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OVERVIEW 

We are considering the problem of tracking the motion of 
a flying object which is capable of performing 
unpredictable and abrupt manoeuvre changes. The motion 
of such a system can be modelled by a random jump 

process ( )tU  which can be interpreted as the state of a 

discrete state machine determining the mode (or kind) of 
manoeuvre.  

The motion 
tX  of the vehicle can be modelled by a, in 

general, vector-valued stochastic differential equation  

( , ) ( , )t t t t t tdX a X U dt X U dWσ= +

This equation describes the system which may consist of 
a guidance law and/or aerodynamics. These in turn 
provide deterministic accelerations or kinematics which 
may be described in the system equation shown above. 

The physical motion shall be measured by an appropriate 
sensor with measurements ( )tY , again modelled by a very 

general stochastic differential equation  

( , ) ( )t t t t tdY b X Y dt Y dVν= +

This presentation discusses the problem of estimating 
( , )t tU X  given all measurements ( )s s tY ≤ . An optimal 

estimation formula is derived. It turns out that for relevant 
special cases the formula is closed and can be directly 
calculated. Simulation results are presented. 

The used method of estimation generates an optimal 
estimate with can be proven to be optimal in the least 
variance sense. A similar estimate has already been 
successfully applied to a problem in the field of terrain 
reference navigation (see [3]). On the other hand, the 
investigated estimation process requires huge effort. 
There are more heuristic approaches which deal with 
similar problems and produce good (but nevertheless 
suboptimal) solutions, see e. g. [2]. 

1. CONVENTIONS, BASIC SETUP 

Let  ( , , , ( ))tPΩ F F  be a filtered probability space. By 

( )tW  and ( )tV  we denote ( )tF -adapted, independent 

vector-valued Brownian motions with the suitable amount 
of dimensions.. Let ( )tX  be a stochastic process. By 

X
F we denote the generated filtration (i. e., the coarsest 

filtration with respect to which ( )tX  is adapted). A 

martingale ( )tM  with respect to a filtration ( )tF  is a 

stochastic process which holds ( | )t s sE M M=F for all 

s t≤ . A stochastic process ( )tX  is a semimartingale if it 

allows the representation 

(1) 0t t tX X A M= + +

with an 0F -measurable random variable 0X  with existing 

variance, an ( )tF -adapted predictable process ( )tA  and 

an ( )tF -adapted martingale ( )tM . A semimartingale  

( )tX  is said to be a smooth semimartingale, if the 

predictable component is differentiable (to be precise, 
absolute continuity of ( )tA would be sufficient), 

(2) 
0

t

t sA a ds= ∫ . 

2. THE VEHICLE’S MOTION 

The motion tX  of an aerial vehicle can be modelled by a 

general stochastic differential equation  

(3) ( , ) ( , )t t t t t tdX a X U dt X U dWσ= +

Typically, tU  determines the currently applied guidance 

law which may instantaneously change. In the simplest 
case constant accelerations of a one-dimensional motion 
are commanded and integrated to velocities and positions,  

(4) 21

2

( )( )
, ( , )

( )( )t t t
t

X tX t
X a X U

a UX t

  
= =   
   

. 

It turns out that typical jump processes, such as 
continuous time Markov chains, are well suited to describe 
the random switching of the guidance. 
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3. THE UNDERLYING DISCRETE STATE 
PROCESS 

The motion of such a system can be modelled by a 

random jump process ( )tU  which may be interpreted as 

the state of a discrete state machine determining the mode 
(or kind) of manoeuvre.  

Let U  be the state set, tU ∈ U , and 0: ( )k P U kπ = =
be the initial distribution of 

0
( )t t TU ≥  for all k ∈ U . By 

( )nT  we denote the jump times of the process, 0 0T = .  

A process is called Markovian, if it holds 

( | ) ( | )t s t sE U E U U=F  for all t s≥ . ( )tU  is defined 

to be stationary, which means that its intensities 

(5) ( )
0

1
( ) : lim ( |ik t h th
t P U k U i

h
λ +→

= = =

( ,i k ∈ U , i k≠ ) are independent of time and may 

therefore be written as a constant matrix ( )ikλΛ = , where 

by convention 

(6) : 0kkλ = . 

The so-called interarrival times 1:n n nT T T −∆ = −  of a 

stationary Markov process with discrete states are 
independent of each other and exponentially distributed, 

(7) 
1

( , | ) 1 ki

n n

t
n T TP T s U k U i e λ

−

−∆ ≤ = = = −

4. THE MEASUREMENT PROCESS 

The physical motion shall be measured by an appropriate 

sensor with measurements ( )tY , modelled by a very 

general stochastic differential equation  

(8) ( , ) ( )t t t t tdY b X Y dt Y dVν= + . 

Observe that three different kinds of stochastic effects 

influence the measurement: The random mode ( )tU of 

the manoeuvre, the random system noise ( )tW , which 

affects the motion such as wind or parameter 

uncertainties, and the measurement noise ( )tV , which 

results in an imperfect measurement of the random 
movement of the object. 

5. THE FILTERING PROBLEM 

The considered problem is described as follows: Estimate 

the value of ( , )t tU X  given all observations ( )s s tY ≤ . The 

estimation shall be optimal in the minimal variance sense. 
It can be proven that this problem is equivalent to the 

calculation of the conditional expectation 

(( , ) | )Y
t t tE U X F

In the classical linear case with normally distributed 
random variables this conditional expectation can be 
calculated just by using conditional expectations of the first 
two moments  

(( , ) | )Y
s s sE U X F , (( , )( , ) | )T Y

t t t t tE U X U X F

with respect to past times s t≤ . After some simplification, 
the resulting formulas describe the classical Kalman-Bucy-
Filter. 

In the non-linear case, the problem becomes 
tremendously more complicated since the model may 
generate arbitrary distributions which cannot be 
reconstructed from the moments. 

A key point to cope with this situation is to choose an 
appropriate function ( , , )f U X t  which generates an ( )tF -

adapted smooth semimartingale ( , , )tR f U X t= , and to 

analyse the properties of such a process. 

For a smooth semimartingale ( )tR  with representation (1) 

it is a topic of the non-linear filtering theory (see [1]) to 
determine the appropriate projected representation (i. e. 

conditioned with respect to the σ  -Algebra Y
tF  generated 

by all measurements up to time t ). Let : ( | )Y
t t tR E R= F� , 

etc. A relatively straight forward calculation (see e.g. [1, 
chapter 8] for the semimartingale calculus in the context of 
non-linear estimation) produces the result 

(9) 
( ) ( )

( , )

, | ( , ) | ( , )

( )

t t t

Y Y
t t t t t t t tt

t

t t

dR a X U dt

dE M W E R b X Y R b X Y
dW

dt Yσ

= +

 − +
  
 

� �

� ��

�
F F

with a Brownian motion 

( )1 ( , )t t t t tdW dY b X Y dtσ −= − �� . 

Since the martingale ( )tM  and the system noise ( )tW are 

stochastically independent, the same applies to the 
projected martingale and the system noise. Hence, its 
quadratic covariation process disappears. 

One of the major problems in non-linear filtering is that the 
resulting formulas may require estimates of variables 
which are even more complex to derive. In our case, the 
estimation process of tR requires estimates of ( , )s sa X U , 

sX  and ( , )s s sR b X Y  for all s t≤  including  of course, the 

past estimates of sR itself. It is of course possible to 

restate a similar filter problem for these required 
estimates. We would get new filtering equations which 
again would require further estimates and so on. To break 

3254



this vicious circle it is necessary to find a suitable class of 
functionals f which lead to a closed estimation process.  

It can be easily shown that if we do not wish to confine 
ourselves to trivial cases for a , it is necessary to estimate 

the complete distribution of ( , )t tX U .  

The semimartingale representation for a process ( )tR  of 

the form  

(10) ( , )t t tR f X U=

with an arbitrary function f  being twice continuously 

differentiable can be calculated as 

(11) 
2

1 11 2

( , )
( , ) ( , )

2
t t

t t t t

X U
df X U a X U f f f r dt dM

σ 
= + + + + 
 

where 
1f  etc. denotes the derivatives of f at ( , )t tX U

and r  a functional depending on f , tX , tU  and on the 

transition intensities ( )ikλ . 

Substitution of the predictable component into the general 

filtering formula yields (with ( ) : ( | )Y
t tE E⋅ = ⋅ F ) 

(12) 
( ) ( )

( ) ( )

21
1 11 22( , ) ( , ) ( , )

( , ) ( , ) ( ( , )) ( ( , )
( )

t t t t t t t t

t
t t t t t t t t t t t

t

d E f X U E a X U f t X f f r dt

dW
E f X U A X Y E f X U E A X Y

Y

σ

υ

= + + +

+ −
�

 Let tρ be the common conditional “density” function, 

(13) ( , | )
( , ) :

Y
t t t

t

P X x U u
x u

y
ρ ∂ ≤ =

=
∂

F , 

(the existence of the conditional density is assumed in the 
sequel). Taking into account 

(14) ( ( , ) | ) ( , ) ( , )Y
t t t t t

u x

E f X U f x u x u dxρ
∞

=−∞

=∑ ∫F

one finds after integration by parts and rearranging terms 
the resulting filtering formula  

(15) 

[ ]

2
2

2

( , ) 1 ( , )
( , ) ( , ) ( , )

2

( , ) ( , ) ( ( , )) ( , )
( )

t t

t
t t t t

t

x u x u
d x u a x u x u r dt

x x

dW
A x Y x u E A X Y x u

Y

ρ ρρ σ

ρ ρ
υ

 ∂ ∂= − + + ∂ ∂ 

+ −
�

Hereby, r  is a functional only depending on tρ  and on 

the transition intensities ( )ikλ .  

The filtering formula is a partial differential equation with 
three distinct components on the right hand side which can 
be interpreted separately. The first part consists of a 
generalized transport equation (with a diffusion 
component) 

(16) 
2

2
2

( , ) 1 ( , )
( , ) ( , ) ( , )

2t t

x u x u
d x u a x u x u dt

x x

ρ ρρ σ ∂ ∂= − + ∂ ∂ 

which, in absence of other effects, shifts the velocity 
density according to the modelled accelerations a  und 

broadens it due to the system noise defined by 2σ .  The 

second term r dt  takes into account the jump intensities 

λ  of our modelled process. Density values ( , )t x uρ  for 

states with positive transition balance1 are increased; 
density values for states with negative transition balance 
are diminished. While the first two terms refer to the 
system model, the third term handles new measurement 
increments tdY , which are translated to innovations 

tdW� , 

(17) ( )1 ( , )t t t t tdW dY b X Y dtσ −= − �� . 

Pretty similar to linear filters, the innovations are weighted 
by the covariance-like quantity 

(18) ( , ) ( , ) ( ( , )) ( , )t t t t t tA x Y x u E A X Y x uρ ρ−

with  

(19) ( ( , )) ( , ) ( , )t t t t t
u x

E A X Y A x Y x u dxρ
∞

=−∞

=∑ ∫ . 

6. AN EXAMPLE 

We assume that three different manoeuvres with constant 
accelerations may occur with random switching times 
according to a Markov process ( )tU  as described above. 

The accelerations are defined to be 210 m
s

, 20 m
s

, 210 m
s

−  for 

1, 2,3tU = , respectively, with a random (system) of 
2

5

2 20.1 m
t s

σ = . The realised position is continuously 

measured, the measurements are degraded by a 

measurement noise of 
2

3

2 1 m
t s

υ = . For simplicity, let the 

transition intensities be 12 13 1.5λ λ= = and 0jkλ =
otherwise. The starting distributions are given by 

0(1) ( 1) 1P Uπ = = = , 0 0 ,X m= 2

2

2
0 ~ (0 ,5 )m m

s s
V N . 

In the following, the simulation results of one simulation 
run are depicted. 

                                                          
1 A state is said to have a positive transition balance, iff the 

probability that another state k  performs a transition to u  within 

the considered time span dt  is greater than the probability that a 
transition out of state u happens 
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Figure 1 shows that the simulated manoeuvre 1 
(acceleration of (noisy) 210 m

s
) changes after 0.45s to 

manoeuvre 3  (acceleration of (noisy) 210 m
s

− ). 
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FIG 1. The manoeuvre selection process ( )tU

In figure 2 the simulated measurement is depicted. For 
clarification the numerically differentiated measurements 
(representing velocities) are shown in figure 3. Since the 
system noise is chosen to be quite moderate relative to 
the measurement noise, an accurate measurement should 
show an almost linear increase of velocity for the first 
0.45s and then an almost linear decrease. 

0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

M
ea

su
re

d 
P

os
iti

on

FIG 2. The simulated measurements (position) ( )tY
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FIG 3. The numerically differentiated 
measurements (velocity) 

The filtered common density tρ  for time 1.5t s=  is 

depicted in figure 4 (the values for 1tU = are very small). It 

can be seen that in this simple example asymptotic normal 
conditional distributions arise, the expected velocities are 
expected to be about 10 m

s . In figure 5 the evolution of the 

projected probabilities 

( ) : ( | ) ( , )Y
t t t t t

x

P U u P U k x u dxρ
∞

=−∞

= = = = ∫F

are shown over time. Due to the poor measurement 
information, the model assumptions determine the 
estimation process in the beginning. These assumptions 
include transitions according to the specified transition 
rates and the system dynamics according to the constant 
accelerations. On the long term, the measurements allow 
the estimation and discrimination of the applied 
manoeuvres over time.  
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FIG 4. The estimated probability densities 
( , )t x uρ  for 1.5t s=
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FIG 5. The manoeuvres probabilities given the 
measurements ( )tY
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