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OVERVIEW 

In the recent years the requirements on the maximum 
allowed deformation of optical instruments have 
continuously been tightened, from mm to a μm or even nm 
scale. Thus the well known FEM Tools for structural 
analysis have to be improved. A more detailed numerical 
model (meaning an increase in terms of degrees of 
freedom) - will increase the level of realism. However an 
increase in the degrees of freedom only reduces the 
discretisation error. An improvement of the numerical 
model can only be reached by the integration of 
uncertainties in structural analysis, i.e., including the lack 
of knowledge or natural scattering in, e.g., material 
properties, load cases, manufacturing & integration 
processes. 

This article presents the efforts made by Astrium GmbH to 
introduce a stochastic simulation process for the structural 
design of optical instruments. The paper presents the 
stochastic simulation and two examples of the successful 
application in the recent years. 

1. INTRODUCTION 

Space structures are designed to be compatible with large 
variations in the design parameters, e.g., deviations in the 
environment as well as scattering in material properties, 
manufacturing or integration tolerances. Since the consi-
deration of such uncertainties during the whole design pro-
cess is unfeasible, up to know, a common engineering 
approach is to reduce the problem to a deterministic level 
by defining “worst case” scenarios that cover all (or most) 
variations of the design parameters. 

While well known and commonly used, this method has 
three major drawbacks. First, the worst case has to be 
identified, which especially in complex systems is not 
straight forward. Second, once the optimum design for a 
particular worst case has been identified, such design 
represents “the best” design merely for the fixed conditions 
of the made assumptions. In the most fortunate cases, 
“the best” design is at least over-engineered; if “the worst” 
case was not properly chosen, the design could even 
show insufficient performance. Which leads to the third 
drawback; the effect of the uncertainty introduced into the 
system as well as the degree of conservatism is not 
quantifiable. 

With the request for further increased resolutions of space 
telescopes also the requirements for pointing accuracy 
have increased in the recent years. While Hubble had a 
pointing accuracy of 0.007 arc-sec, the requirements for 

the next generation telescope, the James Webb Space 
Telescope (JWST) will even be further increased. 
Increasing requirements also mean increasing accuracy in 
the analyses during the design phase.  

A more detailed numerical model (meaning an increase in 
terms of degrees of freedom) - will increase the level of 
realism. However an increase in the degrees of freedom 
only reduces the discretisation error. An improvement of 
the numerical model can only be reached by the 
integration of uncertainties in structural analysis. 

The developments in the computer technologies, which 
are leading to increasing computational power, provide the 
ground for a better modelling and analysis capability. On 
contrary to the well known deterministic approach, non-
deterministic based methods can handle uncertainties and 
variability in a rational way. Since 1990’s several different 
methods and approaches had been proposed and 
evaluated by the scientific community [1, 2]. The most 
popular approach known as Monte Carlo Simulation, also 
referred to as stochastic simulation [3], was chosen by 
Astrium because of its easy implementation with the 
existing infrastructure. Uncertainties are expressed as 
random variables and following their distribution many 
realizations of the problem are generated. Each realization 
is leading to a deterministic problem which can be solved 
by well developed deterministic FE code. The solutions 
can be post processed to obtain statistical results like the 
mean value, standard deviation, correlation, etc. Thus, 
instead of taking a single value as sufficient for the 
representation of the system behaviour, a greater number 
of values, each associated with a certain probability of 
occurrence, are calculated. The result is a more realistic 
representation of the physical system with additional 
information for the decision maker. Furthermore, this 
approach enables the selection of a robust design instead 
of the optimum design. 

This article presents the experience gained by Astrium in 
the field of optical instruments. In the first part the 
stochastic simulation is shortly explained. In the second 
part two examples are presented.  

2. STOCHASTIC SIMULATION 

2.1. Simulation 

The Monte Carlo simulation is a method to solve a 
probabilistic problem with an indirect approach. First the 
uncertain variables itself have to be selected and a 
random distribution has to be defined. This first step is part 
of the pre-processing. Then from the specified input 
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distribution, samples are generated. This step is the first 
part of the Monte Carlo simulation (MCS) and is called 
sampling. Each input sample is a deterministic realisation 
of the problem, which is solved independently. This has 
the big advantage of enabling parallel processing. Each 
deterministic analysis results in one system response. All 
of these outputs are collected to form the so called meta 
model. This meta model is the result of the stochastic 
simulation and can be used for a statistical analysis. 

The whole simulation process includes additional steps to 
verify, e.g. the suitability (or stability) of the model for the 
stochastic simulation. For the application in the 
engineering process a stochastic simulation consists of 
four parts: the model health check (MHC), the 
randomization, the stochastic simulation itself and the 
evaluation of the results [4, 5]. This process is depicted in 
Fig. 1. 

2.2. Computational effort 

The number of samples should be chosen as a balance 
between the desired accuracy of the stochastic results and 
the required computational effort. 

A reduction of the sample size can be obtained by 
implementing a criterion to optimise the filling of the input 
space with samples. One example is the Latin Hypercube 
Technique or its derivate the Updated Latin Hypercube 
Technique [5]. The input space is divided into subsets of 
equal probability. In one population a subset of each 
random variable is combined with all the other variables 
only once. 

Will [7] suggests a sample size of: 

(1) number of samples = 2 (input + output). 

Mary [8] and Marchante [9] present stochastic simulations 
of large scale FE models using 100 and 200 samples. 
These assumptions are also verified with the in house 
experience. It seems reasonable to use 50 to 100 samples 
for a rough estimation of the correlation structure. 
Equation 1 should be fulfilled to obtain a good correlation 
structure. For large scale models, an upper bound of 400 
samples seems reasonable but should be verified. 

With modern computation cluster the computation time is 
no longer an obstacle of the stochastic simulation. Often 
the number of available solver licences is much more 
restrictive. Assuming one solver licence only, the 

computation time for one single analysis should not 
exceed 5 up to 10 minutes in order to reach a reasonable 
number of analysed samples over night.  

2.3. Statistical Results 
The evaluation of the statistical results leads to mean 
value and standard deviation of the performance 
parameter, quantifying the influence of the uncertainty on 
the system performance. Thus the degree of conservatism 
compared to a fixed requirement can be estimated. The 
arising dispersion of the performance parameter can be 
described mathematically by its distribution function. As 
the determination of the statistical parameters results from 
a finite number of samples, the results are not 
determinable definitely. This error can get assessed by the 
means of statistics by calculating confidence bounds for 
the mean value and the standard deviation. The assumed 
distribution function gets tested by the χ² adaptation test. 
This procedure corresponds to the standard methodology 
of a statistical analysis and is well investigated and 
documented for example in Hartung [11]. 
Additionally, the results can be used to estimate the 
robustness. Robustness is understood as a measure of 
uncertainty. Uncertainties introduce a variability Δx into the 
inputs variables of the system. The result is the scatter in 
the output values Δy. Thus instead of the system 
behaviour itself, the aim is to characterise the system 
behaviour due to uncertainties. Will [10] defines criteria for 
the evaluation of robustness. This list is supplemented 
with ideas mentioned by Marczyk [2]: 

• exceedance of limit values, 
• sudden changes of response quantities, 
• occurrence of system instabilities, 
• complexity, 
• shift of the mean values, 
• scatter of relevant parameters. 

These criteria can be grouped in two parts: scatter and 
shape of the response [5].  

First, the scatter itself and the bias of the mean values 
quantitatively characterize the effects of uncertainty on the 
system performance. A system with a low scatter of its 
responses has a high quality. Second, the shape or nature 
of the response can be used for characterization as well 
as to gain knowledge about the system itself. This is called 
vulnerability of the system. Vulnerability has to be 
understood as tendency to instability of the system 
performance of which complexity is one part. A high 
vulnerability combined with a low quality is a non-robust 
system. Vice-versa: a system with a high quality and low 
vulnerability is a robust system. 

A closer insight in the system behaviour, thus a better 
understanding how much every input variable actually 
influences the system, is possible with the correlations and 
the regressions analysis. 

The covariance can be a measure of the independence of 
two variables. The percentage of the calculated 
covariance on the maximal possible product results in the 
correlations coefficient: 

Figure 1. Stochastic simulation process. 
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If the relation between X and Y is totally linear the 
covariance has exactly the size of the product of the 
standard deviation (|rxy| = 1). The covariance can also 
have a negative value which points at a negative linear 
relation than rxy is less than zero. If the covariance is much 
less than the product of the standard deviations the 
relation between X and Y is either nonlinear or not existent 
(rxy=0). 

If the two predictors are correlated with the response 
variable, but also correlated with themselves, the 
interference between them needs to be eliminated. If ryx1 
and ryx2 are correlations coefficients of the predictors x1 
and y1 with the response variable y and rx1x2 the correlation 
between them, the resulting correlation of x1 and x2 with y 
is: 

(3) 

rY x1 x2,( )
ryx1

2 ryx2
2

+ 2ryx1 rx1x2⋅ ryx2⋅−
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−  

While the correlation analysis determines a quantitative 
degree of a relation, with the regressions analysis it is 
possible to find a functional context between the predictors 
(input variables) and the response variable. 

If the relation between Y, X1, X2,…,Xn is investigated, it is 
possible to assume the following regression function: 

(4) ( ) ikikiikiii xxxxxy εβββα +⋅++⋅+⋅+= KK 22111 ,,  

Further details about the multiple regression and 
multivariate statistics in general can be found in various 
textbooks, like Hartung [11]. 

2.4. Software Tools 

The Monte Carlo Simulation uses deterministic 
simulations, thus the existing solvers can be used and the 
described simulation process can be easily integrated in 
the existing simulation infrastructure.  

For the stochastic simulation several commercial tools and 
tool packages like iSightTM, ST-ORMTM or RobustDesignTM 
are available. RobustDesignTM by MSC was chosen 
because it is special designed to interact with 
MSC.PatranTM / MSC.NastranTM. To increase the flexibility 
of the simulation environment and to include and add 
additional calculations a MatlabTM toolbox was created as 
depicted in Fig. 2. The so called Robust Design Toolbox 
(RDT) is used to link the different FEM Tools and for the 
result evaluation.  

The finite element model created by MSC.PatranTM is 
handed to the RDT for pre-processing. This step is 
necessary because of a format incompatibility between 
MSC.PatranTM and MSC.RobustDesignTM. 

MSC.RobustDesignTM is used to specify the uncertainty of 

the random variables and to generate the samples. 
MSC.RobustDesignTM can export the samples directly to 
MSC.NastranTM input files which are passed back to the 
simulation part of the RDT. 

In the next step all available results have to be collected. 
Therefore the results available in MSC.RobustDesignTM 
are exported to a *.csv file. The RD Toolbox is able to load 
this file and create a preliminary meta model. Additional 
output data can be added by directly accessing the 
MSC.NastranTM results with the aid of the RDT. 

In the final step the meta model can be analyzed using 
different tools available within the RDT: 

• creation of excel worksheet with statistical values 
of all parameters, 

• histogram, pdf, cdf, scatter plots, 
• correlation map, correlation plots, 
• principal component analysis, 
• robustness evaluation, 
• specific output for the modal effective mess. 

Additionally, using the MatlabTM environment, the post 
processing can be arranged to the specific needs of the 
problem actually solved. 

3. CARTOSAT-2 CAMERA STRUCTURE 

The first step was the application of the proposed 
stochastic simulation to a well known problem, with the 
objective to demonstrate the advantages. To this end the 
camera structure of CARTOSAT-2 was chosen. During the 
qualification test of the structure the dominant influence of 
the upper and auxiliary titanium rings on the thermal 
deformation was exceeding the predictions and an 
additional compensation was added to the auxiliary ring. It 
is the aim of this simulation to show that this influence 
could have been discovered with a stochastic simulation. 

The telescope consists of two mirrors, a camera and the 
supporting structure. It is 1 273mm high and has a total 
mass of 46kg. The cylinder has a diameter of 729mm. The 
model consists of about 36 000 elements. The aim is to 
calculate thermal deformations caused by a 10K load. An 
important factor for the optical performance of the 
telescope is the relative displacements between the 
mirrors and the camera. The mirrors and the camera itself 
are not included in the model. Instead planes for the 

Figure 2. Flowchart of the Robust Design Toolbox (RDT)
developed at Astrium. 
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primary mirror (PM), secondary mirror (SM) and camera 
(FP) are defined. The geometric tolerances and 
uncertainties in the material properties where randomized 
with conservative assumptions of uniform and normal 
distributions. 

Two simulations with 100 observations each (samples) are 
performed: one without and one with the compensation. 
The computation on the Astrium Linux cluster takes less 
than 2 minutes per sample, i.e., about 3h for one 
stochastic simulation with one license. 

The results of the deterministic analysis and the 
measurements are summarized in Fig. 3. D/H denotes the 
displacement between the primary and secondary mirror 
(see Fig. 4). For simplification only the random variables 
for the primary mirror base plate are selected and thus 
only the absolute displacement of plane H varies. The 
uncertainty inherent in the original structure without the 
compensation (green) causes the displacement D/H to 
vary of about 12μm. The standard deviation is 1.7μm. With 
a low probability of about 3% the requirement can be 
violated. The comparison with the measurements shows 
that the structure does not correspond to the nominal 
case. On the other side the measurements are still in the 
range predicted by the simulation. This demonstrates that 
the simulation is a better representation of the system 
behaviour than the analysis [5]. 

Adding the compensation layer shifts the relative 
displacement. This demonstrates the influence of the 
auxiliary ring. The standard deviation is reduced to 1.1μm 
which means a reduction of 35%. Thus the simulation 
demonstrates that the requirements are fulfilled even 
under the influence of the uncertainty affecting the system.  

It has to be remarked that the difference between the 
analysis and test results found in this example may also 
lay in the exactitude of the FE model. The stochastic 
simulation can only represent the physical effects included 
in the model. If the model contains simplifications which 
lead to a bias, this bias will also be included in the 
stochastic simulation. Thus the difference can also be 
caused by remaining idealizations, e.g., imperfectly 
simulated parts and junctions. 

4. JAMES WEBB SPACE TELESCOPE 

In the frame of the James Webb Space Programme, 
Astrium GmbH develops the optical bench for the 
NIRSpec (Near Infrared Spectrograph) instrument. The 
stochastic simulation shall is applied in parallel to the 
conventional design activities. The intention was to prove 
the practicability and relevance of the method for the 
design process [12]. The investigated example is one of 
the larger mirrors (300x200mm) of the optical bench which 
is susceptible to critical deformations of the optical 
surface.  

The physical displacements and deformations of the mirror 
surface have a direct interference with the optical 
performance of the mirror surface [13]. The deformed 
surface will reflect the light in a different way (see Fig. 5). It 
is assumed that the mirror bundles the light in the focus 
Fideal. In the lower part the index of refraction is too strong. 
The wave front is bended too strong, and the beam of light 
moves to the point F1. In the upper part the index of 
refraction is too weak and the light is bended less and the 
ray moves to point F2. The optical retardation between the 
ideal wave front (gray solid line) and the actual wave front 

Figure 3. Probability density function of the relative 
displacement D/H of Cartosat 2 camera 
structure for both designs with and without 
compensation layer. The black line indicates 
the results of the deterministic analysis. 

 
Figure 4. Definition of planes for the Cartosat 2 camera 

structure: Position of the primary mirror (D), 
secondary mirror (H) and camera (A). 

 
Figure 5. Definition of the wave front error, as optical 

retardation between the ideal wave front (gray 
solid line) and the actual wave front. 
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is measured in nm and is called the wave front error 
(WFE). In the lower part of the mirror the wave precedes 
(dashed line), while the wave in the upper part is retarded 
(dotted line). For the calculation of the optical analysis the 
commercial software application SigfitTM was implemented 
into the routine for the stochastic simulation.  

The relevant loads are mainly represented by a cool down 
to the operational temperature (40 K), gravity release as 
well as forces and moments caused by the manufacturing 
or integration tolerances. The stochastic simulation had to 
determine the probability that the budgets for the critical 
deformations will be not exceeded.  

The FE model is derived from the CAD model in Fig. 6. To 
improve the performance of the calculation the number of 
nodes was limited to 10000. The time for the calculation 
for 4 load cases and a sample number of 200 was about 3 
hours on the Astrium Linux cluster. The optical and 
statistical analysis caused additionally 30 minutes. 

4.1. Deriving a distribution function for the 
performance criteria 

Deformations caused by the cool down 

The cool down causes a bending effect on the mirror 
surface due to different coefficients of thermal expansion 

of the material of the main structure and the materials 
which form the coating layer on the surface. The 
conventional design assumes largely equal CTE`s. The 
question was now how sensible the deformation will 
change if the CTE values vary. Another important 
uncertainty was the hardly predictable thickness of the 
coating after the chemical vaporization and the further 
mechanical processing.  

The stochastic simulation, including the procedure for the 
statistical analysis, produces the distribution function of the 
performance criterion and the probability of remaining 
within the budget (see Fig. 7). For the investigated load 
case the probability of exceeding the budget is determined 
and the result is available for further steps. If the result is 
not satisfying e.g. if the probability of failure is too high, the 
statistical analysis may also produce the relations causing 
the dispersion to improve the design, see 4.4. 

Deformation caused by the mounting distortion 

Another interesting load case in relation with the stochastic 
approach was the deformation caused by the mounting of 
the mirror on the support structure. The pedestal of the 
mirror is mounted by the three flanges. The fabrication 
tolerance of the contact zones cause initial displacements 
and rotations in each flange (three degrees of freedom 
each), which in turn deform the surface of the mirror. Each 
contact zone consists of two opposite surfaces which have 
different angles and a different level to each other. The 
worst case would occur if the nine degrees of freedom 
have dedicated combinations of minimum and maximum 
values. It was a substantial effort to even estimate the 
worst case with conventional means. This problem can be 
avoided by a stochastic approach. The result is a 
distribution function for the investigated performance 
criterion, see Fig. 8. For the investigated load it was shown 
despite of very conservative assumptions that the arising 
deformation is far below the budget with a high probability 
[12].  

4.2. Investigation of superposed loads 

A conventional analysis allows the superposition of e.g. 
deformations caused by different loads only for static 
assumptions. In reality the occurrence of a load (e.g. a 

Figure 6. Backside view on the investigated mirror of the 
NIRSPEC optical bench for the James Webb 
Space Telescope. 

Figure 7. Probability distribution of the expected 
deformation in percentage of the budget due 
bending effect caused by the cool down. 

Figure 8. Probability distribution of the expected 
deformation in percentage of the budget due 
to mounting distortion caused by fabrication 
tolerances. 
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particular mounting distortion) and the effect (e.g. a 
particular CTE ratio) might depend on accidence as shown 
in the paragraphs above. The question is how the loads 
will statistically combine if all relevant load cases get 
superposed. In this example the superposition could be 
done by taking all possible combinations of possible 
deformations of the optical surface into account. The 
stochastic approach delivers an easier solution for this 
problem. So it becomes possible to calculate a 
performance criterion with the inclusion of the 
uncertainties of actually different load cases. The 
alternative would be the sum up of the results of every 
single load case with an approximation. Figure 8 shows 
the results for the superposition of the two load cases 
introduced above directly calculated with the stochastic 
simulation [13]. The functions demonstrated are the 
density functions, which arises of the differentiated 
distribution function. 

(5)   
dx

xdFxf )()( =  ∫
∞

∞−

= dxxfxF )()(  

Fig.9 shows the dominance of the deformation caused by 
the thermal load, which is a fundamental piece of 
information for a further optimization.  

In general the resulting density function for the superposed 
load case allows an assessment of the total performance 
of the design. This knowledge is an important basis of 
decision for the optimization of the design without the 
disadvantage of having to consider every load case apart. 

4.3. Determining the influence of critical 
parameters 

An arising problem in the application of a stochastic 
simulation is the often unknown dispersion of e.g. material 
parameters. It was proved that it is not necessary to know 
the distribution for every parameter because some of them 
have a low resulting influence. The application of the 
regressions analysis delivers a formula for the 
performance criterion which contains all gradients of the 
influencing parameters. With that formula it is possible to 
discuss the performance in dependence to a critical 
parameter.  

Figure 10 shows the expected optical performance of the 
mirror if all loads arise simultaneously in dependence to 
the ratio of the coefficients of thermal expansion of the 
material of the actual structure and the material of a 
coating layer. This ratio is the leading reason for the 
thermal deformation as derived in 4.2. In the vertical 
direction one can read the dispersion of all other uncertain 
parameters together for a particular value of the critical 
parameter. The intention of that demonstration was to 
determine how far a more precise determination of the 
material parameter would increase the expected 
performance [12]. 

4.4. The contribution to the optimization of the 
design 

The structure of the stochastic simulation allows an 
optimization without the restrictions of every single 
analysis tool. For the statistic analysis the values for the 
input variables and the observables are available as a 
meta model. Therefore the optimization can be performed 
without taking the intermediate analysis steps into account. 
For example the geometrical input variables implemented 
in MSC.PatranTM are directly comparable with the results 
of the optical analysis in Sigfit. 

The stochastic simulation produces not only the dispersion 
of a performance criterion, but also the influence of each 
parameter. This influence is represented by its gradient 
and its initial dispersion. The gradients are calculated by 
the regressions analysis and could be regarded as a by-
product of the statistical evaluation.  

The influence of the thickness of each rib of the stiffening 
on the optical performance and the mass of the mirror is 
demonstrated in Fig.11. The diverging effectiveness of 
each rib becomes comprehensible with the means of 
statistics. Therefore a statistic analysis includes an 
analysis of the gradients without any significantly 
increasing effort. 

With the information showed in Fig 11, a manipulation of 
the thickness of each rib could lead either to an 
improvement of the optical performance or a decrease of 
the mass.  

Density functions for WFE total of the operating load case

Wave front error

de
ns

ity

superposed loads

Load case: cool down

Load case: mounting distortion

Figure 9. Density function for the single load cases and 
the superposed load, directly calculated with 
the FEM. 

Figure 10. Probability of fulfilling the budget for the 
optical performance in dependence to the 
CTE ratio of two materials. 
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It has to be remarked, that the initial dispersion of an input 
parameter must also be taken into account for a further 
optimization with respect to decrease the variance of the 
performance criterion, e.g. by limiting the influence of a 
very dispersing input parameter by a change of the design. 

4.5. The stochastic simulation applied on an 
extremal problem 

Another criterion for the design of this mirror is the 
required strength to withstand the occurring stresses 
during the launch which are mainly caused by a strong 
dynamic excitation. The evidence that the design 
withstands them is made if an acceleration vector with a 
constant absolute value in all possible directions will not 
cause over critical stresses. The arising question is, in 
which direction this acceleration will cause the greatest 
stress in the design. The stochastic simulation was applied 
to determine that. The calculation was repeated for a 
stochastic two dimensional acceleration vector with the 
intention to verify the direction which causes - in that case 
- the maximum tensile stress. The angle φ represents the 
rotation in the x,y- level, the angle θ the rotation in the y,z- 
level of a Cartesian coordinate system. 

The resulting sample values form a structured picture 
which makes the run of a steady curve comprehensible, 
see Fig. 12. If this acceleration vector is used instead of 
the conventional approach, the propagated stress is about 
10% lower [12].  

A further consideration was made on the stresses 
implemented by the mounting, see above. The additional 
stress depends on the particular displacements and 
rotations of the contact zones and they are therefore 
stochastic. It was shown that the additional maximum 
stress is with 99.9% of probability only half as much as 
propagated with conventional means. Furthermore the 
material uncertainties, other geometrical tolerances as well 
as a varying stiffness of the mounting base were taken into 
account. In the conventional design they were taken into 
account by relative factors. It was shown that these factors 
do not match with the calculated dispersion. Especially the 
factor for the varying stiffness of the support structure was 

strongly overestimated.  

The maximum tensile stress propagated with the stoch-
astic simulation was after all 17% lower than with 
conventional means [12], besides the reliance of the 
propagation was increased by avoiding the inexact 
factorization of particular uncertainties. 

5. CONCLUSION 

The stochastic simulation environment developed at 
Astrium GmbH was presented and its applicability shown 
with the aid of two examples: The Cartosat 2 camera 
structure and the optical bench for the NIRSpec 
instrument. 

The first example demonstrated the additional information 
available for engineering decision with a basic stochastic 
simulation even without extensive statistical evaluations. 
With the aid of a stochastic simulation the effects of 
uncertainty due to manufacture and tolerances can be 
predicted and the conservatism or the probability of 
remaining within a budget or requirement can be specified. 

Also the second example demonstrated this simple and 

Figure 11. Demonstration of the optical performance 
improvement (Wave front error in nm) per 
mass increase for the ribs of the stiffening 
structure. 

Figure 12. Distributions of the samples in dependence to 
the angle φ and angle θ, the continuous lines 
are the result of a two- dimensional reference 
solution. 
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useful application for two different load cases. Additional 
addressed examples are the application to the 
combination of load cases or the determination of the 
influence of a known important parameter. Furthermore 
contributions to the structural optimisation were derived 
from the results of the stochastic simulation. 

The stochastic simulation adds a sensible contribution to 
the analysis of a design. The application of proved statistic 
methods made the results comprehensible and reliable. 
Even very conservative assumptions in combination with a 
statistic calculation could lead to additional information. 
The different examples demonstrated the flexibility of the 
presented approach and proved the applicability of the 
method for a wide field of engineering problems. 

The stochastic assumptions for the material parameters, 
the fabrication tolerances and for the probability of the 
arising loads can be developed further by creating 
dedicated databases. As proven, the computation time is 
no longer a difficulty of this method. Neither the theoretical 
methodology nor the difficulties caused by data transfer 
between the analysis tools represent a long-term obstacle 
for the regular application. 

Astrium plan to integrate the stochastic simulation in the 
daily design process, thus reducing the gap between 
simulation and reality. 
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