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OVERVIEW 

In the design of space structures “worst case” scenarios 
and factors of safety are commonly used. An alternative 
approach is the Monte Carlo simulation which allows 
considering uncertainty in the design and thus provides 
the way for robustness assessments. The Monte Carlo 
Simulation and other methods have been studied 
extensively in the past. Nevertheless, neither method is 
yet established in the daily design process in the 
aerospace industry.  

This article summarizes the theoretical background from 
an application point of view and introduces a new 
implementation of a stochastic simulation environment 
within existing solver and modelling techniques including 
assessment of robustness and dominating variables. 
Finally the application of the stochastic simulation is 
demonstrated using a model of a telescope structure 
provided by Astrium GmbH.  

1. INTRODUCTION 

Virtual prototyping has become a substantial component 
of the modern design process, especially as finite element 
methods (FEM) have become one of the standards for 
design validation and optimization. Uncertainties are 
generally addressed with various factors of safety. The 
simplicity and the wealth of experience in the usage of 
safety factors have made them a practical engineering 
tool. But a major drawback is that the effect of the 
uncertainty and variability introduced into the system as 
well as the degree of conservatism is not quantifiable. 

Additionally, it is generally expected that a more detailed 
numerical model (meaning an increase in terms of 
degrees of freedom) - will increase the level of realism. 
However an increase in the degrees of freedom only 
reduces the discretisation error. A numerical model 
remains an idealization, representing the physical 
behaviour with limited accuracy.  

In the recent years various new methods have been 
developed or studied to overcome these obstacles. The 
most popular method is the stochastic simulation. In the 
1990’s, the first simulations were used in automotive 
crash analysis and in the analysis of satellite micro 
vibration. Due to the high computational time even for a 
deterministic analysis, it was necessary to develop a 
simulation environment. This software tool was called 
PROMENVIR [1]. It allowed performing simulations on a 
European computer cluster. In 1999 Marchante [2] 
presented the application of the Monte Carlo simulation to 
the payload adapter of the Ariane 5 launcher. The aim 
was to establish the driving parameters for the dynamic 

characteristics of a typical payload on top of the launcher. 
Marczyk has published two books [3, 4] concerning the 
engineering process and the optimization using the 
simulation technique. With the increase in available 
computational power there are some recent applications. 
In 2005 Roy and Garcia de Paredes [5] published a 
stochastic approach to dynamic model validation of a 
Eurostar E3000 telecom satellite, Mary [6] published the 
application of a stochastic approach for the design 
improvement of a satellite and Pellissetti [7] demonstrated 
a static and dynamic reliability analysis of the Integral 
satellite. Thus the stochastic simulation itself is proven 
feasible. 

In a stochastic simulation uncertainties are expressed as 
random variables and following their distribution many 
realizations of the problem are generated. Each 
realization is leading to a deterministic problem which can 
be solved by well developed deterministic FE code. The 
Monte Carlo simulation is a very simple and clean 
methodology. It has the following advantages and 
disadvantages [8]: 

• full generality in terms of application, 
• intrinsic parallelism because of the indepen-

dence of the sampling units, 
• does not require changing solver, algorithms or 

modelling techniques, 
• avoids long and manual-type parametric studies,  
• provides simultaneously: 

• statistical problem description, 
• correlation, 
• detection of dominating design variables, 
• robustness assessment, 

• high computational effort for reasonable 
accuracy. 

The solutions can be post processed to obtain statistical 
results like the mean value, standard deviation, 
correlation, etc. Furthermore the results can be used for 
an advanced design concept. The so called robust design 
concept introduces the robustness into the design 
process. Robustness is intended as a measure of the 
influence and effects of the uncertainties in the model 
parameters or the system itself. Instead of finding the 
optimal design this new approach is intended to find the 
most robust solution. This is a design which is able to 
cope with uncertainties during the whole lifetime in the 
best possible way. Additionally, the stochastic simulation 
can be used to obtain a better insight in the system 
behaviour. 

This article presents an approach for a structural analysis 
including uncertainties and robustness evaluations. It is 
intended for the daily design process in the aerospace 
industry. 
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2. THEORY OF UNCERTAINTY AND MONTE 
CARLO SIMULATION 

The theory of Monte Carlo Simulation and the definitions 
of uncertainty are well known. Basic definitions and facts 
are summarized in this section. 

2.1. Definition of uncertainty 

Uncertainty can be described as lack of certainty resulting 
from inaccuracy of input parameters, analysis process or 
both. Firstly, inaccuracy can be associated with variation 
inherent in the physical system or environment. This is 
called variability [9], or aleatoric uncertainty [10]. 
Secondly, inaccuracy can be associated with deficiency 
that originates in the lack of knowledge; this is called 
epistemic uncertainty [10]. In the scope of this work the 
term uncertainty is used to describe all kinds of 
inaccuracies. For a differentiation the terms variability and 
epistemic uncertainty are used. 

In a structural context, following Kang [11] and Marczyk 
[1], uncertainties can be categorised in: 

• model error, 
• computational error, 
• incomplete knowledge, 
• manufacturing and assembly tolerances, 
• material Imperfection and variability, 
• environmental or boundary condition variation, 
• loading fluctuation. 

A different amount of knowledge can exist for these 
uncertainties. For example for the thickness of a plate, the 
manufacturing tolerance e.g. the boundary is usually 
known. Generally, there are three types of knowledge 
about inaccuracies: 

• bounded quantities: information about the limits 
of quantities is known, 

• fuzzy quantities: information about possible 
values is available, 

• stochastic quantities: information about the 
probability of quantities is available. 

These types are not strictly differentiated. Thus it is for 
example possible to describe a bounded quantity in a 
random framework with a uniform distribution. 

To express quantities in a stochastic framework their 
occurrence properties have to be defined. This can be 
done by using the probability density function (pdf) f(x) 
and the cumulative distribution function (cdf) F(x): 
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where X is the random variable and P(X ≤ x) is the 
probability that an event will occur. Additionally X can be 
characterized by its statistical moments. The first and 
second moment known as mean value µ(X) and variance 
σ2(X) are given by: 
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Often both moments are combined to the so called 
coefficient of variation: 
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When the mean value is near zero, the coefficient of 
variation is sensitive to change in the standard deviation, 
limiting its usefulness. 

2.2. Direct Monte Carlo Simulation 

The MCS is a method to solve a probabilistic problem with 
an indirect approach. First the uncertain variables itself 
have to be selected and a random distribution has to be 
defined. This first step is part of the pre-processing. Then 
from the specified input distribution, samples are 
generated. This step is the first part of the MCS and is 
called sampling. Each input sample is a deterministic 
realisation of the problem, which is solved independently. 
Each deterministic analysis results in one system 
response. All of these outputs are collected to form the so 
called meta model. This meta model is the result of the 
stochastic simulation and can be used for a statistical 
analysis. 

A well known method for generating the samples is the 
Latin Hypercube Technique (LHT) [12]. The sample is 
build by implementing criteria to optimise the filling of the 
input space. Therefore the space is divided into subsets of 
equal probability. In one population a subset of each 
random variable is combined with all the other variables 
only once. The main advantage of this method is the 
equal coverage of the input space even with small 
numbers of samples 

2.3. Analysis of random systems 

A stochastic simulation consists of n different samples, 
i.e. n observations of p random variables y. The physical 
quantities can be further divided in i variables specified 
with given probabilities (input variables) and o variables 
calculated as system response (output variables). Typical 
input variables are Young’s modulus, density or geometric 
dimensions. Typical output variables are mass, dis-
placements, forces or eigenfrequencies. The consider-
ation is multivariate. Following Doltsinis [8] the n × p-
matrix is called meta model and can be arranged as:
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The comparison of different columns mk in M regards the 
relationship between these variables, i.e. between these 
system quantities. The consideration of different rows ml

reveals variations between the samples. 

The variance and covariance of all variables in M can be 
arranged in a p × p matrix: 
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A characterisation of the resulting distribution can be done 
by using the measures of uncertainty presented in section 
2. But instead of obtaining them analytically they are 
calculated in an empirical manner from the samples 
calculated during the simulation. The covariance can be a 
measure of the independence of two variables. Because 
the covariance depends on the unit of the quantities it is 
useful to define a normalisation. This can be achieved by 
using the product of standard deviations of the variables 
for the normalisation. The coefficient is called Pearson 
correlation or linear correlation coefficient. 
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The values of the correlation coefficients range between -
1 and 1, inclusive. A value near 1 or -1 indicates a high 
correlation and thus a dependency between the two 
variables. A value near 0 indicates a small correlation but 
not necessarily the independence of the two variables. 

3. IMPLEMENTATION OF A STOCHASTIC 
SIMULATION ENVIRONMENT 

The transfer from theory to application in the aerospace 
industry is only possible while using existing software. 
Thus the objectives are: 

• Usage of existing solver MSC.NastranTM and 
FEM software MSC.PatranTM, 

• Easy to use interface for randomization 
• Provide basic statistical results (histogram, 

scatter plots, standard deviation, …), 
• Correlation analysis 
• Extendable for further statistical evaluation like 

regression analysis. 

On the basis of these objectives a simulation process is 
developed including robustness and system behaviour 
assessments.  

3.1. Fields of application 

The basic application of a stochastic approach is to 
determine the variability of the system performance due to 
the uncertainties and variability introduced into the 
system. These statistical results can be included directly 
into engineering decisions. Generally they can be grouped 
into five categories following [13]: 

1) Model validation: The non-deterministic approach 
provides this variance also for the model and thus 
enables a comparison under consideration of 
uncertainties. 

2) Design sensitivity: The results generated by a non-
deterministic approach can be used to understand 
how and to which extend the system reacts to the 
inputs.  

3) Robust design: The data provided by a simulation 

can be used to determine the robustness of a 
structure.  

4) Reliability design: Reliability can be defined as a 
measure of the distance of the system response with 
respect to certain limits which are retained as critical. 

5) Optimization: The robustness and reliability can also 
be included into an objective function. Additionally, 
using a stochastic simulation the minimum search is 
not based on the gradient of the objective function. 
This means a reduction in the convergence rate but 
an increase in the global search abilities. 

For a structural assessment and as first steps the second 
and third points are further addressed. 

3.2. Simulation process 

The whole simulation process includes more steps than a 
single simulation. For the application in the engineering 
process a stochastic simulation consists of four parts: the 
model health check (MHC), the randomization, the 
stochastic simulation itself and the evaluation of the 
results. The main steps are depicted in figure 1. 

The MHC is suggested by Koch [14] and is intended to 
assure the quality of the model. A model with a poor 
quality can introduce analysis errors into the simulation. 
Additionally, equation 7 for the estimation of the number 
of observations is only valid in well-behaved systems. The 
behaviour can be checked by introducing a small uniform 
variation e.g. CV = 1% into all parameters, including 
parameters for modelling reasons. A well-behaved system 
should respond with small variations in the outputs. In 
case the coefficient of variation is higher than 10% it 
should be checked that the standard deviation is small. If 
the standard deviation is large and no physical 
explanation can be found for this behaviour of the system, 
the model should be checked for errors. 

After the model itself was verified, the uncertainties can 
be assigned to the random variables. This is called 
randomisation. Generally, all parameters with a 
representation in the real system should be included. The 
computational effort does not depend on the number of 
random variables. Due to a priori selection a variable with 
an important but unexpected influence will remain 
undiscovered.  

The next step is the simulation itself. This was further 
addressed in section 2. Once all deterministic calculations 
are finished the results and inputs of the simulation should 

Figure 1. Main steps of a full stochastic simulation 
process. 
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be checked. Additionally it should be verified that no 
permutation of results during the simulation has occurred. 
This can happen if the result values are ordered due to 
their magnitude. The final step is to verify the assumptions 
for the most influencing variables. If the assumptions for 
uncertainties in these random variables were set too high, 
the results are possibly misleading. 

Finally, the results can be evaluated, using the methods 
that are presented in section 2. 

3.3. Quantification of uncertainty 

The quantification of uncertainties is a difficult task. The 
variability is strictly dependant on the object considered, 
thus it depends on the design, manufacturing and 
installation. Additionally, only a few systematic studies are 
available. In general knowledge gained by experience 
should be translated into assumptions of a probability 
function. For major parameters these assumptions should 
be confirmed. 

A study of the uncertainty of typical load cases in the field 
of space structures was conducted by Vidal [15, 16]. For 
the stress usually only the nominal or average levels are 
known. For geometric dimensions the boundaries are 
known, but assumptions about the distribution are vague.  
Assumptions about model and computational errors can 
only be derived from the model and should be based upon 
experience. 

The variability in material properties like Young’s Modulus 
or density is normally not known. Available data about 
some typical aerospace materials have been compared. 
The material properties have been taken from different 
sources [17–23]. The reasons of variability between these 
sources are the different methods of measurement and 
the variability of the material itself.  

It can be seen in table 1 that the variability for metals is 
very low. A coefficient of variation around 1% seems 
appropriate. Meanwhile the variations for composite 
materials have a coefficient of variations of about 8% up 
to 12%. With three up to five different sources of one 
material property the calculated coefficient can only be 

regarded as a basis for approximations. 

For epistemic uncertainty no general assumptions can be 
made. Engineering experience has to be used for an 
approximation. 

As mentioned above, all parameters with a representation 
in the real system should be included, even if only a rough 
guess of its uncertainty is possible. In case the variable 
turns out to be important for the system performance the 
first assumption can be confirmed and maybe corrected, 
but the awareness is raised. 

3.4. Recommended number of samples 

The number of samples should be chosen as a balance 
between the desired accuracy and computational effort. 
Will [24] suggests a sample size of: 

(7) number of samples = 2 (input + output). 

Mary [6] and Marchante [2] present stochastic simulations 
of large scale FE models using 100 and 200 samples. To 
obtain an impression of the possible accuracy with a 
specified number of samples several simulations were run 
on a medium sized model with about 120 random 
variables and 36000 elements. The accuracy is defined as 
the fraction between the sample mean value y  and the 

population mean value µy or between the sample standard 
deviation sy and the population standard deviation σy. The 
mean value converge within 50 observations, the 
standard deviation needs more than 150 for an accuracy 
of 95%. An accuracy of 99% is reached with 250 
observations.  

By contrast the shape of the pdf has a low accuracy (see 
Fig. 2). With only 200 to 300 observations evaluations 
based on the pdf or cdf are only rough estimations. Figure 
3 shows the correlation defined in equation 6 of 12 
randomly selected input variables with one output 
variable. It can be seen that at least 50 to 100 
observations are needed for a rough estimation of the 
correlation. Simulations with 100 observations show that 
the correlation can vary about 0.2. About 200 to 400 
samples seem to be enough for the calculation of the 
correlation structure. This corresponds to equation 7. 

Table 1. Comparison of material properties for typical 
aerospace materials from different sources. CV 
includes variability due to manufacturing and 
measuring. A cut-off of 2σ is assumed for the 
calculation of the standard deviation. Material 
properties are taken from [17–23]. 

Figure 2. Variation in the shape of the pdf with 
increasing number of observations. 
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Taking the examples presented by Koch [14] in account, it 
seems reasonable to use 50 to 100 samples for a rough 
estimation of the correlation structure. Equation 1 should 
be fulfilled to obtain a good correlation structure. For large 
scale models, an upper bound of 400 samples seems 
reasonable but should be verified. 

3.5. Computational effort 

With modern computation cluster and the intrinsic 
parallelism of the method the computation time is no 
longer an obstacle of the stochastic simulation. Of course, 
as mentioned above, the computational time depends on 
the number of samples and thus is connected to the 
desired accuracy. As mentioned in the previous section 
even complex models can be simulated with a moderate 
number of samples using sampling techniques like LHT. 
Therefore, often the number of available solver licences is 
much more restrictive. Assuming one solver licence only, 
as a rule of thumb, the computation time for one single 
analysis should not exceed 5 up to 10 minutes in order to 
reach a reasonable number of analysed samples over 
night. 

3.6. Simulation environment 

In the scope of this work MSC.RobustDesignTM was used 
as stochastic simulation tool. While implementing a fast 
randomization process and a direct link to the solver 
MSC.NastranTM, MSC.RobustDesignTM can only deliver 
the basic statistic output and perform a correlation 
analysis. 

Thus, in the scope of this work a MatlabTM toolbox called 
Robust Design Toolbox (RDT) was created. This toolbox 
allows a pre- and post processing of the simulation data. 
RDT is based on the Statistics Toolbox of MatlabTM. In any 
case MatlabTM would be needed as an addition to 
MSC.RobustDesignTM for the communication with 
MSC.NastranTM. For FE-models with a high calculation 
time a computer cluster can be used. Because this cluster 
can not be accessed by MSC.AnalysisManagerTM, a 
solution was designed using MatlabTM. 

The systematic is presented in figure 4. The RDT is 
wrapped around MSC.RobustDesignTM, MSC.NastranTM

and the meta model. The toolbox is divided into four parts: 
the pre-processing, the simulation, the meta model and 
the post processing. Due to a restriction in 
MSC.RobustDesignTM only 255 random variables can be 
exported and used within the toolbox. Nevertheless 
additional variables can be directly loaded from Nastran 
Output files. Furthermore other calculations tools or 
algorithms can be easily included with MatlabTM

interfaces. 

3.7. Assessment of robustness 

The evaluation of the statistical results leads to mean 
value and standard deviation of the performance 
parameter, quantifying the influence of the uncertainty on 
the system performance. Thus the degree of 
conservatism compared to a fixed requirement can be 
estimated. 

Additionally, the results can be used to estimate the 
robustness. Robustness is understood as a measure of 
uncertainty. Uncertainties introduce a variability ∆x into 
the system. The result is the scatter in the output values 
∆y. Thus instead of the system behaviour itself, the aim is 
to characterise the system behaviour due to uncertainties. 
Will [25] defines criteria for the evaluation of robustness. 
This list is supplemented with ideas mentioned by 
Marczyk [1]: 

• exceedance of limit values, 
• sudden changes of response quantities, 
• occurrence of system instabilities, 
• complexity, 
• shift of the mean values, 
• scatter of relevant parameters. 

These criteria can be grouped in two parts: scatter and 
shape of the response. The concept is depicted in figure 
5. 

First, the scatter itself and the bias of the mean values 
quantitatively characterize the effects of uncertainty on the 
system performance. A system with a low scatter of its 
responses has a high quality. Second, the shape or 
nature of the response can be used for characterization 
as well as to gain knowledge about the system itself. This 

Figure 3. Variation in the shape of the pdf with 
increasing number of observations. 

Figure 4. Flowchart of the Robust Design Toolbox (RDT) 
with its four parts: pre-processing, simulation, 
meta model and post processing. 
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is called vulnerability of the system. Vulnerability has to be 
understood as tendency to instability of the system 
performance of which complexity is one part. A high 
vulnerability combined with a low quality is a non-robust 
system. Vice-versa: a system with a high quality and low 
vulnerability is a robust system.  

3.8. Identification of important parameter 

A closer insight in the system behaviour, thus a better 
understanding how much every input variable actually 
influences the system, is possible with the correlation 
analysis. There are three different measures available for 
the identification of the importance e.g. sensitivity of an 
input parameter. First, the influence between two 
parameters can be identified with the correlation 
coefficient. If two variables are connected over a mean or 
strong correlation, than it is spoken of a link between 
these two variables [26]. Secondly, a further distinction 
can be made on the basis of the total number of links. For 
a better evaluation of a large finite element system a link 
factor is defined: 

(8) 
maxL

L
LF =

with L denoting the number of links and Lmax the total 
number of possible links. 

The third measure for the importance of an input variable 
is the coefficient of variation. The correlation is a neces-
sary criterion for the influence, but the magnitude is the 
variation. In multi-input multi-output systems both mea-
sures have to be combined. For each input variable j a 

vector can be defined, containing the correlations with 
other variables. The vector contains only correlations 
between input and output variables. Thus the sum of the 
scatter CVk of all output variables that are linked with the 
input variable j can be calculated:  
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The coefficient of variation of the parameter k is denoted 
CVk. The correlation is squared to assure positive values 
and to decrease the influence of weak correlations. The 
defined measure can be normalized by the coefficient of 
variation of the input variable j, resulting in a factor of 
scatter: 
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In case the parameter j is correlated with many output 
variables who has a high scatter the factor of scatter has 
a high value. Vice-versa for only a few correlations to 
output variables with a small coefficient of variation the 
factor of scatter is small. 

4. APPLICATION OF THE ROBUST DESIGN 
APPROACH 

4.1. Problem description 

The example is a model provided by the Astrium GmbH. It 
represents a real application of a Cassegrain telescope 
already flying in space. The telescope consists of two 
mirrors, a camera and the supporting structure. The FEM 
of the supporting structure is shown in figure 5. The model 
consists of about 36 000 elements. The aim is to calculate 
thermal deformations caused by a 10K load. An important 
factor for the optical performance of the telescope is the 
relative displacements between the mirrors and the 
camera. The mirrors and the camera itself are not 
included in the model. Instead planes for the primary 
mirror (PM), secondary mirror (SM) and camera (FP) are 
defined; see figure 6 for their definitions. During the quali-
fication test of the structure the dominant influence of the 
upper and auxiliary titanium rings on the thermal 
deformation was exceeding the predictions and an 

Figure 5. Definition of robustness. 

Figure 6. Structure of a Cassegrain telescope and definition of planes on the position of the primary mirror (D), 
secondary mirror (H) and camera (A). 

1886



additional compensation was added to the auxiliary ring. It 
is the aim of this simulation to show that this influence 
could have been better predicted with a stochastic 
simulation. 

The results of the deterministic analysis and the 
measurements are summarized in table 2. Two 
simulations with 100 observations each are performed: 
one without and one with the compensation. The 
computation on the Linux cluster took about 3h for one 
simulation with one license. 

4.2. Statistical results 

The results of the deterministic analysis and the 
measurements are summarized in fig. 7. D/H denotes the 
displacement between the primary and secondary mirror. 
For simplification only the random variables for the 
Baseplate are selected and thus only the absolute dis-
placement of plane H varies. The uncertainty inherent in 
the original structure without the compensation (green) 
causes the displacement D/H to vary of about 12µm. The 
standard deviation is 1.7µm. With a low probability of 
about 3% the requirement can be violated. The 
comparison with the measurements in table 2 shows that 
the structure does not correspond to the nominal case. On 
the other side the measurements are still in the range 
predicted by the simulation. This demonstrates that the 
simulation is a better representation of the system
behaviour than the analysis.  

Adding the compensation layer shifts the relative 
displacement. This demonstrates the influence of the 
auxiliary ring. The standard deviation is reduced to 1.1µm 
which means a reduction of 35%. Thus the simulation 
demonstrates that the requirements are fulfilled even 
under the influence of the uncertainty affecting the 
system. This statement is proved by the test results 
shown in table 2. 

It has to be remarked, that the difference between the 
analysis and test results found in this example may also 
lay in the exactitude of the FE model. The stochastic 
simulation can only represent the physical effects 
included in the model. If the model contains none 
parameterised simplifications which lead to a bias, this 
bias will also be included in the stochastic simulation. 
Thus a certain part of the difference between FEM and 
measurement can also be caused by remaining 
idealizations i.e. imperfectly simulated parts and junctions. 

4.3. Important variables and robustness 

Applying the definitions of the factor of scatter from 
equation 9 and the link factor from equation 8 a broad 
view of the influences can be obtained (see table 3). 
There are some parameters with a high link factor and a 
low factor of scatter or reversed. This visualizes the 
differences between the correlation, which is represented 
by the link factor and the combination of correlation and 
variation represented by the factor of scatter. The main 
parameters are those with a high link factor and a high 
factor of scatter. 

A look at figure 8 reveals that the correlation of the 
displacement D/H lead to the same result. Nevertheless, 
the advantage of the presented approach is that the 
influence on all output variables is taken into account. The 
reason that both approaches show the same results is 
that the variation of the mass and other relative 
displacements are very small. Thus they have no 
significant influence. Additionally both designs underlie 
the same uncertainty, thus the absolute results are 
comparable. The presented approach using L/Lmax and 
Sc do not has these restrictions.  

Table 2. Results of the deterministic analysis and the 
measurements during the qualification test. 

Figure 7. Probability density function of the relative 
displacement D/H for both designs with and 
without compensation layer, black line 
indicates nominal value. 

Figure 8. Correlations for the relative displacement 
D/H of the telescope without compensation 
layer. 

Table 3. Comparison of different global sensitivity 
measures for the telescope. 
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As expected the stiffness and coefficient of thermal 
expansion (CTE) of the cylinder have an important 
influence. The cylinder consists of the composite material 
CFK and aluminium. Nevertheless also the CTE of the 
upper and auxiliary ring has a high factor of scatter and a 
high link factor thus it is a dominating parameter. With an 
increase of the CTE the relative displacement can be 
reduced. The spider act as a lever for the bracket of the 
secondary mirror. Therefore an increase in the CTE 
reduces the deformation. The same result can be 
obtained by increasing the stiffness of the rings as has 
been done by introducing the compensation layer. 

The evaluation of robustness can be done by the analysis 
of a measure of quality. Due to the shift about the mean 
value zero the CV is sensitive to the mean value and can 
not be applied. Therefore other measures like the 
standard deviation have to be used. The standard 
deviation of the first design (without compensation layer) 
is 1.7µm. With the introduction of the compensation layer 
the standard deviation is reduced to 1.1µm and thus the 
robustness of the system is increased. This information 
cannot be obtained by a deterministic analysis. By 
contrast, using a stochastic simulation reveals that a slight 
change can improve the design. 

4.4. Design scan 

The Monte Carlo simulation can be used to evaluate the 
design space. This is demonstrated for the telescope. The 
thickness of the compensation layer is varied in a broad 
interval. The relative displacement D/H is used as a figure 
of merit. The other random variables are the same as 
within the previous simulations. The results are shown in 
figure 9. The first design e.g. the design without the 
compensation layer can be found for a layer thickness of 
zero. The final design has a layer thickness of 1.25mm 
and is marked in the figure. Minimizing the displacement 
D/H an even better solution can be found with a layer 
thickness of only 1.0mm. Additionally the possible scatter 
of the results can be estimated from the graph. For the 
optimal design the relative displacement can vary 
between −2µm and 2µm. Apart from this scatter 
bandwidth, in this example the problem is linear, thus the 
same results could have been obtained by interpolating 
between the two designs. This linearity can not be 
guaranteed for all designs. The design scan is a simple 
but powerful method without restrictions and therefore 
applicable on complex or non-linear systems. 

5. CONCLUSION 

The implementation of stochastic simulation to address 
mechanical problems was presented in the paper. The 
developed simulation environment includes a process 
chain and the assessment of question for the number of 
samples and the quantification of uncertainties are 
addressed. Furthermore an example illustrates the 
capability of the presented stochastic approach. 

Three possible areas of application can be concluded. 
Firstly, the variation of performance parameters due to 
uncertainties in the design or lifetime can be calculated. 
Secondly, the design scan to evaluate the design space 
and find possible improvements. Thirdly, the sensitivity 
and robustness evaluation to assure that the system can 
handle possible uncertainties caused during the 
manufacturing, integration and operation.  

In the scope of this work, material properties and 
geometric tolerances have been considered as uncertain. 
It might be useful to include uncertainties in connections 
and other boundary conditions as well as the uncertainties 
in load cases. A dedicated database with uncertainties for 
material properties or boundary conditions should be 
developed to increase the practicability of the method. 
Furthermore a user interface for the developed toolbox 
can improve the usability.  
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