUS 4000 

Several examples have been chosen among the 
SPACEBUS family for telecommunication satellites and 
among PROTEUS family for observation satellites. For all 
cases similar conclusions can be derived. The presented 
case corresponds to a SPACEBUS 4000. The name of 
satA will be used for convenience.

3.1. Experimental model

As explained in paragraph 2.1.1, the sine qualification run 
have been selected to process to the modal identification.
The adequacy of test data has been carefully examined 
(see paragraph 2.1.2) to facilitate and secure the 
identification process. The resulting number of channels 
retained after the low frequency checks is presented in 
TAB 1. 

Number of Channels after low frequency checks 
Direction X Direction Y Direction Z 

Satellite A 125 170 128
TAB 1. Valid instrumentation 

3.2. Modal identification

The modal identification process described in paragraph 
2.1.3 is illustrated hereunder on FIG 2 and TAB 2 for the 
lateral axis X. The modes below 80 Hz have been 
extracted from the imaginary parts of the FRFs. Global
modes of the spacecraft as local modes of subsystems
like the solar arrays or the antennas can thus be identified. 
Natural frequencies, damping, modal effective parameters
and interface parasitic motion indicator have been 
extracted. This latter parameter is an efficient indicator of
the quality of the extracted modes because this motion 
may degrade significantly the structure's responses and 
modes.

10 20 30 40 50 60 70 80 90 100
Frequency (Hz)

FIG 2. Modal identification on imaginary parts 
of FRFs 

-----------------------------
Model: satA_run_x_LF5_OR025 
-----------------------------
  Mode    Freq.    Damp.   I/F 
   (k)    (Hz)     (2z)    (%)
-----------------------------
    1     13.89   0.0207    1 
    2     22.61   0.0870    0 
    3     24.02   0.0766    0 
    4     25.26   0.0830    0 
    5     27.01   0.0765    0 
    6     28.85   0.0503    0 
    7     29.79   0.0795    0 
    8     31.51   0.0515    0 
    9     32.55   0.0437    0 
    . 
    . 
    . 
-----------------------------

TAB 2. Identified modes, damping and parasitic 
motion on X axis run 
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3.3. FEM 

The FEM is shown in FIG 3 and described in TAB 3. It is
constituted of physical elements and reduced matrix 
models for large subsystems (solar arrays, reflectors). 172
modes are computed between 12.4 and 80 Hz.

FIG 3. SPACEBUS 4000 FEM 

-----------------------------
Elements: Mass     :    200 
          Spring   :   8691 
          Bar      :   5528 
          Plate    :  16977 
          ----------------- 
          Total    : 31396
Nodes:    Physical :  22507 
          Scalar   :    308 

-----------------
          Total    : 22815
Dofs:     M set    :   4994 
          A set    : 108031 
          S set    :  22325 
          J set    :      6 

-----------------
          Total    : 135350
Modes:    Junction :      6 
          Rigid    :      0 
          Elastic  :    172  (12.4-80 Hz) 
          Pseudo   :      0 
          ----------------- 
          Total    : 172
-----------------------------

TAB 3. FEM description 

3.4. FEM updating

The initial FEM has been compared with the identified 
modal basis. It was decided to update the FEM stiffness
matrix in order to correlate test and analysis results. Some 
physical zones have been updated according to their 
corresponding modal energies in the identified modes.  It 
was thus implicitly assumed that these zones were the
most likely to influence the global natural frequencies and 
modes shapes. 

The convergence criterion was the error in frequency and 
the MAC.  The results is illustrated hereunder by a MAC 
matrix (FIG 4) between analysis modes and test modes 
(called Reference) identified on X axis (see §3.2). Red 
color stands for high values of MAC (near 1) whereas blue 
color stands for low values (near 0). 
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FIG 4. MAC matrix

-------------------------------------------
Model: satA_modal_10_80_ese_correle 
Ref. : satA_run_x_LF5_OR025 
-------------------------------------------
    Model       Reference    Freq.    MAC 
  No.  (Hz)     No.  (Hz)   (% Err) 
-------------------------------------------
   2   13.84     1   13.89   -0.36   0.89 
   6   22.26     2   22.61   -1.55   0.96 
  10   23.11     3   24.02   -3.81   0.58 
  12   24.91     4   25.26   -1.37   0.88 
  19   28.54     5   27.01    5.67   0.40 
  23   29.68     6   28.85    2.86   0.47 
  22   29.46     7   29.79   -1.10   0.35 
  29   31.89     8   31.51    1.22   0.68 
  27   31.58     9   32.55   -3.00   0.62

.

.

.
-------------------------------------------

TAB 4. Comparison between FEM-Test

Some modes are well identified and correlated either in 
frequency and MAC.  The evolution between the initial 
model and the updated one for the modes identified on X 
axis is illustrated in FIG 5. 
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FIG 5. Comparison  before and after FEM
updating

The frequency error has been drastically reduced whereas
the MAC values were conserved or slightly improved. This
result is logical as it is much more difficult to influence a
mode shape than a natural frequency. The variations of 
physical parameters to update the FEM is comprised
between –17% to +17%. These variations seem realistic if 
one considers the : 

• Usual assumptions of average  or minimum 
values (geometry, Young modulus …) in a FEM,

• Equivalent representation of simplified or non 
modelled substructures (equipment, neutral axis
offsets …) that can locally influence the stiffness 
matrix.

The conclusion of this first phase is that the FEM is judge 
reliable for modal energy estimation.

3.5. Modal strain energy computation 

The retained zones for the identified modes have more 
than 1% of strain energy. FIG 6 shows an example of the 
first lateral mode where all the zones with more than 1% of
modal strain energy are selected and displayed.

FIG 6. Zones with more than 1% of energy

The total number of zones is equal to 23 as described

hereunder in TAB 5. Comparison % Error in frequency - X Axis
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TAB 5. Zones description 

Zones names Zones description 

ABM40
CELAS
CT
DGRANT
EASTREF
EFMP
EFSW
ID
MMH
MON
NCMP
NCMW
NORTHSA
NSMBP
NSMP
NSMW
SCMP
SCMW
SOUTHSA
SSMBP
SSMP
SSMW
WESTREF

Apogee Boost Motor 
Links
Central Tube
Earth Antenna 
East Reflector 
Main Plate Feed East 
Feed Support East 
Internal Deck 
MMH Tank
MON Tank
North CM Panel 
North CM Web
North Solar Array
North Battery Panel 
North SM Panel 
North SM Web
South CM Panel 
South CM Web
South Solar Array
South Battery Panel 
South SM Panel 
South SM Web
West Reflector 

It has to be noted that most of the modal strain energy is 
concentrated on a few number of zones. For instance, for 
the modes identified on the X axis, 5 zones only have 
more than 10% of strain energy on at least one mode.

Remark : North and South corresponds to the Y axis 
(perpendicular to Solar Arrays)

3.6. Local damping extraction 

3.6.1. Inverse problem characteristics 

From the different modes identified along the three axes 
and the selected zones, one can build the inverse problem 

with ks of size 39 modes x 23 zones. When a  given 

mode has been identified on several axes, it was decided 
to use a weighted sum between corresponding MAC and 

frequency error to choose correctly the best one. ks  is 

relatively sparse : 

• 163/897=18% of ks  elements are superior to 

1% (as illustrated on FIG 7). 

• The condition number of ks  is approximately

5000.

• The last five singular values are inferior to 0.01 
with a minimum value of  6e-4. 

According to the parameters defined in paragraph 2.5.2,
the inverse problem of equation (1) is ill-posed. The least 
squares solution is not adapted to solve correctly the 
problem. Regularization is consequently necessary.
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FIG 7. Matrix ks

3.6.2. Choice of regularizing operator L 

Some supplementary physical equations are added to the 
initial problem by assuming the equality between some 
damping coefficients : 

(5)

NSMBPSSMBP

SSMPNSMP

MONMMH

WESTREFEASTREF

NORTHSASOUTHSA

0 5 10 15 20

0

5

10

15

20

FIG 8. Regularizing operator L representing 
equation (5) 

Remark : the red elements are equal to 1. The blue ones 
are equal to 10. The others are null. The value of 10 has

been chosen after numerical iterations to find a 
compromise between supplementary equations and zones 
with no added information.

The operator nIL has also been tested. It consists in

minimizing the 2-norm of the solution, which can be 
considered as conservative but does not rely on physical
considerations. Consequently, this operator was rejected.

3.6.3. Numerical results

Several cases have been computed.

3.6.3.1. Case 1 : full matrix ks

This first case is interesting since it applies the 
regularization method to the complete problem without any
consideration on the identified modes or zones. FIG 9 
shows the L-curve defining the parameter  (see §2.5.2). 
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FIG 9. Case 1 : L-curve for parameter 

Names Zones
Apogee Boost Motor ABM 0.013
Central Tube CT 0.025
Earth Antenna DGRANT 0.014
East Reflector EASTREF 0.055
MMH Tank MMH 0.023
MON Tank MON 0.023
North CM Panel NCMP 0.036
North Solar Array NORTHSA 0.064
North SM Panel NSMP 0.023
South Solar Array SOUTHSA 0.063
South CM Panel SSMP 0.023

West Reflector WESTREF 0.053
TAB 6. Case 1 : Local damping results 

The damping of the other zones have not been identified 
because the associated modal strain energy was too low.
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3.6.3.2. Case 2 : Modes having MAC > 0.7 

This second case considers only modes that are well
correlated between test and FEM. The idea is to minimize

the sources of error in matrix ks . In that case, the

matrix is of size 11 modes x 17 zones and is still relatively
sparse (21 % of elements with more than 1% of strain 
energy). FIG 10 shows the L-curve defining the parameter 
 (see §2.5.2). 
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FIG 10. Case 2 : L-curve for parameter 

Names Zones
Central Tube CT 0.03
Earth Antenna DGRANT 0.057
East Reflector EASTREF 0.072
MMH Tank MMH 0.023
MON Tank MON 0.023
North CM Panel NCMP 0.036
North Solar Array NORTHSA 0.076
South Solar Array SOUTHSA 0.076

TAB 7. Case 2 : Local damping results 

The damping of the other zones have not been identified 
because the associated modal strain energy was too low.

The MAC sensitivity shows the following :

• Zones for which the damping is relatively stable
(e.g. Central Tube)

• Zones for which variations are not negligible (e.g. 
Earth Antenna) 

The possible explanations of such findings are : 

• Either modes with MAC < 0.7 are too inaccurate

and disturb the matrix ks . These uncertainties 

only concern the model itself.  They do not impact 

the right hand side of equation (1) k .

• Either these latter modes are generally located at
higher natural frequencies and correspond to 

solicitations associated to different damping.

3.6.3.3. Case 3 : Damping function of frequency

The third case explores the latter assumption, i.e. that the 
damping may depend on the frequency for some zones. In
other words, this third case tries to explain the difference 
between case 1 and 2 by a dissimilar behaviour of some
zones between low and high frequencies. Hence, this case 
is divided into two numerical applications corresponding to 
modes with natural frequencies below 50 Hz and those 
with natural frequencies above 50 Hz. FIG 11 shows the 
dependency of the MAC versus the natural frequencies of 
the modes. As it can be foreseen, the global shape of this 
experimental cloud shows a relationship where MAC is
inversely proportional to natural frequencies. It just results 
in the fact that the first modes are better modelled and
predicted than the followings.
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FIG 11. MAC vs frequency

a) Modes with natural frequencies below 50 Hz 

The matrix ks  is of size 24 modes x 21 zones and is 

still relatively sparse (18 % of elements with more than 1% 
of strain energy). FIG 12 shows the L-curve defining the
parameter  (see §2.5.2). 

Names Zones
Central Tube CT 0.028
Earth Antenna DGRANT 0.026
East Reflector EASTREF 0.06
North CM Panel NCMP 0.037
North Solar Array NORTHSA 0.071
North SM Panel NSMP 0.064
South CM Panel SCMP 0.03
South Solar Array SOUTHSA 0.07

South SM Panel SSMP 0.064

West Reflector WESTREF 0.059
TAB 8. Case 3a) : Local damping results 
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FIG 12. Case 3a) : L-curve for parameter 

The damping of the other zones have not been identified 
because the associated modal strain energy was too low.

The trade-off between residual norm (abscissa of FIG 12)
compared to the semi-norm of the regularized solution 
(ordinate of FIG 12)  is clearly visible. 

b) Modes with natural frequencies above 50 Hz 

the matrix ks  is of size 15 modes x 13 zones and is still

relatively sparse (23 % of elements with more than 1% of 
strain energy). FIG 13 shows the L-curve defining the 
parameter (see §2.5.2). It can be seen that the L-curve 
is quite degenerated in that case, meaning that the 
regularization may not be as efficient as expected. It can 
confirm the idea that for lower MAC, the sources of error 

are maybe higher in matrix ks , leading to an ill-posed 

problem that is difficult to regularize.
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FIG 13. Case 3b) : L-curve for parameter 

The damping of the other zones have not been identified 
because the associated modal strain energy was too low.

Names Zones
Apogee Boost Motor ABM 0.018
Central Tube CT 0.012
Earth Antenna DGRANT 0.02
East Reflector EASTREF 0.039
MMH Tank MMH 0.026
MON Tank MON 0.026
North CM Panel NCMP 0.056
North Solar Array NORTHSA 0.049

South Solar Array SOUTHSA 0.048

West Reflector WESTREF 0.038
TAB 9. Case 3b) : Local damping results 

3.6.3.4. Synthesis

Zones
all

modes
MAC>0.7 Modes<50

Hz
Modes>50

Hz

ABM 0.013 - - 0.018
CT 0.025 0.03 0.028 0.012
DGRANT 0.014 0.057 0.026 0.02
EASTREF 0.055 0.072 0.06 0.039
MMH 0.023 0.023 - 0.026
MON 0.023 0.023 - 0.026
NCMP 0.036 0.036 0.037 0.056
NORTHSA 0.064 0.076 0.071 0.049
SCMP - - 0.03 -
NSMP 0.023 - 0.064 -
SOUTHSA 0.063 0.076 0.07 0.048
SSMP 0.023 - 0.064 -

WESTREF 0.053 0.071 0.059 0.038
TAB 10. Synthesis of extracted damping per 
zones

The computed values seem physical :

• The central tube is slightly damped in line with its 
monolithic structure 

• Appendices of big area have a relatively high 
damping (Solar Arrays, Reflectors) that can be
linked to the air effect 

• Tanks are slightly damped (aluminium structure 
with a small number of links) 

• Synthesized damping decrease generally with
frequency, notably for the appendices. The air 
effect decrease when displacements are small. 

• Damping that are not extracted and/or that 
present high variability from one case to another
have to be considered cautiously. It seems that 
the regularization of the problem is not sufficient
to stabilize the solution for these zones.

These values differ sensibly of the usual value of modal 
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damping, i.e. 2% ( =0.04)

As a conclusion, the damping value to select for a given 
zone will depend on its use. One can prefer to minimize 
these values to remain conservative or privilege the values 
issued from well correlated modes (MAC > 0.7). One can
also consider different values depending on frequency.

It is very important to notice that the calculated local 
damping take into account non modelled characteristics
(cabling, equipment, thermal control, links, boundary

conditions …) by the mean of k . Finally, one does not 

look for modelling these complex characteristics but to 
include their effect on damping into the existing FEM.

4. CONCLUSIONS AND FUTURE WORK 

The obtained results are encouraging. The numerical 
applications give realistic order of magnitude, even if a 
variability according to the assumptions has been put into 
evidence. An automated method of local damping 
extraction has been established. This method contains
some limitations linked to the uncertainties inherent to the
FEM and to the global structural damping extracted during 
the modal identification process. The supplementary
physical information is necessary to the stabilization of the 
problem and constitutes also an important limitation 
because these equations are generally in reduced number.

Conversely, one of the undeniable advantages of this 
method is to associate on one hand the mathematical 
model that stands for a simplified reality and on the other 
hand measures on the real specimen giving access to the
effect of damping of non modelled parameters (cabling,
equipment, thermal control, links, boundary conditions …). 
These parameters have a non negligible influence on 
damping and cannot be modelled simply.

Future work will comprise two different aspects. The first
one is to include the extracted damping into the correlated 
model to compare the analytical FRFs to those measured.
The second one and probably the most important is to be 
able to predict these local damping for similar structures 
by means of influent parameters. Simple rules have to be 
built thanks to the obtained results.
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6. ACRONYMS 

FEM Finite Element Model

FRF Frequency Response Function

MAC Modal Assurance Criteria

RTMVI Real Time Modal Vibration Identification

SVD Singular Value Decomposition 
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