
A GENERIC PLATFORM FOR BUILDING AIR TRAFFIC
ENVIRONMENTAL INTERNET SERVICES

J. Weggemans, J. van Weert
National Aerospace Laboratory NLR
P.O. Box 153, 8300 AD Emmeloord

The Netherlands

ABSTRACT

Communication is getting more important for airports,
airlines and Air Navigation Service Providers (ANSPs) for
building good relations with the public community.

When bringing air traffic information to the public there is
an area of tension regarding openness, transparency,
security and privacy. On one hand the public wants as
detailed and up-to-date flight information as possible. On
the other hand the provider of air traffic data wants a
certain level of shielding of privacy related data (pilot,
airline) and needs to protect the company data sources
against unauthorized access from the outside world.

This paper presents a generic and flexible system
architecture, enabling communication of ATC sensitive
information to the wide Internet public taking into account
the above area of tension. The system architecture was
used as a basis to develop the air traffic Internet service
for the Deutsche Flugsicherung DFS.

1. INTRODUCTION

Explaining where planes fly and why is one of the
challenging tasks in community communications. In close
cooperation with the Deutsche Flugsicherung (DFS) the
National Aerospace Laboratory (NLR) in the Netherlands
developed an application which shows aircraft movements
in the vicinity of airports using the Internet. This Internet
service, currently deployed for seven German airports,
offers functionality for displaying the near real-time traffic
picture in airspace and the archived summary flight tracks
of the past.

In such an application data from a trusted secure business
environment needs to be processed in a way that it is
suitable for external delivery to the insecure World Wide
Web. A generic and flexible system architecture is
introduced to support:

– Protection of data sources which are part of the
company infrastructure, such as radar data and flight
track monitoring systems, against unauthorized
access

– Restrictions to information delivery such as time
delay, refresh rate, flight details, area of coverage

– Secure encryption of privacy related data

In addition, the system architecture supports a platform for
building Internet based applications which are highly
configurable to customer needs.

It is therefore relatively easy to reuse the generic
architecture to other domains such as noise and other
viewing options. The architecture provides a solid and
future proof platform in which data and modules can be
embedded from various sources such as different noise
calculation modules or GPS oriented data.

For example, the architecture was used to interface with
NLR’s ATC Research Simulator facility to support research
studies focusing on capacity and noise impact of new ATC
concepts, with air traffic controllers in-the-loop and real-
time visualization of the noise impact.

2. STARTING POINT

DFS had the task to realize a publicly available Internet
service showing aircraft movements in the vicinity of
German airports. Currently DFS operates a monitoring
system at each airport, where flights (flight tracks and
administrative information) are stored in a database. The
information is used to correlate complaints about aircraft
noise to flights. Implementing a publicly available Internet
service showing where and how planes fly is an extension
to the noise abatement process and also increases the
external communication.

For building such a service DFS described specific and
demanding requirements for:

– Integrity, data published must have an accuracy
similar as the airport’s local flight monitoring system
(reference system)

– Security,
• deliver information to the general public with half

an hour delay
• shield company systems from the outside, using

a one way communication channel to the web
server

– Privacy, encryption of specific data
– Functionality,

• show near real-time aircraft movements and
history flight paths

• Human Machine Interface must not have the look
of an ATC display

However, at the start of the project there were many
uncertainties such as: what information has to be shown,
for how many airports, what are the data sources, how will
the HMI look like, do all the airports have the same
requirements. So from a system designers perspective
there was a need for a system architecture capable of
fulfilling a secure transfer of target aircraft position data to
the Internet in a flexible and extensible way.

603

3. SYSTEM ARCHITECTURE

The system architecture is based on a three-tier model
(see figure1).

 Input
 processor

CCS

TDS

 Data
 filtering
 and
 Distribution

 Data
 acquisition

 Server
 processor

TDS

Client

Client

Internet

ADS ISS

CCS

secure insecure

FIG 1. System Architecture

This architecture basically consists of a client server
architecture extended with a third tier responsible for
gathering and delivery of data. The following systems and
main functionality are involved:

– ADS, the acquisition and distribution system at the
back-end, responsible for:
• connecting to and collecting data from Target

Data Sources (TDS) such as flight tracking
systems, raw radar data and flight administration
data suppliers

• delivery of data to be published via a uni-
directional communication channel to the ISS

– ISS, the Internet Server System responsible for:
• Receiving and storing data from ADS
• External delivery of data to CCS

– CCS, the Client Customer Systems. These are the
end-user systems (PC) connecting to the ISS,
retrieving data (and application) and displaying all
data to the end-user. CCS provides the HMI.

The three-tier model supports an architecture of separate
independent components where changes in requirements
will be isolated to certain components/tiers. To service and
implement a flexible system architecture also design
patterns are applicable such as:

– Program to an interface and not to an implementation.
Generic classes, such as flight(s), track(s), plot(s), are
based on a hierarchy with a root class defined as an
abstract class/interface defining only the method
signatures. All derived classes implement these
methods according to specific needs.

– Observer pattern to define a one-to-many
dependency between objects so that when one object
changes state, all its dependents are notified and
updated automatically.

– Data Access Object pattern to abstract and
encapsulate all access to (external) data sources. The
DAO manages the connection with the data source to
obtain and store data.

The next section addresses in headlines each system and
related main components.

3.1. Acquisition and distribution system

The data acquisition and distribution system (ADS)
consists of the main components Data acquisition and
Data filtering and Distribution.

3.1.1. Data acquisition

To realize a service that supports tracking of aircraft
movements the system needs a target data source
delivering aircraft position data. The basic equipment for
this is a unit delivering raw radar messages in a
standardized surveillance format such as ASTERIX [1].

However, using these raw radar data messages directly
has some disadvantages, such as:

– Data suffers from inaccuracies due to:
• Reflections, signal propagates via high buildings

for example
• Outliers, incorrect radar measurements
• Gaps, aircraft is temporally not tracked because

SSR modeA antenna on the aircraft is hidden for
the radar

– General public gets the raw radar data and can get
insight in the (proper) functioning of company
surveillance data and systems

– Display update rates faster than the turnaround time
of the radar are not possible

These disadvantages can be eliminated by using a flight
tracking system, such as NLR’s flight tracking and aircraft
noise monitoring system FANOMOS which is currently
operated by DFS at German airports [7]. Such a system
uses a flight track reconstruction module where raw radar
plots are converted into smoothed flight tracks using a
sequence of outlier check, skipping the incorrect radar
measurements, followed by a smoothing and data
reduction step based on B-splines [2]. The resulting
polynomial flight track can be used to generate aircraft
position data at any time during the duration of the flight
track.

There is time for applying this kind of smoothing algorithm
because of the security requirement for having a certain
time delay before real-time position data gets propagated
to the Internet. To implement this smoothing technique,
NLR’s flight track reconstruction module was used.

Within the flight track reconstruction module raw radar
plots are received and organized into separated raw flight
tracks based on equality of identifier (for example SSR
modeA code) and on time. In case it is the first plot, a new
raw flight track structure is created; otherwise the plot is
added to the existing flight track. At each turnaround of the
radar the collection of raw flight tracks is checked for
growth. In case no data is received anymore for a certain
flight (Normal track closure condition: i.e. aircraft has
landed or has left area of interest), the raw flight track will
be further processed: sequence of outlier check and B-
spline curve fitting.

The produced polynomial flight track is stored, and its raw

604

flight track representation is removed from the raw flight
track collection. However, there will be circumstances
under which this reconstruction will start too late, beyond
the required delay time. This happens when the flight route
and thus the flight duration is longer than the required
delay time. To guarantee in time delivery of all aircraft
position data, the criteria for activating the flight track
reconstruction were extended with a time based condition,
see figure 2. Every n minutes (e.g. 5 minutes) each raw
flight track within the raw flight tracks collection is
submitted to the flight track reconstruction module
producing updated growing track segments. The resulting
track segments are made available to the plot generator in
a way that existing track segments will be overwritten.
Finally, the plot generator is able to generate position data
at time t using the B-spline algorithm.

n

 Normal closure:
 End of track

n n

n is time between
track segment
generations

 Time based
 closure

time

 raw
 tracks

FIG 2. Track segment generation

To support not only aircraft movements derived from a
flight tracker module, but also other movements such as
real-time radar plots, a loose coupling between the
consumer and the data source implementation is needed.
The DAO design pattern is applied to handle this data
source abstraction and encapsulation. Figure 3 shows a
consumer (RTPlots) and a producer (Collect
Tracksegments) communicating via a shared data source
(RTplotsDS), where the specific data source
implementation is created via a factory.

Collect
Tracksegments
 Ds = Create DS
 Ds.putData

RTplots
 Ds=Create DS
 Ds.getData

Datasource
factory

creates

RTplotsDS
 getData
 putData

DataSourceable

implements

Create with
”RT flavour”

Create with
”RT flavour”

uses
uses

FIG 3. DAO Pattern and Interfaces

The aircraft movements are delivered as generic plot
objects consisting of general attributes such as position,
timestamp, speed, identifier etc. The plot objects are part
of the generic object model for flight(s), track(s) and
correspond to the design pattern of programming to an

interface and not the implementation. Besides of radar
data sources other kind of data sources must be consulted
such as databases containing flight tracks and flight
administration data. Flight administration data are
collected with the purpose to extend plots with flight details
such as aircraft type.

3.1.2. Data filtering and distribution

The data filtering and distribution component is
responsible for:

• Filtering of data
• Delivery of filtered data to the Internet Server System

One important requirement is the shielding of company
systems. The data acquisition and distribution system
ADS, part of the secure company environment, fulfills an
important role in this. The ADS communicates to the
outside by means of a uni-directional channel. This means
ADS will setup a communication link towards the Internet
Server System ISS, where the ISS will only listen. There is
no way where the ISS, located in an insecure environment,
can request for information to the ADS.

To get a flexible way of data communication, objects and
data will be converted into XML-messages. The transfer
characteristics depend on the kind of object/data to be
sent and can be divided into dynamic objects, such as
plots, flights, tracks, noise, and the more static data like
geographical background images that will change
occasionally. Besides the distinction in dynamic and static
objects/data, a further discrimination is made according to
the priority of objects to be sent. Real-time data needs a
high send priority. Looking to the XML-based data stream
the main data element will be real-time radar plots where
gaps are filled with lower priority data elements such as
flight tracks.

Before objects and data travel to the Internet Server
System they flow through a chain of filters [3]. The filter
chain fulfills the task of what and how things will be
delivered. There are filters that support encryption of
attributes of objects, filters for geographical transformation
for example from UTM coordinates to WGS84
latitude/longitude coordinates, and filters for object
skipping based on time and unique identification (e.g.
callsign, SSR modeA). The chain of filters makes the
system architecture flexible and well organized. Flexible
because new filters can easily be added to the chain (not
in runtime), and existing filters can be activated or
deactivated in runtime. Well organized because all
transformations are located at one place just before
distribution.

A separate controller tool, ran by an authorized user
(administrator), controls how filters operate within the
chain. The controller settings and other parameters whose
values may vary depending on the airport are stored in a
permanent store. All parameters are stored in a kind of
tree starting with a root, consisting of company (e.g. DFS),
airport identifier (e.g. EDDF), system selector (ADS, ISS,
CCS), data tag (e.g. flightplan, map), and finally the
attributes. To support fast responses to clients a memory
caching is available that will be refreshed in case
administrative parameters have been changed.

605

A special treatment exists for the background images
needed within the visualization system (see 3.3). Original
background images are transformed into a map structure
according to Google’s KML format [5]. The KML standard
is XML based and easy to parse within the visualizer. The
ADS also supports a sub task for splitting images into
smaller segments based on a certain tile size. Each image
or tile will be stored as KML XML definition file containing
descriptive information such as image boundary box
coordinates and a reference to the file with binary contents
representing the real image/tile. By doing the image
processing at the ADS the ISS load will be reduced.

FIG 4. KML XML example

To support some kind of load balancing on the Internet
Server systems, the data filtering and distribution
component supports multiple data feeds to multiple
Internet Server systems.

3.2. Internet server system

The Internet server system (ISS) consists of two main
components. The first is the Input Processor

Permanent
store

Input
Processor

From
Acquisition and
distribution system

Long term
store

Transient
store

FIG 5. Input Processor component

3.2.1. Input Processor

The Input Processor is responsible for:

• Retrieving data from the ADS acquisition and
distribution system

• Storing the data in one of three different data stores

The data retrieval from the ADS Data acquisition system is

a one-way data stream. The input processor listens for
incoming connections and parses the retrieved XML based
data stream. Depending on the type of data, the data will
be stored in one of the available data store families:
transient, long term or permanent.

3.2.1.1. Transient store

The most volatile data store: the data will be essentially
stored in memory. The data which qualifies for the
transient store must have a temporary and/or temporal
nature, such as real-time flight information, or information
for the Client system which is updated within a reasonable
timeframe. Whether a data type belongs to the Transient
or Long term store depends also on the consequences of
a possible crash of the physical Internet server system. If
data loss could be a problem, the data should be stored in
the Long term store.

3.2.1.2. Long term store

Data which will be sent only once (or must be protected
against data loss) must be stored here, because of the
one-way data stream the Internet Server system has no
means of requesting a resend of data. It is the
responsibility of the Input processor to detect data loss.
Candidates for this type of storage would be flight data
history which can be searched by the Client system.

3.2.1.3. Permanent store

Candidates for the permanent store are static data such as
landscape maps or coordinate data which aren’t subject to
change in a nominal situation. In general it will receive
data which will be stored in case of structure changes.
Most of the time the (re)sending of this type of data is
triggered by human (Administrator) intervention.

It is the responsibility of the Data filtering and Distribution
component to ensure that the data streams are optimized
according to their size. When for example a lot of data is
sent in a small timeframe there is a possibility of data loss.
The Input processor has no means to request for a
resend.

3.2.2. Server Processor

The second component is the Server Processor

Permanent
store

Server
Processor

To
Client

Session
store

Transient
store

Long term
store

FIG 6. Server Processor component

606

The Server Processor is responsible for:

• Maintaining communication with the Client
• Delivery of data to the Client
• Preventing “bad boy” Client to hog up the external

distributions

The Server Processor only acts on requests from the
Client (pull algorithm). The Client takes the initiative to
start a session. The session will be put into the Session
store.

Session Store

Visitors History

Current Visitors
Visitor

Visitor

Bad boy

FIG 7. Session Store

The Session Store is responsible for:

• Maintaining a visitor history (for statistics)
• Maintaining a list of current visitors
• Managing potential “Bad Boy” Clients
• Logging information

A “Bad Boy” Client is a non official Client which
communicates with the Server Processor. Typically this
will be a third party created Client. The Session Store will
fingerprint the information send from the Client, and tries
to detect invalid messages. When such is detected the
visitor will be forced to logout.

The session store will also provide detailed logging
information about the sessions. First there is the “current
visitors”, a simple list of the current users of the system.
Besides that the computational load of the system is
logged. There is also a more long term logging facility
which logs all relevant communications. The format being
used is the Apache Combined Log Format [6]. This format
is a standard and often used for Web server access logs.
The advantage is that standard tools can be used to
analyse the written log files.

The Server Processor delivers the data of all three data
stores to the Client.

3.2.2.1. Transient store

The Client will frequently ask (pulls) for information from
the Transient store, the frequency itself is part of the
Transient store. The Server processor tracks for every
session if there is new data available. In this way the data
is send only once and the Server processor load is kept
within limits. The type of communication is based on a
RESTful web service, which essentially means that the
Client sends HTTP POST URL requests, and the Server
processor replies with XML documents.

3.2.2.2. Long term store

The Long term store is accessed for more static data, e.g.
summary aircraft tracks. The Client first sends a REST
request for a list of available long term store Unique
Identifications (UID). For example: arrival flights of a
certain airfield in a specific time range. After that the Client
will ask for the content data for every UID. The challenging
task for the Server processor is to split and construct e.g.
aircraft tracks according to the given timeframe.

3.2.2.3. Permanent store

The permanent store contains timeless data, e.g.
background maps. The Client will typically ask for these
data in the startup phase, or when more structural change
is required, e.g. show a different map. Currently the
permanent store is responsible for:

• storing and sending map structure
• storing and sending map representation

Map representation

Map structure data

FIG 8. Map directory structure

The map structure data is constructed and delivered by
the ADS Acquisition and Distribution system. This
prevents extensive calculations for the Internet Server
system. The standard used to define the map structure
data is Google’s KML (Keyhole Markup Language) format
[5].

The KML standard is XML based and will be easy to parse
for the Client system, which will be Java v1.5+ (embedded
XML support). By choosing the KML standard it is fairly
easy to perform integration with other KML based
applications, such as Google Earth.

The KML separation in the Internet Server system is
based on company (e.g. DFS), the airfield (e.g. EDDF)
and map type (e.g. Normal/Sat). The Data Distributor will
create extra zoom levels (XML files).

The map representation will be the binary content of the
map structure data. The data is already „tiled“ by the
Acquisition and Distribution system. The map
representation server has the possibility for caching the
data in memory in case of heavy load on disk access.

3.3. Client

The Client system consists of three parts:

• Data retriever
• Buffer manager
• Visual manager

607

Data retriever

Buffer manager

Visual manager

From Internet
Server System

FIG 9. Client system

3.3.1. Data retriever

The Data retriever maintains the communication with the
Internet Server system. Depending on the view of the
Visual manager (which data display(s) are enabled) it will
ask for relevant data. When data is required from the
Transient store it will first retrieve the preferred
communication message interval, this to prevent from
becoming a “bad boy”. The “bad boy” factor is related to
the update time of the requested data. Experiments were
conducted and the conclusion was that this factor should
be half the value of the update time. E.g. when real-time
aircraft data is requested and their plots are updated every
10 seconds, the factor will be 5 seconds. This will cover
possible “hick-ups” in the connection to the Internet Server
system. The transient data is transferred to the Buffer
manager.

The Long-term store data is retrieved sequentially. After
every transfer a small delay is build in, in order to prevent
a possible server overload (when multiple Clients are
retrieving long-term data). The long term store data is
directly send to the Visual manager, because of its non-
temporal state there is no reason to pass it to the Buffer
manager.

The Permanent store data, such as background maps, is
retrieved as bulk data from the Internet Server system.
The Server processor component involved has no Session
store attached and acts like a session-less REST
interface. The data is directly sent to the Visual manager.

3.3.1.1. Communication

The Client communicates with the Internet Server system
using HTTP URL calls (POST calls). POST is being used
instead of GET because of possible message size
limitations. An example POST body would look like:

?tag=Cmd=GetObjects&tag=Root=3dflight_rt%3A
%2FDFS%2FEDDF%2FOnline&

The information is URL encoded and is equal to the format
used for URL GET calls. This example asks for aircraft
position data from the transient store (Online) of airfield
EDDF. The Internet Server replies with a text/xml
content type document; see figure 10.

FIG 10. Server reply with aircraft position data

3.3.2. Buffer manager

The buffer manager is responsible for a fluent feed of data.
It will buffer the data to eliminate lagging effects of the
communication between the Client and the Internet Server
system (i.e. delays in Internet traffic). The buffer time itself
is fixed and will remain so during the lifecycle of the
system. Currently only the data of the Transient store is
send to the Buffer manager.

3.3.3. Visual manager

The visual manager is the HMI and represents the actual
presentation of all data to the user. It consists of four main
parts:

• Transient store data display
• Long term store data display
• Options and info display
• Permanent store display (KML viewer)

FIG 11. Composition of the displays

3.3.3.1. Transient store data display

This data display presents the data from the Transient
store. How it is displayed depends partly on the data of the
Option and info display. Because of the temporal
properties of the data the HMI checks the state after every
update of the Transient store. For example, the user can
select data which in time will be removed from the display.
Any extra data shown in the Option and info display are
then removed also. The Observer design pattern is used
to handle this kind of one-to-many dependencies.

608

The prime example of the Transient store data is shown in
figure 12. Aircraft data are presented to the user as aircraft
symbols with a certain heading.

FIG 12. Transient store data display

3.3.3.2. Long term store data display

This data display will present the data from the Long term
store. Like the Transient store data display its presentation
depends partly on data of the Option and info display. An
example of the Long term store data display is given in
figure 13, showing flight tracks.

FIG 13. Long term store data display

3.3.3.3. Option and info display

The option and info display holds the GUI elements to
control the application and to show secondary information.

Option displays contain interactive GUI elements which
control the look or behaviour of the application. The Info
display has no interaction and only shows data about the
total context or the currently selected object. The content
of the info displays are retrieved from the Transient store
and can be changed by the Administrator.

3.3.3.4. Permanent store display (KML viewer)

The permanent store display is basically a 2D KML viewer.
Its primary task is to show a map on which the Transient
store data and Long term data displays can render their
information. The Permanent store display simulates the
behaviour of Google Earth in two dimensions.

3.3.3.5. Pluggable displays

The Visual manager can hold any number of data
displays, so it is possible to have multiple data displays
synchronized to one and the same Data retriever.

The additional display could display the data in e.g. 3D, or
show the data in their numerical presentation. The Client is
responsible for sending all data to the pluggable displays.

4. APPLICATIONS

The generic system architecture was used as a basis to
develop the air traffic Internet service for the DFS. This
publicly available service offers functionality for publishing
the near real-time traffic picture in airspace and the
archived summary flight tracks of the past. This service,
called STANLY_Track [9], is currently deployed for seven
German airports. Besides of this operational service other
domains and applications were explored.

With relatively low effort the system was extended with a
noise calculation and visualization module. For each real-
time aircraft position or flight track a simplified fast noise
calculation model is activated. The noise results are added
to the plot/flight track. This application was further
explored at NLR by connecting to NLR’s ATC Research
Simulator (NARSIM) facility. Interfacing to NARSIM
enables research studies focusing on noise impact. The
connection provides a fast-time visualization of noise
impact for simulated traffic, and shows impact of changes
in flight route and procedure.

It is also possible to use the application data as a
continuous feed of aircraft movements which can be fed to
other applications such as Google Earth. By combining the
data of multiple airports it is possible to get an overview of
the air traffic for larger areas.

5. CONCLUSIONS AND FUTURE WORK

NLR developed a flexible framework that has proven in
real practice that it can be used to implement services to
make ATC data available to the Internet public. In close
cooperation with the DFS the so-called STANLY_Track
application was developed dealing with the constraints for
bringing ATC data from the company to the wide Internet.

As part of future work, the authors foresee extension of the
framework to other domains (emission, external safety)
and environmental issues as prediction of traffic, noise.
Also further developments can take place related to the
KML-viewer to view elements as tracks, plots and noise
which have to be defined by means of KML.

6. ACKNOWLEDGEMENTS

This work was carried out by the National Aerospace
Laboratory NLR in the Netherlands in close cooperation
with the Deutsche Flugsicherung DFS. Many thanks are to
the employees of the Lage- und Informationszentrum LIZ
of the DFS for their support and their initiative for
introducing such a service as the first one in Europe.

609

7. GLOSSARY

ADS Acquisition Distribution System
ATC Air Traffic Control
CCS Client Customer System
DFS Deutsche Flugsicherung DFS
DAO Data Access Object
HMI Human Machine Interface
ISS Internet Server System
KML Keyhole Markup Language
NLR National Aerospace Laboratory
SSR Secondary Surveillance Radar
XML Extensible Markup Language

8. REFERENCES
[1] ASTERIX documents available at Eurocontrol web

site:
http://www.eurocontrol.int/asterix/public/standard_pag
e/documents.html

[2] Pavlidis, T, Algorithms for Graphics and Image
processing, Bell Laboratories, Springer-Verlag,
Berlin-heidelberg, 1982.

[3] Flow-based programming
 http://en.wikipedia.org/wiki/Flow-based_programming
[4] RESTful web service http://www.xfront.com/REST-

Web-Services.html
[5] Google KML definition available at the Google api

website:
http://code.google.com/apis/kml/documentation/index.
html

[6] Apache combined log available at the Apache website
 http://httpd.apache.org/docs/1.3/logs.html#combined
[7] Flight track and Aircraft Noise Monitoring System

FANOMOS, see NLR web site:
 http://www.nlr.nl/documents/flyers/f158-04.pdf
[8] The Java web site: http://www.java.sun.com
[9] STANLY_Track tool hosted at the DFS web site:

http://www.dfs.de

Johan Weggemans was born in the
Netherlands in 1964. In 1987 he received the
Bachelor degree in technical Informatics from
the Informatics Institute for Higher Education
Hogeschool Drenthe.
Since 1989 he is software engineer at the
National Aerospace Laboratory NLR. His work
focuses on development of information
systems to determine the impact of aviation in

relation to environment and safety. These systems are used for
environmental research studies at NLR, but have also been
realized as turn-key projects for airports (civil, military), the
Department of Civil Aviation and Air traffic Control in the
Netherlands and abroad. Examples are systems for flight track
monitoring, capacity and noise management, and for visualization
of air traffic and environmental impact either as stand-alone or
within a distributed client/server enterprise or web environment.

Jacco van Weert is Senior Software
Engineer at the National Aerospace
Laboratory NLR. He has a Bachelor degree
in computer science from Higher Education
Hogeschool Enschede. His work covers the
whole computer science arena, from 3D
visualization systems, web based services
and applications to data models and content
repositories.

Jacco was born in the Netherlands in 1968.

610

	––––––––––––––––––
	< previous page
	> next page
	––––––––––––––––––
	Search
	Print
	Print Current Page
	––––––––––––––––––
	Show Thumbnails
	Hide/Show Toolbar
	Hide/Show Menu
	––––––––––––––––––
	© 2007 DGLR
	www.ceas2007.org
	www.dglr.de
	––––––––––––––––––

	host: 1st CEAS European Air and Space Conference
	paper#: CEAS-2007-327
	paper_title: A Generic Platform for Building Air Traffic Environmental Internet Services
	authors_short: J. Weggemans, J. van Weert

