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Abstract—To achieve condition-based maintenance,
continuous on-board system monitoring is mandatory. Us-
age of additional sensors is restricted, as it would imply ad-
ditional costs and sources of failure. In this paper the focus
is on health assessment of an electro-mechanical actuator
by monitoring the motor input current. A discrete wavelet
transform is used to create features to distinguish different
input current segments. Two modifications for derivation
of enhanced wavelet features are described and their sig-
nificance is evaluated. A pattern recognition step based on
these features is realised through a bank of Support Vector
Machines. This, together with an additional consolidation
step provides information on the duration of the character-
istic current segments as on certain events. Two fault states
of the system can be detected and quantified based on the
derived system information. This is shown by a measure-
ment series with induced degradation of the actuator.

1 INTRODUCTION

To maximise aircraft availability the time spent maintain-
ing the aircraft must be reduced. Increased aircraft avail-
ability allows the operator, to improve return on investment
in aircraft by improved utilisation. Maintenance can be
reduced by either obviating the need for maintenance or
reducing the time to undertake maintenance actions. The
need for maintenance can be reduced by avoiding replace-
ment of limited life components and instead replace com-
ponents based on their condition. Alternatively or addi-
tionally through improved accuracy in diagnosis the time
to repair failed systems can be reduced because the faulty
component is quickly identified.

The Technologies and Techniques for New Maintenance
Concepts (TATEM) project aims to provide the techniques
to reduce the maintenance element of direct operating costs
by 20 % in 5 to 10 years and 50 % in 10 to 15 years. The
TATEM integrated project is part of the Sixth Framework
Programme of the European Union. The TATEM project is
striving to achieve these cost reductions by converting un-
scheduled maintenance to scheduled maintenance and im-
proving the efficiency and effectiveness of maintenance ac-
tions. The work reported in this paper uses signal process-
ing techniques to convert measured data into information
about the health of a normal uplock actuator component.

The on-board condition assessment of actuators is part
of an aircraft’s health management system, which is part
of the operator’s health management system. One ob-
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FIG. 1: Layers of the OSA-CBM model

jective of condition monitoring is to translate a number
of physical measurements into recommended maintenance
action. The health management system monitors a mul-
titude of information and forms a view of the aircraft’s
health, and then recommends maintenance action. Coa-
lescing information from multiple sensors and sub-systems
allows a holistic view to be taken and if implemented care-
fully avoid misleading diagnosis or incorrect recommenda-
tion of maintenance action. The Open Systems Architecture
for Condition-Based Maintenance (OSA-CBM) [10] pro-
vides a layered framework and a definition of interfaces for
health management systems, and has been adopted by the
TATEM project. The layers of the OSA-CBM framework
are illustrated in Fig. 1. The maintenance action recom-
mendation results from the Advisory Generation (AG). The
physical measurements are inputs to the Data Acquisition
(DA) layer. In the progression from the DA through to the
AG layer data is translated to knowledge and information
useful to the operator.

This paper addresses in particular the data management,
state detection and health assessment parts of the OSA-
CBM framework and has used a Normal Uplock Actuator
(NUA) as the candidate component.

2 NORMAL UPLOCK ACTUATOR

An aircraft is fitted with a number of uplocks, depending
upon aircraft design. An uplock is used to hold landing
gear or landing gear doors in place. To extend or retract
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the landing gear, the locks that hold landing gear & doors
in place have to be released by a normal uplock actuator at
the appropriate moment in the extension or retraction se-
quence. The uplock has proximity sensors to indicate the
state of the lock. The Normal Uplock Actuator is part of
an uplock. The Normal Uplock Actuator is powered from
28VDC, and contains an electric motor with a retractable
hook linking to the mechanics of the uplock. In normal op-
eration the weight of the gear resting on the lock is removed
by the extension and retraction sequencing before the Nor-
mal Uplock Actuator operates. The NUA incorporates EMI
filtering, at the electrical connector input, to resist the ef-
fects of unshielded and untwisted aircraft wiring. It should
be noted that EMI filtering can suppress signal components
useful in health management. The Failure Modes and Ef-
fects Analysis indicate that electrical faults are more prob-
able than mechanical faults.

The application of health management techniques to the
normal uplock actuator should reduce the time to diagnose
faults, thus reducing maintenance time. Ideally a forward
looking prognosis giving an indication of an incipient fail-
ure would be beneficial, allowing for scheduled mainte-
nance, instead of unscheduled maintenance on failure. The
Normal Uplock Actuator was chosen for this work because
of availability of a test item that could be degraded. The
signals sensed to control operation of the NUA are the elec-
trical current and voltage for the normal uplock actuator
and for the uplock there are proximity sensors. Additional
sensors give further information about the uplock operation
but have a deleterious effect upon the uplock actuators re-
liability, thus only existing sensors are utilised if possible.
The available design information of the NUA was limited.
Hence, a model-based approach for system diagnosis could
not be considered in this work. The proposed health assess-
ment scheme is therefore based solely on analysis of the
motor input current signal.

The NUA test rig provides the capabilities of simulating
two fault conditions. System degradation by increased in-
ternal friction is the first considered fault. By application
of an abnormal side load on the NUA slider mechanism is
becomes possible to simulate the effect of increased fric-
tion. The second fault condition includes a degradation of
the NUA motor efficiency. This is induced by insertion of
an adjustable shunt resistance in one motor winding. This
weakens the magnetic field and degrades the motor slightly
up to a short circuit status. In this work the occurrence of
only one fault at a time is considered.

The analysed input current signal of the NUA is shown
in Fig. 2. There exits several operational phases during the
unlock process of the system. These phases are reflected
in the input current. Before initiation of the unlock process
the system is Idle. After a short inrush transient the system
is constantly moving and releasing the lock mechanism. In
this phase Move the current signal is stationary. Then, af-
ter reaching the mechanical end stop, a second Transient
phase occurs before the system enters again a stationary
Stall phase. Shortly after 0.25s and at 0.3s some tempo-
rary Spikes can be observed. These spike events, together
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FIG. 2: NUA current signal and phase definition

with the defined signal phases, are later object of the ap-
plied pattern recognition system which is part of the NUA
health assessment scheme.

3 SIGNAL TRANSFORMATION

For health assessment of the NUA it is necessary to de-
rive features which describe the actual state of the system.
Available noisy signals do not directly provide such fea-
tures. In general a signal transformation is used to high-
light features which are less distinct visible in the original
signal. For the considered system a closer look at the fre-
quency content of the signal could lead to valuable features.

In this section, we briefly describe the later used Wavelet
transform (WT) and discuss the main differences in com-
parison to the Fourier transform (FT).

3.1 Fourier Transform

The Fourier transformation is used to convert a signal x(t)
from time domain to frequency domain. As orthonormal
basis, the sine and cosine functions are used. The Fourier
transform is given by the following equation

(1) XFT( f ) =
∫ +∞

−∞
x(t)e− j2π f tdt.

Stationary signals x(t) can be recreated with the in-
verse Fourier transform from their frequency representa-
tion XFT( f ). This is not true for non-stationary signals, due
to the missing time localisation of the used basis functions.
A change in the frequency content of a signal over time can
not be correctly seen in the transformed signal.

To overcome this drawback, the windowed Fourier trans-
form or short-time Fourier transform (STFT) [2] was intro-
duced, given by

(2) XSTFT( f , t) =

∫ +∞

−∞
x(t)w(τ − t)e− j2π f τ dτ.

The window function w(t), with window length TN , which
is non-zero only for |t| ≤ TN/2, is multiplied with the signal
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x(t) before computation of the frequency content. Hence,
only in the vicinity of the analysis point t the frequency
content of x(t) is evaluated in Eq. (2) and the desired
time localisation is achieved. The choice of the window
length TN determines the obtained time resolution of the
STFT. However, this determines the frequency resolution
as well, which is reciprocal to the time resolution. This is
a consequence of the uncertainty principle of signal analy-
sis [2]. The STFT has a uniform segmentation of the time-
frequency plane with fixed resolution. This is shown in
Fig. 3 for two different window lengths.

Digital signal processing requires a discrete version of
the Fourier transform. The discrete time signal x(k) =
kTS, k = 0,1, . . . ,N −1 with finite length N, is analysed at
discrete frequencies f (n) = n∆ f where ∆ f = 1/NTS and
n = 0,1, . . . ,N − 1. The discrete-time Fourier transform
(DTFT) is

(3) XDTFT(n) =
N−1

∑
k=0

x(k)e− j 2πn
N k , n = 0,1, . . . ,N −1.

The relationship between signal length N, or window
length NTS, and the obtained frequency resolution ∆ f is
here clearly visible. To obtain a good frequency resolution,
one has to choose a wide window, which, however, leads to
poor time resolution and vice versa.

3.2 Wavelet Transform

The uniform segmentation of the STFT and its discrete im-
plementation is not the best choice for all analysis situa-
tions. There are good reasons for choosing an non uni-
form segmentation. It could be valuable to have a good
time resolution for high frequencies, for which the point in
time when an event happens is more interesting than the ex-
act frequency. For low frequencies however, one could be
more interested in having a good measure for the actual fre-
quency then the exact point in time when it occurred. The
Wavelet analysis possesses such a non uniform segmenta-
tion of the time frequency plane and is an alternative way
of signal analysis to the FT.

The basis function of the WT, the wavelet, is both lo-
calised in frequency and in time, whereas the basis function
of the FT is only localised in frequency. Hence, no window
function is needed in WT to analyse non-stationary signals.
Any square integrable function which fulfils the admissi-
bility condition [8] can be chosen as mother wavelet ψ(t).
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FIG. 4: Two level decomposition filter bank

The mother wavelet

(4) ψs,τ(t) =
1√
s

ψ(
t − τ

s
),

is scaled by parameter s and translated by parameter τ . This
forms a set of basis functions used for calculation of the
wavelet coefficients in the Wavelet transform [4]

(5) XCWT(t,s) =
1√
s

∫ +∞

−∞
x(τ)ψ(

τ − t
s

)dτ , s,τ ∈ R.

Eq. 5 describes the continuous Wavelet transform (CWT),
both parameters s and τ have continuous values. The rela-
tionship between scale s and frequency f is inverse propor-
tional. For a practical computation, discrete values need to
be chosen for these parameters. Even for discrete values a
perfect reconstruction of x(t) can be obtained under certain
conditions, as the information contained in the coefficients
of the CWT is highly redundant [3]. The redundant infor-
mation in Eq. (5) is removed by choosing s = 2 j,τ = k2 j

with j,k ∈ N0. The wavelet function is still continuous,
only the analysis points are discrete in time and scale. This
has removed redundancy, but now the obtained transform is
no longer shift invariant, i.e. a shift of x(t) is not a simple
shift in X(t,s). This needs to be considered in the deriva-
tion of wavelet features as discussed later.

There exists a strong relationship between this discre-
tised WT and the concept of filter banks or multiresolution
analysis [5] [9]. In multiresolution, a signal is simultane-
ously analysed at different scales, and filter banks provide
a way to do this efficiently. A two channel filter bank, de-
picted in Fig. 4, consists of a high-pass filter h and a low-
pass filter g applied in parallel to a signal. On each filter
output a downsampling step ↓ with factor 2 is applied to
make the overall signal length after the filter bank equal to
the length before. In applying the same filter bank repeat-
edly on the output of the low-pass filter, a multiresolution
analysis is performed which provides a computational effi-
cient way for calculation of a discretised WT [5]. For each
level j the wavelet, or detail coefficients D j+1, representing
scale 2 j are obtained as the output of the high-pass filter
after downsampling. Looking at the structure of the filter
bank, the segmentation of underlying time-frequency plane
becomes clear. The detail coefficients D1 contain the high
frequency parts and are updated frequently, while the co-
efficients of the subsequent levels contain lower frequency
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FIG. 5: WT—segmentation of time-frequency plane

components and are updated at half the rate of the previ-
ous level. In Fig. 5 the segmentation of the time-frequency
plane of the discrete Wavelet transform is shown. Here, the
non-uniform segmentation becomes visible, which has the
properties discussed in the beginning of this subsection.

4 SUPPORT VECTOR
CLASSIFICATION

The goal of classification is to find a correlation between
features derived from items of given classes and their be-
longing class labels. This correlation is expressed in a deci-
sion function which is used by a pattern recognition system
for correct identification of unseen items. Support Vector
Machines (SVMs) [11] provide an elegant way for calcu-
lating a decision function based on a given training data
set, which is optimal in a certain way. The fundamentals
of Support Vector Classification (SVC) are summarised in
this section.

4.1 Linear separable classes

The principle of Support Vector Classification is best stud-
ied for the most simple case—where the classes are linear
separable. All classification problems can be reduced to a
digital case, where the classifier is designed to distinguish
between two classes, with class label y = +1 or y = −1.
The training dataset, with feature vector xi, is given by

(6) {(xi,yi)}N
i=1, xi ∈ R

n , yi ∈ {−1,+1}.

The required classifier is here a linear decision function

(7) f (x) = wTx+b,

with coefficient vector w and scalar bias term b. A proper
decision function f (xi) gives a positive value for yi = +1
and negative values for yi = −1. The class boundary—or
separating hyperplane—is found for f (x) = 0. For a lin-
ear separable training dataset, the requested properties do
not specify a unique decision function. Hence, a further re-
quirement is used to remove this ambiguity. The data points
xi which are nearest to the separating hyperplane have to
fulfil | f (xi)| = 1. This does not only define a unique deci-
sion function, but also implies a class boundary which has

→
x1

x2↑

f (x)=+1

f (x)=0

f (x)=−1

m

→
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x2↑
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FIG. 6: SVC—separable and non-separable classes

maximum distance to the data points. The margin m be-
tween the separating hyperplane and the nearest data points
can now be expressed as m = 1/||w||. This leads to the pri-
mal optimisation problem for linear SVC [7]

min
w

Jp(w) =
1
2
‖ w ‖2(8a)

s. t. yi(wTxi +b) ≥ 1 ∀ i = 1, . . . ,N.(8b)

The object function Jp(w), which is to be minimised, de-
scribes the desired maximum margin, while the constraint
reflects the correct behaviour of the decision function and
includes the normalising property described above. In the
left graph of Fig. 6 the separating hyperplane is given as
a solid line together with the maximum margin as dashed
lines. Any other choice of the linear class boundary would
result in a smaller margin. This explains the good gen-
eralisation abilities of SVC. As a result of the maximised
margin the obtained classifier gives the best separation of
the two classes based on the given training data [11].

4.2 Linear non-separable classes

The limitation to fully separable classes prevents applica-
tion to most real world cases. Therefore, the optimisation
problem needs to be extended in order to deal with non-
separable classes. This is achieved by introduction of pos-
itive slack variables ξi ≥ 0 which describe an excess of a
data point beyond the margin, exemplary shown in the right
part of Fig. 6. With these slack variables, it becomes possi-
ble to weaken the constraint in Eq. 8b which otherwise can
not be fulfilled for overlapping classes. However, weaken-
ing this constraint alone is not sufficient, as the constraint
would be always satisfied. Hence, this has to be consid-
ered in the objective function by introducing the sum of all
slack variables to be minimised as well. This gives the pri-
mal optimisation problem of linear SVC for non-separable
classes

min
w,ξξξ

Jp(w,ξi) =
1
2
‖ w ‖2 + C∑N

i=1 ξi(9a)

s. t. yi (wTxi +b) ≥ 1−ξi ∀ i = 1, . . . ,N(9b)

ξi ≥ 0 ∀ i = 1, . . . ,N.(9c)

In Eq. 9a parameter C is introduced, which allows for trade-
off between the margin width and number of outliers.
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4.3 Dual formulation

To solve the optimisation problem in Eq. 9, its Lagrangian
formulation is used. The resulting dual optimisation prob-
lem has a comfortable mathematical form; after introduc-
tion of dual variables αi the problem can be written as a
convex quadratic program [1]

min
α

Jd(α) =
1
2

N

∑
i=1

N

∑
j=1

αiα j yiy j xT
i x j −

N

∑
i=1

αi(10a)

s.t. 0 ≤ αi ≤C ∀ i = 1, . . . ,N(10b)
N

∑
i=1

αi yi = 0.(10c)

With the dual variables the decision function is expressed
in support vector (SV) representation

(11) f (x) =
N

∑
i=1

αiyi xT
i x.

In Eq. 11 the meaning of a support vector becomes appar-
ent. Those data points xi whose dual variable αi is non-zero
are called support vectors. Only data points with a positive
slack variable in the primal problem together with all points
lying exactly on the margin end up as SV. In general this is
only a small fraction of all data points. In Fig. 6 a circle
marks the data points which remain as SVs.

4.4 Nonlinear SVC

So far, only linear decision functions are used as classi-
fier. To extend this method to nonlinear problems, a non-
linear mapping φ of the input space to a higher dimensional
feature space is applied [7]. In this feature space, the dis-
cussed linear SVM is directly applicable now working on
the transformed data points φ(x). To avoid the direct for-
mulation of this nonlinear mapping and to avoid the com-
putation of a scalar product on a higher dimensional vector,
the kernel trick is used. This becomes possible as in Eq. 10
and in decision function Eq. 11 the input data appears only
in form of scalar products xT

i x. The kernel trick replaces
these scalar products by a kernel function

(12) k(xi,x j) = φ(xi)
Tφ(x j).

As kernel function e.g. a Gaussian function is valid, other
possibilities can be found in [7]. The necessary conditions
for a proper kernel function are given in [11]. The Gaussian
function leads to very flexible classifiers and is used in the
following.

With the definition of a kernel matrix H, wherein hi j =
k(xi,x j), the final optimisation problem is given in matrix
form as

min
a

Jd(a) =
1
2

aTHa−yTa(13a)

s. t. −C ≤ ai ≤C ∀ i = 1, . . . ,N(13b)

aiyi ≥ 0 ∀ i = 1, . . . ,N(13c)
N

∑
i=1

ai = 0,(13d)

with the decision function

(14) f (x) =
N

∑
i=1

ai k(xi,x)+b.

In this form, the dual variables αi are replaced by SVM
coefficients ai as ai = αiyi similar to the approach in [6] for
SV regression.

The problem dimension of SVC is determined by the
number of training data N. This requires special opti-
misation routines for solving the problem. However, the
length of vector x, i. e. the number of features, does not
significantly complicate the procedure. Therefore, Support
Vector Machines are well suited for large feature vectors.
The proposed health assessment scheme takes advantage of
this.

5 NUA HEALTH ASSESSMENT

This section describes the proposed health assessment
scheme for the Normal Uplock Actuator. The procedure
follows basically the process of health assessment as de-
scribed by the OSA-CBM structure. The approach is now
summarised and discussed in more detail in the following
subsections.

The requirement of on-board diagnosis in only using
available sensors, restricts the analysis of the NUA to the
motor current signal. With this signal, the data manipula-
tion step aims to transform the raw signal to a more appro-
priate representation for further analysis. Here, a discrete
wavelet transformation using a filter bank is applied. A set
of wavelet features is derived from the transformed signal.
The chosen set of coefficients is optimised to allow reliable
detection of the different operational phases of the NUA as
discussed later. By using a bank of SVMs, these wavelet
features are taken to estimate the NUA operational phases
as well as defined events. This concludes the data manipu-
lation step and leads over to the state detection step. Here,
a few higher features are considered which allow detec-
tion of the state of the NUA. Two fault states are examined
and classifiers are designed to identify each state properly.
Based on the system state information the health assess-
ment step can estimate the health of the NUA eventually.
This step uses the higher features to derive a quantitative
measure of the system health.

The complete health assessment scheme is now de-
scribed in more detail.

5.1 Wavelet Features for Phase Detection

The health assessment of the NUA starts with the extrac-
tion of features from the available current signal. Here, a
set of wavelet coefficients shall directly be used as input to
classifiers for detection of the operational NUA phases. In
the following, two different wavelet feature sets are con-
sidered. Apparently, to take just the actual output of the
filter bank is the simplest choice as set of wavelet features.
Later this is referred to as the vertical slice (VS) configura-
tion. Instead of taking just the actual wavelet coefficients,
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it might be valuable to include further coefficients from ad-
joining time points. The choice of adjoining wavelet coef-
ficients is motivated by the form of the impulse response of
the used filter bank. The impulse response of a three level
db3-filter bank is shown in the middle graph of Fig. 7. The
segments of non-zero wavelet coefficients are highlighted
according to the absolute value of the coefficients. All
non-zero coefficients form a pyramidal structure, where the
number of non-zero segments per scale can vary according
to a shift in the input signal. This is due to the missing shift
invariance of the discrete Wavelet transformation. In the
lower graph of Fig. 7 all highlighted coefficients form the
impulse pyramid (IP) configuration (light and dark grey).
This IP configuration captures more information compared
to the VS configuration, which includes only the coeffi-
cients at current time (dark grey). The number of adjoin-
ing coefficients per scale is determined by the filter length
n f of the used FIR wavelet filter. For a given filter length
n f /2−1 coefficients per side are taken additionally.

Further, the effect of a smoothed output of the filter bank
is studied. Therefore a nonlinear filter is applied at each de-
tail level to reduce the influence of vanishing coefficients.
The nonlinear smoothing filter is given by

(15)
xk =

{
dxk−1 for uk < dxk−1

uk for uk ≥ dxk−1

yk = xk.

The filter is designed to quickly follow a positive change in
the input value u(k) while having a slow descent for tem-
porary vanishing input values. Parameter d with 0 ≤ d ≤ 1
controls the size of decline. In Fig. 8, the properties of
the filter are visualised. An input value smaller than the
internal state x(k) is disregarded, while a greater value is
immediately put through to the output y(k). This allows
to quickly follow an increase of the wavelet coefficients,
while a single vanishing coefficient is suppressed. How-
ever, a permanent change from high coefficients to low co-
efficient is followed shortly, determined by the choice of
parameter d.
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FIG. 8: Smoothing filter for wavelet coefficients

The described wavelet coefficient sets VS and IP in com-
bination with the filter are studied in application to NUA
phase detection. Therefore a training data set is derived
from measurements and SVMs are trained to detect the dif-
ferent operational phases Idle (c1), Transient (c2), Moving
(c3) and Stall (c4), as well as the event Spike (c5) of the
NUA, as described in section 2. For each phase a train-
ing data set as well as an independent validation data set is
created. Based on this, individual classifiers are trained on
the first set and their integrity in correct classification is as-
sessed on the second data set. The integrity I of a classifier
is here defined as

(16) I = 1−α −β ,

where α is the false positive rate (error type I) and β is
the false negative rate (error type II). Both error types are
here considered equally worse. The classifier is designed to
have an integrity near or equal to one. Further it is judged
by nSV, which is the number of SVs, as this determines the
computational complexity of the decision function.

The first experiment is used to find the appropriate num-
ber of decomposition levels of the wavelet filter bank.
Here, the coefficient set VS is examined without applica-
tion of a smoothing filter. The decomposition level n is
increased, starting with n = 3, which results in different
lengths of the feature vector xw with increasing informa-
tion. The free parameters in SVM training are varied and
for each level and class the SVM with best integrity is cho-
sen as classifier. All SVMs have a Gaussian kernel func-
tion. In Tab. 1 the results of the this analysis are sum-
marised. The integrity for the detection of class c1 to c4

rises with increasing decomposition level. Especially the
detection of the phases Transient (c2) and Move (c3) are
significantly improved by higher decomposition levels. All
classes can be reliably detected for n = 6 where the in-
tegrity is above 99.6 % for each class. The number of SVs
increases slightly with higher decomposition level. A de-
composition level of n = 6 is assumed to be appropriate for
NUA phase detection with SVC and is considered in the
following.
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TAB. 1: SVM integrity and (nSV) by decomposition level
C

la
ss Level n

3 4 5 6

c1 0.9619 (10) 0.9973 (22) 1.0000 (37) 1.0000 (102)
c2 0.6577 (37) 0.8607 (98) 0.9573 (94) 0.9979 (101)
c3 0.8157 (17) 0.9367 (75) 0.9881 (65) 0.9961 (97)
c4 0.9328 (20) 0.9963 (57) 0.9985 (39) 0.9992 (70)

TAB. 2: SVM integrity and (nSV) by modifications at n = 6

C
la

ss Vertical Slice Impulse Pyramid

No Filter Filter No Filter Filter

c1 1.0000 (102) 1.0000 (64) 1.0000 (27) 1.0000 (14)
c2 0.9979 (101) 1.0000 (29) 1.0000 (192) 1.0000 (96)
c3 0.9961 (97) 1.0000 (17) 1.0000 (171) 0.9996 (84)
c4 0.9992 (70) 0.9998 (23) 1.0000 (165) 1.0000 (96)
c5 0.9660 (62) 0.9763 (77) 0.9935 (54) 0.9954 (38)

In the second experiment, the effect of the two modifi-
cations (smoothing filter and impulse pyramid configura-
tion) is analysed to further improve the quality of the clas-
sifiers. In Tab. 2 the results are summarised. It shows that
the smoothing filter improves the integrity and at the same
time reduces the number of SVs significantly. The feature
configuration IP mainly affects the integrity of the classifier
for spike detection (c5). Using both modifications together
results in classifiers for classes c1 to c4 with an integrity
greater than 99.9 % and for c5 greater than 99.5 %. The
number of SVs for each classifier is lower than 100.

The results show a considerable improvement while us-
ing the smoothing filter in combination with the impulse
pyramid configuration for derivation of wavelet features.
By using both modifications the significance of the wavelet
features is enhanced, compared to using only the actual out-
put of the filter bank. With these enhanced wavelet features
the different phases of the NUA, as well as the spike events,
can be detected with high reliability.

The designed SVMs are now applied for phase detection
of the NUA by using the enhanced features. The phase de-
tection is actually a multi-class-problem which can lead to
an ambiguity in the detected phase. This can occur when
two or more classifiers respond positive to a given pattern
concurrently. To remove this ambiguity a consolidation
step is used. The SVM classifier outputs either +1 denoting
a pattern in its class or −1 otherwise. This digital output
is low-pass filtered and the classifier with maximum filter
output is considered to represent the consolidated phase es-
timate. Besides this, the SVM for spike detection is con-
sidered separately. The occurrence of spikes is indepen-
dent of the actual NUA phase. In Fig. 9 the result of the
NUA phase detection is shown for a system in a fault free
state. The upper graph shows the measured input current
signal of the NUA. As described above, wavelet features
are taken from a six level wavelet filter bank. The plot of
the discrete Wavelet transformation is shown in the mid-
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FIG. 9: Example of phase detection

dle graph. The bottom graph visualises the result after the
phase detection by SV classifiers for c1 to c4, the phase es-
timation is mutually exclusive after the consolidation step.
The spike detection c5 is independent from the phase de-
tection. The estimated phase closely follows the described
behaviour in section 2. The NUA operation starts with a
inrush transient which immediately changes to a rather sta-
tionary phase where the NUA moves constantly. Phase c3

is properly detected. The second transient marks the end
of the phase Move before going into the Stall phase. The
beginning of the Stall phase is detected correctly, but the
small number of spikes around 0.25s causes the phase esti-
mate to intermittently switch to the Transient phase. How-
ever, the spikes are detected by classifier c5, the time of
occurrence as well as the number of spikes can be deter-
mined.

5.2 State Detection

Phase and spike detection are used for the derivation of
higher features describing the state of the NUA. This is
discussed in the following section. The NUA system is as-
sumed to be in either one of the three following states:

• State 1 (s1) Normal Operation

• State 2 (s2) Increased Friction

• State 3 (s3) Degraded Motor

The first state describes the system in normal operation
mode, while state 2 and 3 are fault states, as described in
section 2. For the second state, the system has a increased
internal friction, which is simulated by an applied side load.
The third state represents a system with reduced motor effi-
ciency by motor degradation simulated by the inclusion of a
shunt resistor in one motor winding. A measurement series
was taken which covers NUA operation in all three states.
For both fault states the severity of the degrading factor was
varied. In case of the induced friction the applied external
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load mL is changed from 5kg to 27kg. For the induced mo-
tor degradation the shunt resistance RS varies from 0.68Ω
to 5.6Ω. Based on the described phase detection and spike
detection several higher features are derived:

• f1 = Duration of phase Move

• f2 = Duration of phase Stall

• f3 = Duration of system being not-Idle

• f4 = Duration from t0 to begin of phase Stall

• f5 = Dominant frequency in phase Stall (by STFT)

• f6 = Number of detected spikes

For all 161 available measurement runs of NUA opera-
tion, the wavelet feature based phase detection is com-
puted. Then, the higher features can be derived based on
the information provided by the phase detection. Several
higher features turned out to be either strongly correlated
or not sensitive to the considered faults. However, the fea-
tures f4 and f6 are not correlated and prove to be sensitive
for fault states s2 and s3.

For state detection of the NUA two classifiers are
needed, one to detect fault state s2 and a second one to
detect fault state s3. A classifier for detection of the nor-
mal operation mode is not necessary as the system is as-
sumed to be fully functional if none of the two fault states
is present. Two nonlinear SVMs are trained to detect s2 and
s3, both having a Gaussian kernel function. The obtained
classifiers are visualised in Fig. 10. Based on the underly-
ing training data set, the considered classes s2 and s1 ∪ s3

are fully separable. As the number of available data sets
was small all data sets are used for SVM training, no sepa-
rate validation set could be used. For applied loads greater
than 5kg the fault state 2 is separable from the rest, the in-
tegrity of the classifier is equal to 1. The second classifier
is trained to detect state 3, here the considered classes s3

and s1 ∪ s2 are not fully separable. For larger shunt resis-
tances the classes overlap. However, for shunt resistances
smaller than 5.6Ω the overlap is small, the obtained clas-
sifier results in a false negative rate of β = 0.1154. The
false positive rate is zero, hence the integrity is found as
I = 0.8846. For smaller shunt resistor values the detection
of motor degradation is reliable.

5.3 Health Assessment

The aim of a succeeding health assessment step is to find a
continuous measure of the system health compared to the
so far digital state information provided by the state detec-
tion step. Therefore it is necessary to find a measure which
is correlated with the effect causing the system degradation.
In case of the NUA, a measure is needed to quantify the ef-
fect of increased internal friction and a second measure to
quantify the motor degradation. Both features discussed in
subsection 5.2 provide such a quantitative measure for the
considered faults. It shows that f4 is correlated with the
internal friction. Higher values of this feature correspond
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FIG. 10: Classifier for detection of states s2 and s3

with higher applied mechanical load i. e. induced friction.
The features f4 and f6 together indicate a low shunt resis-
tance and therefore an induced motor degradation.

The health assessment of the NUA is formed by two
regression functions which are used to describe the rela-
tionship between the features and the degrading influence.
With function h1 the relation between ( f4, f6) and mL is
approximated, and with h2 the relation between f4 and RL.
Both approximation functions

m̂L = h1( f4, f6),(17a)

R̂S = h2( f4),(17b)

are assumed to be linear. The regression functions are com-
puted by least squares. The estimation errors of both re-
gression functions are given in Fig. 11. The approximation
errors em = mL − m̂L for the estimated mass and the re-
sulting boxplots, showing the error distributions, are given
in the upper graph. Using the linear regression function,
the approximation error is rather large for low load levels.
However, it seems possible to correct the error as it has a
large bias while the variance is small. For higher load lev-
els the bias gets smaller. The fitted linear function is appli-
cable for health assessment of the NUA to detect internal
friction induced by a mechanical load. The second graph
shows the errors for eR = RS − R̂S of a linear regression.
Again the absolute approximation errors are rather small,
except for the third level at 2.7Ω, where a larger deviation
is observed. However, the estimation errors are assumed
to be acceptable for derivation of a NUA health assessment

76



e1

mL in kg

em = mL − m̂L

e2

RS in Ω

eR = RS − R̂S

0.68 1.2 2.7 3.3 5.6

4.99 9.54 12.47 14.07 17.38 20.87 22.26 27.19

-0.6

-0.3

0

0.3

0.6

-5

-2.5

0

2.5

5

FIG. 11: Estimation errors of HA functions

index. The estimated values for load and shunt resistance
can be used in a linear scaling function to map the values to
interval [0,1] which is interpreted as a health index of the
system.

This concludes the health assessment scheme for the
NUA. Two independent faults can be detected and quanti-
fied regarding their severity. Further studies should address
the following step in the OSA-CBM model which derives
prognostic information about the remaining useful life of
the system. To achieve this, reliable prognosis models for
fault evolvement are needed to describe the fault progress
after detection of an incipient fault. This requires either a
fully understood fault mechanism to model its behaviour or
meaningful observations taken from a set of systems under
real service.

6 CONCLUSION

A health assessment scheme for the Normal Uplock Actu-
ator is proposed in this work. The health assessment solely
uses the motor input current signal which is already avail-
able on-board the aircraft. Further, the scheme uses only
the system immanent excitation; no test signal is applied.

The current signal is analysed and meaningful features
for reliable state detection are derived using wavelet fea-
tures. Different configurations for the derivation of wavelet
features are studied. The effect of a smoothing filter and
the utilisation of adjacent coefficients have shown to im-
prove the informational value of the features. These en-
hanced wavelet features are taken as input for a bank of
Support Vector Machines for phase detection, which leads
to derivation of higher features for NUA state detection.
The considered system faults can be diagnosed reliable and
further on their severity can be quantified. The feasibility

of a health assessment step is shown by the estimation of
the quantity which causes the system degradation.

Future work has to address the realisation of a fault prog-
nosis step. This step is mandatory for the exploitation of the
full capability of condition-based maintenance.
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