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1.0 INTRODUCTION 

The session "Condition based operational risk assessment 
an innovative approach to improve fleet and aircraft 
operability" is composed by four parts: 

Part 1: Conditional View  

Part 2: Operational Risk Assessment 

Part 3: Maintenance Planning 

Part 4: Cost Benefit Analysis of health managed system 

The work that is presented in the context of this session 
has been partially developed and demonstrated in the 
Integrated Project “Technologies and techniques for new 
maintenance concepts – TATEM” 1.  

2.0 THE IMPORTANCE OF AVAILABILITY   / 
OPERATBILITY 

Aircraft operability is the aircraft ability to meet the 
operational requirements in terms of Operational Reliability 
(OR), Availability and Maintenance Costs. 

• Operational Reliability (OR) 
This is the percentage of scheduled flights, which 
depart and arrive without incurring a chargeable 
(technical) operational interruption. 

(1) OR (%) = 100 – OI rate (%) 
Operational interruptions are composed of ground 
interruptions and air interruptions: 

• Flight dispatch delay greater than  
• 15 minutes, including ground turn-backs, aborted 

take-off and aircraft substitution 
• Flight cancellation 

• Availability 

The probability that the Aircraft will be available for 
service at any arbitrary time during its operational life 

                                                           
1 See acknowledge section 

• Maintenance costs (direct and indirect) 

3.0 TRADE-OFFS AND THE RELATIONSHIP 
BETWEEN AVAILABILITY AND LIFE-CYCLE 
COST 

Cost is a trade-off in all the system properties/outcomes 
that collectively constitute effectiveness.   Making tradeoffs 
is not a simple matter, since some of the system 
properties are interrelated, and each is a complex function 
of many other variables.  An approach promoted in the 
United States Department of Defence (US DoD) 
acquisition process to facilitate tradeoffs is to define both 
threshold, i.e., minimum, requirements and achievable 
objectives for the various properties/outcomes.  The 
difference between the threshold and objective for a given 
property/outcome can be regarded as the “trade space”.   
The acquisition process for an aircraft fleet must balance 
life-cycle cost, schedule, and the parameters that 
collectively determine whether or not the system will be 
effective in its assigned mission, i.e., capability, system 
readiness and mission reliability. The in-service support of 
the aircraft fleet must maintain the required effectiveness 
under changing circumstances while optimizing life-cycle 
cost. Further, the in-service support system should be 
managed so as to monitor performance against these 
supportability criteria and adapt as necessary to maintain 
the required availability/readiness at minimum life-cycle 
cost.  

The relationship between availability and life-cycle cost is 
not always immediately obvious, and needs to be studied. 
Many recent initiatives to improve operability have also 
been driven by the need to change from the relatively 
static operational posture to a more flexible operational 
posture which is mainly based on in service experience.  
This in turn has provided opportunities for cost savings on 
maintenance/support. Recent civil aerospace studies have 
shown that maintenance activities can account for as 
much as 20% of an operator’s direct operating costs and 
have remained at this level for many years. Detailed 
analysis of this shows that there is clear scope for 
increasing the efficiency of the maintenance process. For 
example, it is estimated that line mechanics spend 30% of 
their time trying to access information to diagnose and 
rectify failures. Additionally, the occurrence of the need for 
unscheduled maintenance can introduce costly delays and 
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cancellations if the problem cannot be rectified in a timely 
manner. 

In a recent survey the incidence of human error in the 
maintenance task was estimated as being a contributing 
factor in 15% of aircraft incidents. 

Existing aircraft systems tend to be limited in both their 
collection of data and the integration of the available data 
sources. This has tended to lead to a situation where the 
operator can become overwhelmed by the variety and 
disjointed nature of data sources and “not see the forest 
for the trees”. Modern IVHM systems are working to 
overcome this problem by integrating all the condition 
monitoring, health assessment and prognostics into an 
open modular architecture and then further supporting the 
operator by adding intelligent decision support tools. 

There have been two major enabling technologies that has 
allowed IVHM to become a real system and provide these 
clear safety and costs benefits for operators. 

• The first is the evolution of modern integrated aircraft 
architectures. 

• The second major evolution is the publication of open 
standards for IVHM systems, the leading standard, 
which is being used in TATEM2, is the Open Systems 
Architecture for Condition Based Maintenance (OSA-
CBM). This was developed under a NAVAIR Dual Use 
Science and Technology programme that completed 
in 2002. This published standard allows multiple 
companies to work together to produce the software 
components for an optimised IVHM system and 
ensures that all of the data is available in a single 
location, and format, for the operator. 

The concept of modern Integrated Vehicle Health 
Management (IVHM) Systems can be directly traced back 
the original Health and Usage Monitoring Systems 
(HUMS) developed for helicopter during the 1980s and 
90s.  

The concept of Prognostic Health Management (PHM) for 
engines has been widely embraced but the remainder of 
the aircraft still lags some way behind and this paper will 
look at how IVHM could help improve availability and how 
systems such as the Smiths Aerospace Common Core 
System (CCS) will allow this to happen. 

 IVHM: Changing Maintenance
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FIG 1.  – The effect of IVHM on TAT 
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Figure 1, shows how early warnings of failed components 
allow the ground crew to prepare for the arrival of the 
aircraft and hence reduce the time required for turn-
around. It also shows how, if the fault can be detected at 
an early stage, the need to perform maintenance at the 
turn-around might be eliminated. Whilst these potential 
benefits are well understood and have been written about 
for many years, no comprehensive health management 
systems are yet in service. This paper will look at the three 
major functionalities which supports the realization of 
Integrated Vehicle Health Management.  

4.0 EVOLUTION OF AIRCRAFT AINTENANCE 
/SUPPORT CONCEPTS WITH PARTICULAR 
REFERENCE TO THEIR RELEVANCE TO 
AIRCRAFT AVAILABILITY / OPERABILITY 

In any new endeavour, it is prudent to learn from history.  
For the current study, this means understanding the 
evolution of maintenance/support concepts for aircraft 
fleets and identifying the main operational (strategic and 
tactical), technical, financial, and political factors that have 
accompanied or driven the changes.  This information will 
help in identifying outstanding problems with aircraft 
availability and mission reliability and suggesting “best 
practices” or innovative approaches for addressing them.   

Examples of maintenance/support concepts that should be 
covered in this wide-ranging overview are as follows:  

• the life-cycle systems engineering approach to the 
acquisition of aircraft and the design to support 
aircraft availability, and the use of processes known 
as “integrated logistics support (ILS)” and “reliability 
centred maintenance (RCM) or MSG3. 

• general concepts for minimizing the duration and/or 
frequency of preventative maintenance on in-service 
aircraft, such as more accurate usage monitoring and 
damage/life prediction, automated condition 
monitoring, integrated vehicle health management, 
cost-effective and widely applicable modifications to 
extend component life and improve reliability, 
modifications and preventative maintenance to 
minimize corrosion repairs, and NDI with faster 
coverage and/or better resolution; 

• airborne and ground-based concepts to streamline the 
decision support 

• the use of modern information systems at all levels of 
the acquisition and support system, and the 
integration of maintenance/support in net-centric 
operations; 

• the organisation and management of the supply chain 
for different operational scenarios;   

• the organisation of aircraft maintenance at different 
levels for different operational scenarios;  

• lean enterprise management and comparable 
initiatives to improve availability and efficiency; 

• contracting methods and partnering with industry. 

Availability can be viewed as a function of two major 
parameters.  The first of these is the reliability of the 
aircraft in a given operational scenario. The reliability of an 
aircraft depends on both the design and the 
maintenance/support of the aircraft.  A less reliable design 
will require more corrective maintenance, and will be less 
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available for operational use.  An aircraft that does not 
receive preventive maintenance – i.e. component 
replacements/rework (“hard time” tasks), and inspections 
for potential failures (“on-condition” tasks) - at the optimum 
times for the particular design and operational scenario will 
not perform as reliably as intended and will require more 
corrective maintenance.  The second major parameter 
affecting aircraft availability/readiness is the time taken to 
perform corrective and preventive maintenance, i.e., the 
aircraft downtime.  This also depends on both the design 
and the in-service support of the aircraft, but requires 
measures additional to those related to reliability. 

In summary, the primary ways of increasing aircraft 
availability are to increase the reliability of the aircraft and 
reduce the downtime for corrective and preventive 
maintenance.  For best effect, both actions require 
coordinated effort during design and maintenance/support   
In the case of in-service aircraft, design modifications may 
be needed to implement an improved maintenance 
concept.  However, the most potential is seen in the 
realization of prognostics which could lead to new 
maintenance strategies i.e. predictive maintenance (see 
also figure 2). 
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FIG 2. Primary factors of availability 
 

As the definition of system effectiveness implies, an 
aircraft must not only be available when required, it must 
also function as required during the mission.  Otherwise, 
the effective availability at 1st Line can be dramatically 
reduced with serious operational consequences The 
Health Management approach is seen as the key enabler 
to improve availability and to reduce operational 
interruptions. Health Management is also seen as an 
integrated function which comprise: 
• Continuous assessment of the aircraft status and the 

related operational risks (airworthiness and 
commercial). 

• Prescription of maintenance actions for optimized 
aircraft operations. 

• Main underlying functions: 
• Monitoring: health data acquisition and 

manipulation 
• Health assessment:  aircraft diagnostics and 

actual degradation 
• Prognosis: emerging defects identification and 

follow up 
• Configuration Management: continuous knowledge of 

the aircraft configuration 
• IVHMS (Integrated Vehicle Health Management 

System) - this is the Hardware-Software 
implementation of Health Management. 

Whereas reliability data, trend parameters and physical 
modelling is the basis for current (health) assessment 

estimation of an aircraft component, prognosis based 
solely on these items may be too weak, as there are other 
sources of information that may be very welcomed. 
Uncertainty related to health assessment model highly 
increases as remaining useful life (RUL) estimation is 
projected into the future, and it might be better to follow 
with standard, conservative ‘preventive maintenance’ 
figures. 

Given this, the provision of additional data to narrow 
uncertainty bounds needs to be considered. First, 
operational plan may have some influence on the input 
parameters of degradation model, if based on physical 
analysis and/or trend information. Second, fleet related 
field experience may prove very valuable to improve RUL 
estimation at any model. Conditional view module is then 
responsible of retrieving current component status 
estimation, and translate this into a bounded estimation of 
future degradation that may be a valuable part of the 
operational reliability assessment, next step in prognostics 
process. 

This paper shows a methodology, based on the use of 
Bayesian Networks (BN), that provides this functionality. 
First, it is possible to develop an estimation that matches 
the health assessment model at current time, but also 
provide an ‘uncertain’ estimation when input information is 
not available, what normally happens when working with 
the future. Second, BN structure allows to configure a 
causal relationship between operational plan features and 
model inputs affected (i.e. length of runway in next airport 
affects the probability of use of the brakes). In this way we 
can add evidence about the future on top of the initial 
assessment model, reducing uncertainty. Last, we can 
also add feedback from field experience in order to 
provoke a BN parametric adaptation, which leads to an 
upgraded prediction. This methodology will be illustrated 
with different use cases, such as actuators and brake 
wear, with different types of BN (discrete, Gaussian, 
dynamic) also reviewed. 

5.0 CONDITION BASED OPERATIONAL RISK 
ASSESSMENT 

Today maintenance is going through major changes in all 
activity fields, as efficient use of assets is a key issue in 
supporting our current standard of operation and 
development in every field of activity, from manufacturing 
to transport and energy. To support this challenge, the 
maintenance concept must undergone through several 
major developments involving proactive considerations, 
which require changes in transforming traditional “fail and 
fix” maintenance practices to “predict and prevent” e-
maintenance strategies [1] (Lee et al., 2006). The key 
advantage is that maintenance is performed only when a 
certain level of equipment deterioration occurs rather than 
after a specified period of time or usage.  

In aeronautics, efficiency means an operation without 
operational interruptions, as well as an increase in A/C 
availability coupled with maintenance costs reductions. In 
fact these are the main goals of TATEM project3 that 
attempts to introduce a complete new concept of 
maintenance based on an efficient usage of existing 
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technologies trough upgraded functionalities that are 
understand within use cases, to be applied not only to the 
A/C components such as structures, engines, avionics or 
utilities such as landing gears, but to the whole A/C 
concept, and even to a fleet wide concept.  

Among these use cases, this paper deal with “operational 
support” use case at line maintenance. This covers the 
maintenance management activities, especially the 
decision support processes during the turn-around-time 
(TAT) of a commercial aircraft. The today’s (current) 
decision support process within the TAT is limited to a GO 
or NO-GO decision for the aircraft next flight based on an 
assessment of the Maintenance Minimum Equipment List 
(MMEL) relevant items. This means that the decision 
support is a is reactive process, focused on unscheduled 
(trouble shooting) or deferred maintenance activities. 

This new decision support process to be covered within 
the “operational support” use case will add a proactive 
function to the today’s line maintenance TAT process, 
where GO or NO-GO decision will be assisted by the 
health assessment function of the integrated vehicle health 
management (IVHM) of an aircraft. Here appears the  
“operational risk assessment” concept, an extended 
function of the operational support that will be supported 
on the IVHM information to develop predictions of the 
future maintenance relevant events (e.g. component 
degradation driven repair or replacement events) and its 
impact to the operational planning of the aircraft/fleet. 
Based on the operational risk assessment short term 
scheduled maintenance activities should be proactive 
defined and the long term scheduled maintenance 
planning should be adapted. This part of “operational 
support” within the line maintenance TAT is mainly 
covered by off board economic decision support 
technologies. 

 
FIG 3. Activities for operational support and the link to 

OSA_CBM layers 

As the rest of the new technologies supporting the TATEM 
project, the operational risk assessment can be located 
with respect to the OSA-CBM architecture [2] with 
activities mostly belonging to the prognostic layer. A 
breakdown of the functionality of this use case can also be 
performed as illustrated in figure 3. The identified functions 
are the condition view, the operational risk assessment 
and the advisory generation function, with an additional 
presentation function to support integration and 
demonstration. 

The conditional view function is responsible of the 
provision of a remaining useful life (RUL) prediction with 
associated confidence level at real operation with respect 

to the expected usage of the aircraft. This conditional view 
will provide a basis for operational risk estimation, together 
with other sources of information such as operational 
constraints, economic/safety information, etc.  

6.0 AN IMPROVED CONDITIONAL VIEW MODEL  

In order to develop the conditional view model, several 
issues must be taken into account. 

First, as expressed in [3], there are basically 3 types of 
information that may be the basis of the RUL prediction in 
prognostic approaches. On one end are the models based 
on statistics (reliability or failure data). Here, knowledge is 
based just on failure probabilities, that can also be coupled 
with expert judgements. The ‘confidence’ that may be 
associated to the estimation provided in this way is the 
lowest, tough the applicability of this method within the A/C 
is widest. On the higher end of reliability should be located 
those estimation approaches that are built on top of 
physical or mathematical models, usually validated 
physically at test-benches. Here, once main input 
parameters are known, it is possible to estimate the 
system condition with great accuracy. Lastly, information 
for the prediction may be based on condition o 
performance monitoring, that allow to derive incomplete 
models of the degradation of monitored systems, normally 
based on the identification of partial information within the 
model (trends, limits). In this case, as in the case of 
model-based information, the RUL output can be usually 
interpreted as a degradation information, whereas when 
only statistical or reliability information is available, the 
RUL estimation is referred to a perceived probability of 
failure (with no relation of the internal degradation of the 
piece). It is also important to understand there is a trend to 
mixtures of types of information, such as reliability and 
condition monitoring [4] 

 
FIG 4. Hierarchy of prognostic approaches 

Second, it is clear that a key point is the acievement of 
appropriate confidence levels. This involves two main 
sources of uncertainties that should be quantified and, in 
some cases, may help to improve/adapt RUL predictions: 

• Original RUL estimations (at current time) are 
normally set up at as part of a laboratory work 
including mathematical, physical and/or statistical 
modelling, together with expert judgements. There is 
a ‘fixed’ uncertainty to every RUL prediction due to the 
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uncertainties included in the model (such as 
incompleteness of the data, incompleteness of the 
model,…) [5].  

• On the other hand, RUL predictions (the RUL 
estimation at future time) are on the prediction of the 
input parameters to the RUL estimator, that are 
normally based on certain assumptions of expected 
usage. Here the uncertainty is normally variable, 
depending on the time window of the prediction. An 
example is a weather forecast, that can be predicted 
for several days, even weeks, however the likelihood 
of the predictions decrease sharply after a few days in 
many areas. 

These two sources of uncertainty are translated into 
confidence loss when real condition differs from expected 
condition at time t.(current time), as indicated below  

 
FIG 5. Confidence loss 

Last, several steps can be indicated as part of the 
conditional view, in order to minimise confidence loss, no 
matter the type of prognosis information we are dealing 
with. 

1) The identification of the expected usage according to 
the proposed operational plan, that derives the input 
parameters to the RUL model.   

2) The calculus of the current RUL according to 
expected usage. The prediction really starts here as 
expected usage is what really can be forecasted and 
linked to the RUL estimation, whenever it (will occur). 
This RUL is already indicated with a confidence error, 
that is increasing  

RUL = f(expected usage params; process data params) 

3) The assess of the RUL and confidence results 
obtained in step 1 and step 2 taking into account past 
behaviour (at time t-1) 

a) The assessment (gain/loss) of the curve 
confidence (reliability) according to historical 
data: the degradation curve estimated so far with 
respect to real degradation status (assessment 
parameters: technical data that relates to 
condition/performance monitoring) 

RUL Confidence (∆) = (RUL (t-1) – current status(t))                  
(t= current time) 

b) This may also involve a revision of RUL models. 
In this case, it is important  to count on technical 
parameters that may help in measuring 
differences between predicted and real condition. 

A final step may involve a combined confidence calculus 
where a combination of RUL models is computed, due to 

operational plan alternatives lead that to different 
probabilities concerning expected usages (i.e. different 
models taking into account different usage parameters):  

Probability (Expected usage (A)) * RUL Confidence (Expected 
usage (A)) + Probability (Expected usage (B)) * RUL Confidence 

(Expected usage (B)) + … 

7.0  BAYESIAN NETWORKS FOR CONDITIONAL 
VIEW AUTOMATION 

According to the characteristics of the conditional view 
model that may be interesting to develop, it is clear that it 
would be very usefult to find a technology that may 
provide: 

1) Accurate estimations for both degradation and 
reliability models (physical, trends, statistics,…).  

2) Ability to include confidence information as part of the 
estimation 

3) Ability to link usage-based information as part of the 
input information (influence factors) of the models 

4) Ability to re-assess and modify models from feedback 
information 

Tough there are several technologies that may partially 
cover these functionalities, we understand that the 
Bayesian Network knowledge modelling methodology that 
suit our aims, as it is globally addressing two main aspects 
closely related with the above functions, such as 
uncertainty management and adaptation.  

7.1 Overview of Bayesian Networks 

A Bayesian network (BN) is a compact model 
representation for reasoning under uncertainty. It reflects 
the states of some part of a world that is being modeled 
and it describes how those states are related though 
conditional probabilities. 

A problem domain – diagnosis of mechanical failures, for 
instance – consists of a number of entities or events. 
These entities or events are, in a Bayesian network, 
represented as random variables. One random variable 
can, for instance, represent the event that a piece of 
mechanical hardware in a production facility has failed. 
The random variables representing different events are 
connected by directed edges to describe relations between 
events. An edge between two random variables X and Y 
represents a possible dependence relation between the 
events or entities represented by X and Y. For instance, 
an edge could describe a dependence relation between 
disease and a symptom – diseases causes symptoms. 

Thus, edges can be used to represent cause-effect 
relations. The dependence relations between entities of 
the problem domain are organized as a graphical 
structure. This graphical structure describes the possible 
dependence relations between the entities of the problem 
domain. The uncertainty of the problem domain is 
represented through conditional probabilities. Conditional 
probability distributions specify our belief about the 
strengths of the cause-effect relations. Thus, a Bayesian 
network consists of a qualitative part, which describes the 
dependence relations of the problem domain, and a 

111



quantitative part, which describes our belief about the 
strengths of the relations. 

This representation is known as a directed acyclic graph 
(DAG) consisting of nodes, which correspond to random 
variables and arcs that represent the probabilistic 
dependencies between the variables [6].  

Many practical tasks can be reduced to the problem of 
classification. Fault diagnostics is one of these examples. 
A Bayesian network helps tackle the problem of 
classification in a way that helps to overcome problems 
that other methods partially address: 

• Able to mix a-priory knowledge together with 
data/experimental knowledge  

• Explanatory abilities  
• Uncertainty management – Causality management 
• Learning both parametric and structural issues. 

There are finnaly different BN variants, that can suit better 
depending on the data and the estimation being modelled, 
such as continuous gaussian models, the dynamic 
bayesian networks, etc. As indicated in [7], BN can be an 
effective way to solve diagnostic and prediction prblems, in 
situations where the knowlwedge about the problem is 
modeled through different information sources.  

7.2 An example. Brake wear conditional view 
prediction by means of BN 
As an example of this application, we will focus on the 
RUL prediction for brake wear.  
 
Actual estimation of current wear and health status of the 
brakes (brake wear) is performed through a physical 
model4 where main input parameters are:  
• A/c all up weight  
• Landing velocity  
• Brake operation during landing  
• Flap position  
• Initial brake temperature  

The remaining brake wear can then be calculated in mm 
and this can easily be mapped to a RUL in mm, or in 
nominal ‘standard’ landings5.   

Even tough it is feasible to perform a prediction model out 
of an extrapolation of past data, or simply using a standard 
degradation figure (i.e 0.09 mm per flight), the real wear 
may change substantially depending on flight conditions. 
For instance, we may work with the following operational 
plan that includes 9 flights, where some available 
information indicates that degradation of the brake may 
differ from one flight to another. 

In this case, a Bayesian Network #1 (BN) based algorithm 
is created through a model that simulates  

• The physical model of the wear rate (if degradation 
parameters are known) 

                                                           
4 developed by British Aerospace Systems (BAE Systems) using 
data from Airbus UK, and are included in greater depth in TATEM  
Strand 5400 deliverables 
5 A ‘standard’ landing is taken as the mean wear, based on the 
experience of past landings 

• The standard wear rate expected (of approx 0.09 mm 
per flight) 

• A confidence level of 95% with respect to the square 
root of the variance of brakeWear node, related to the 
physical model estimation errors. 

             Operational plan parameters 

Wheather Flight 
#no 

Arrival 
airport

Flight 
distance 
(min) 

Runway 
length 
(m) 

Runway 
condition 
(G/ N/ B) (Wet/ 

Dry) 
Forecast 
Prob 

1 ham 59 3250 Normal Wet 90 
2 gva 57 3900 Good Dry 90 
3 muc 32 4000 Good Wet 80 
4 mxp 25 3920 Good Wet 75 
5 her 119 1574 Bad Dry 95 
6 cag 99 2803 Bad Dry 70 
7 tls 53 3000 Good Dry 70 
8 gib 67 1829 Good Dry 70 
9 fnc 75 2781 Bad dry 60 
…       
TAB 1. Operational plan information 

Next figure shows the information behin main nodes 
corresponding to input variables BrakeUse, 
LaandingVelocity and A/C Mass weight, that are parent 
nodes of brake wear. As indicates. This models simulates 
well the standard wear rate degradation, when no 
information about the future is known. That, is when there 
is no data about prediction.  

 
FIG 6. Bayesian network model #1 

However, according to previous table, there exist 
important information for prediction of the brake wear that 
may be used to prognose this degradation. This is 
achieved by a second model that explains the influence of 
‚usage’ variables’ in the original model input nodes. As 
ilustrated in figurebelow, the original BN model is 
structurally ‚expanded’ with new informatin that can truly 
input real predictions concerning the values of the input 
parameters for the estimation of the Brake Wear at each 
future flight. 
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BN -Model 1 – Evidence fueled 
from expected usage

BN -Model 1 – Evidence fueled 
from expected usage

 
FIG 7. Bayesian network model #2, including usage 

parameters 

As a consequence, next graps illustrates the RUL 
predicitoon at time 0, compared to a “real“ degradation6, 
with a confidence level for next 9 flights. We can observe 
that, in first case, the prediction is not accurate in last 
flights, whereas calcuated by BN, prediction is kept closer 
to reality. 

 

 
FIG 8. Results from prediction models.  

 

8.0 THE FUTURE: ADAPTIVE PROGNOSIS FROM 
FLEET STATISTICS 

Even tough not yet implemented, another step in the 
development of the Bayesian Network models can be 
performed with the parametric improvement of the 
underlying probabilities, by the provision of adaptive 
means.  

8.1  Learning in Bayesian Networks 

Learning a graphical model has become a very active 
                                                           
6 “Real” degradation is estimated by the authors from data 
extracted from BAE Systems 

research topic and many algorithms have been developed 
for it. Introductory and advanced information on 
probabilistic network learning can be found in [8]. Three 
approaches can be mentioned: 

• Structural learning: This kind of learning tries to make 
the whole structure of the bayesian networks through 
a fusion of data & expert knowledge. Methods for 
structural learning include Naïve Bayes approaches, 
search & scoring based methods (K2) and 
dependency analysis (PC, NPC). These methods can 
be considered as very promising. 

• Learning the probabilities in batch: The learning of the 
information regarding the conditional distributions. 
Parameter estimation uses algorithms such as EM 
(Estimation-Maximization) to look for the best 
parameter distribution given a a-priori graph 
configuration. This and previous approaches need a 
much greater sample/cases database. 

• Learning the probabilities sequentially: This approach 
is used when we have certain about structure, but we 
want probabilities to adapt to a particular context. It is 
also called ‘Adaptation’. 

 Adaptation is the process of refining the (conditional) 
probabilities specified for a Bayesian network by taking 
into consideration the real experiment outcomes. This is 
probably the most interesting type of learning mechanism 
that can be used in machinery diagnosis, as the most 
important input (in learning terms) should be expected 
from local usage of the automated tools, as long as they 
start to be applied in maintenance and diagnosis systems. 
For example, every time a machine is diagnosed, the 
information about their symptoms and problems can be 
used to adapt the network's probabilities. This focus has 
been used in the bayesian network for diagnosing 
machines tools. 

8.2 An example. Adaptive brake use condition 

As indicated in [9] the simplest example is that referring to 
fractional updating ttables, were an statistical task is 
meant to modify the estimates of the parameters gradually 
with the cases used. We can consider the CPT 
(Conditional Probability Table) of Brake use, without 
parent noddes involved. That is, the prior probability of 
having brake being used by default: 

Brake 
use 

 

False 0.60 
True 0.40 

It is clear that this may not reflect specific A/C operation 
conditions. For instance, a given A/C operator may involve 
more usage of brakes than default, for diferent reasons 
(safety, ...). We can then add a new feature on this 
Conditional Probability table, called ‘experience’, 
represented by a number that indicates the value that we 
assign to experience in the ‘a-priori’ design. Now, we can 
also include feedback from application of the system. For 
example, we can assume that our belief in the correctness 
of the current conditional distribution for brake use is low, 
thus we can set the initial experience count to a small 
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number, say 100 (flights). 

Brake use  
False 0.60 
True 0.40 
Experienc
e 

100 

Now, if we get feedback of 10 new flights (suppose that in 
all of them evidence that brake has been used) and go 
again to the CPT of ’Brake use’, we will see an experience 
value of 110. These additional 10 counts pertain all to 
state "true". Therefore, the adapted probability distribution 
of Brake Use becomes: 

N(true) (0.40 *100) 
+ 10 P (Brake 

Use) =  Experienc
e 

=  
110 

= 
0.45 

where N(True) indicates the number of true events 
recorded so far, which accounts for 10 in the last 10 
observations, plus 40 in the first 100 observations. This 
gives the following CPT as results is: 

Brake Use  
False 0.55 
Trae 0.45 
Experienc
e 

110 

To summarize, an adaptation step consists of entering 
evidence, propagating, and updating (adapting) the 
conditional probability tables and the experience tables. 
This can also be coupled with techniques tat allow to ’fade’ 
old knwoledge, so that newer experiences becomes more 
important, and more complex CPT where parent nodes 
are involved. 

 

9.0 CONCLUSIONS 
The calculus of the conditional view is a challenging task 
within the prognosis of a component, such as in the case 
of the operational risk assement for operational support of 
commercial aerospace. This calculus involves many 
issues that leads to the need to cope with uncertainties, 
and the need to re-asses and adapt initial models.  
 
Bayesian networks are a set of useful technology for 
developing classification systems. Even tough most of the 
efforts so far have been focused on diagnosis, this paper 
demonstrates usage concerning prognosis, and in 
particular the conditional view, for the problem of brake 
wear prediction. 
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