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ABSTRACT

In order to extend the applicability of numerical modelling
tools in the design process, thorough validation of the used
models is required. Uncertainty and variability are always
to some extent present in numerical simulations. Especially
in the model definition phase, lack of information or scat-
ter in material properties or environmental conditions im-
ply that a designer incorporates the possible effects of this
non-determinism into the design procedure. This can be
achieved by incorporation of non-determinism in the nu-
merical model. This work shows how model uncertainty
defined as intervals on model properties can be identified
based on a limited number of measurements. The pro-
cedure is based on numerical fuzzy analysis. By defin-
ing fuzzy membership functions for the uncertain model
properties, a large scale sensitivity analysis on the range
of the outcome of the analysis with respect to the inter-
val on the uncertain inputs can be performed. This output
range is than compared to the actual outcome of the phys-
ical testing. From this comparison, interval bounds on the
numerical model properties are derived. The methodology
is capable of handling partial initial information on proper-
ties by assigning membership function that are compatible
with the available information to the uncertain properties.
The presented procedure focuses on dynamic frequency re-
sponse function analysis. As the procedure requires an ef-
ficient implementation of the fuzzy analysis algorithm, the
first part of the paper deals with a new response surface
based interval FRF analysis technique. The procedure for
uncertainty identification is demonstrated on a spacecraft
component.

1. INTRODUCTION

In current mechanical design engineering, numerical anal-
ysis tools play an important and often decisive role in the
design process. Especially in space industry, a profound
numerical analysis of a new design can reduce the need for
prototype testing substantially, resulting in a proportional
reduction in associated costs. In order to extend the appli-
cability of numerical modelling tools in the design process,
thorough validation of the used models is required. Today’s
structural models are validated based on deterministic ap-
proaches which do not take into account the natural disper-
sion or scatter inherent to all physical mechanical assem-
blies. This results in limited confidence in the model which
can only be partially compensated by the use of safety fac-
tors. It is therefore necessary to consider the scatter as an
integral part of the model and to establish correlation and
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validation techniques which take this scatter into account.
A reliable and robust numerical model should exhibit a
high correlation with measurement data. This work con-
tributes to the development of such high fidelity numerical
models in a non-deterministic context.

An important prerequisite is the availability of non-
deterministic numerical modelling tools, i.e. numeri-
cal modelling techniques that incorporate the model non-
determinism, and are able to process the uncertain infor-
mation to non-deterministic analysis results. Over the past
decades, several methodologies are established, among
which the probabilistic approach is by far the most pop-
ular. Recent developments however have clearly indicated
that also the possibilistic concept can be very valuable for
non-deterministic numerical analysis, as it requires less in-
formation and often is computationally more efficient than
the probabilistic approaches. Two techniques are currently
gaining momentum is the context of possibilistic finite ele-
ment modelling:

• The Interval FE (IFE) analysis is based on the inter-
val concept for the description of non-deterministic
model properties. The aim of an interval analysis is
to calculate the range of possible outcomes of a nu-
merical analysis, given that some of the model prop-
erties are contained within uncertainty intervals (see
e.g. [1, 2, 3]).

• The Fuzzy FE (FFE) analysis is basically an extension
of the IFE analysis, and has been studied in a number
of specific research domains, as e.g. static structural
analysis (see [4, 5, 6]) and dynamic analysis (see [7,
8]).

See [9] for a more general overview of non-probabilistic
uncertainty treatment in finite element analysis.

Recently, an interval finite element methodology to calcu-
late envelope frequency response functions (FRF) of un-
certain structures has been developed by the authors [10].
This procedure forms the basis for the implementation of
the fuzzy finite element method. The goal of the inter-
val analysis is to calculate the envelope of the FRF taking
into account that the input uncertainties can vary within the
bounded space defined by their combined intervals. For
this purpose, a hybrid procedure involving both a global
optimisation step and an interval arithmetic step has been
developed. The resulting envelope response function gives
a clear view on the possible variation of the response in
the frequency domain. This paper increases the state-of-
use of this approach by further development of the fuzzy
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finite element method envisaging its application in non-
deterministic model validation procedures.

In section 2, the main principles of fuzzy finite element
analysis are briefly discussed, focusing on both the philos-
ophy as well as the methodology for fuzzy FRF analysis.
Next, section 3 concentrates on an efficient implementation
strategy for performing the dynamic finite element analysis
in a fuzzy context. The paper then discusses the possible
use of the fuzzy concept for interval uncertainty identifica-
tion in section 4. Finally, section 5 illustrates the method-
ology is illustrated using a numerical example from space
industry.

2. FUZZY FINITE ELEMENT METHOD FOR DY-
NAMIC RESPONSE ANALYSIS

2.1. The fuzzy finite element method
Fuzzy sets were introduced by Zadeh [11] in 1965. They’re
capable of describing linguistic and other incomplete in-
formation in a non-probabilistic way. Where classical sets
clearly distinguish between members and non-members,
fuzzy sets introduce a degree of membership, represented
by a membership function. The membership function
µx̃(x) describes the degree of membership of each element
x in the domain X to the fuzzy set x̃:

x̃ =
{
(x, µx̃(x)) | (x ∈ X)(µx̃ ∈ [0, 1])

}
(1)

If µx̃(x) = 1, x is definitely a member of x̃. If µx̃(x) = 0,
x is definitely not a member of x̃. In between, the mem-
bership is uncertain. The most used membership function
shape is the triangular shape. Such a fuzzy number with
support [a, b] – the interval for which µx̃(x) > 0 – and core
c – the point for which µx̃(x) = 1 – is denoted (a/c/b).

The objective of the fuzzy finite element method is to in-
troduce uncertainty as fuzzy numbers into the model defi-
nition, and to propagate this uncertainty to a fuzzy number
describing the corresponding uncertainty on the analysis
result. It is clear that the application of the fuzzy concept
in a numerical modelling procedure requires a procedure
for calculating the result of numerical operations on fuzzy
numbers. A possible implementation of fuzzy functions is
the α-level strategy. The intersection of the membership
function of each input parameter with a discrete number of
α-levels results in an interval xI

α = [x, x]α for each input
parameter at each α-level. Using these input intervals, an
interval analysis is performed at each α-level. The fuzzy
solution is finally assembled from the output intervals ob-
tained at each α-level. Figure 1 shows this procedure for a
function of two triangular parameters.

2.2. Fuzzy FRF analysis
Using the α-level procedure, it is clear that the fuzzy FE
FRF analysis can be implemented as a sequence of interval
FE FRF analyses. The goal of the interval FRF analysis is
to calculate the bounds on the dynamic response of a struc-
ture in a specific frequency region given that a set of model
parameters x is uncertain but bounded. The intervals on
these parameters are specified in an interval vector xI. The
methodology for the envelope dynamic response analysis
as developed by the authors is based on a hybrid interval
solution strategy, consisting of a preliminary optimisation
step, followed by an interval arithmetic step. In the first
part of this procedure, the optimisation is used to translate

the interval properties defined on the finite element model
to the exact interval modal stiffness and mass parameters
of the structure. The calculation of the envelope FRFs in
the second part is done by applying the interval arithmetic
equivalent of the modal superposition procedure on these
interval modal parameters. The final envelope FRFs have
been proved to contain only a very limited amount of con-
servatism. A brief overview of the basic principles of the
method is given in this section. The complete mathematical
description can be found in [12].

2.2.1. The deterministic modal superposition princi-
ple

For undamped structures, the deterministic modal super-
position principle states that, considering the first nmodes

modes, the frequency response function between degrees
of freedom j and k equals:

FRFjk =
nmodes∑

i=1

φij φik

φi
T Kφi − ω2φi

T Mφi

(2)

with φi the ith eigenvector of the system and φij
the jth

component of the ith eigenvector. Simplification of equa-
tion (2) yields:

FRFjk =
nmodes∑

i=1

1

k̂i − ω2m̂i

(3)

with k̂i and m̂i the modal parameters defined as:

k̂i = φi
TKφi

φij
φik

=
1

φK
ij

φK
ik

(4)

m̂i = φi
TMφi

φij
φik

=
1

φM
ij

φM
ik

(5)

with φK
i and φM

i the stiffness and mass normalised eigen-
vectors of the system.

2.2.2. Interval finite element FRF analysis
The modal superposition principle has been translated into
an interval finite element method for FRF analysis. Fig-
ure 2 gives a graphical overview of the translation of the
deterministic algorithm into an interval procedure. On the
left-hand side is the deterministic algorithm as described in
the previous section. On the right-hand side is the same
procedure translated to an equivalent interval algorithm.

The interval method consists of the calculation of the result
ranges of the sub functions appearing in the consecutive
steps of the deterministic algorithm. Therefore, the deter-
ministic algorithm is split into three sub functions. In the
first step, step 1.1, the modal stiffness k̂i and mass m̂i are
calculated for each considered mode. Step 1.2 then consists
of the calculation of the modal FRF contributions FRF i

jk.
Step 1.1 and 1.2 have to be performed for each mode that is
taken into consideration in the modal superposition. There-
fore, it is referred to as the modal part. In step 2, the su-
perposition is performed by a summation of the modal FRF
contributions.

The interval procedure follows the same outline as the de-
terministic algorithm. Each step now concentrates on the
derivation of the range of the sub functions in the deter-
ministic algorithm:
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µỹ (y)

α1

α1

α2

α2

α3

α3

α4

α4

fuzzy input

fuzzy output

deterministic

analysis at the

α4-level

interval analysis at

the α1-level

interval analysis at

the α2-level

interval analysis at

the α3-level

Figure 1. α-level strategy for a function of two triangular fuzzy parameters
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Figure 2. Translation of the deterministic modal superposition algorithm to an equivalent interval procedure

step 1.1 For all nmodes taken into account, the ranges of
possible values that the modal stiffness and mass can
adopt have to be determined, taking into account that
the uncertain parameters in x can vary within their re-
spective intervals. These correct ranges of the modal
parameters denoted by k̂S

i and m̂S
i are determined us-

ing a minimisation and maximisation over the uncer-
tain interval space xI. For numerical convenience,
the global optimisation is performed on the inverted
modal parameters, after which the obtained intervals
are inverted in order to obtain the actual modal pa-
rameter ranges:

k̂S
i =

[

min
x∈xI

(
φK

ij
φK

ik

)
, max
x∈xI

(
φK

ij
φK

ik

)
]−1

(6)

m̂S
i =

[

min
x∈xI

(
φM

ij
φM

ik

)
, max
x∈xI

(
φM

ij
φM

ik

)
]−1

(7)

If the inverted modal parameter range contains zero,
the inversion results in the union of two interval rang-
ing from respectively plus and minus infinity to a finite
value. These modes are referred to as switch modes.
The modes for which the inverted modal parameter
interval has a constant sign, are referred to as strict
modes, and classified in either positive or negative
modes, based on the sign of the interval.

step 1.2 The modal envelope FRF is calculated by substi-
tuting the ranges of the modal parameters in the deter-
ministic expression of the modal FRF contribution:

(
FRF i

jk

)I

=
1

k̂S
i − ω2m̂S

i

(8)

This is an analytical procedure performed using the
interval arithmetic approach.

step 2 Finally, the total interval FRF is obtained by the
summation of the contributions of all considered
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modes:

FRF I
jk =

n∑

i=1

(
FRF i

jk

)I

(9)

Also this final step is performed using interval arith-
metics.

2.2.3. Eigenvalue interval correction
The method as described above is enhanced based on a
graphical interpretation of the modal part of the interval
algorithm. For each mode, consider the domain of modal
mass and stiffness pairs that are achieved by considering
the complete range of models defined by the interval un-
certainty space xI:

〈k̂i, m̂i〉 =
{(

k̂i, m̂i

)
|
(
x ∈ xI

)}
(10)

This domain defines a bounded area in a k̂i, m̂i-workspace.
The exact bounds of this domain however, are generally
unknown. The modal part of the interval algorithm now
is interpreted in this workspace. From the optimisation as
described in step 1.1, it is clear that, for a strict mode,
the calculated ranges on the modal parameters k̂S

i and
m̂S

i represent a rectangular approximation of the actual
〈k̂i, m̂i〉-domain. Therefore, this method is referred to as
the Modal Rectangle (MR) method. Figure 3 shows a gen-
eral 〈k̂i, m̂i〉-domain and its approximation using the MR
method.

〈k̂i, m̂i〉

k̂i

m̂i

k̂S
i

m̂S
i

Figure 3. Graphical illustration of a mode’s 〈k̂i, m̂i〉-
domain and its approximation using the modal rectangle
method

The interval arithmetic procedure for the calculation of the
modal envelope FRF contributions in step 1.2 is interpreted
in the same graphical domain. The goal in this step is to
derive the bounds on the deterministic modal FRF, taking
into account that k̂i and m̂i are located anywhere inside
their intervals. By considering the modal FRF contribution
as defined in equation (8) as an analytical function of k̂i

and m̂i, the bounds on this function over the modal rectan-
gle have to be determined. It has been shown that this can
be done analytically for the complete frequency domain,
by considering only the function evaluations at the upper
left and the lower right corner points of the rectangle. For
switch modes, the modal domain spans out over the first
and third quadrant of the modal parameter space. Still, a
similar interpretation is possible (see [12]).

Based on these observations, it becomes clear that the cal-
culation based on the modal rectangle introduces conser-

vatism in the procedure if the actual 〈k̂i, m̂i〉-domain dif-
fers strongly from the approximate rectangle. This is often
the case, as the modal parameters are generally strongly
coupled through the global system and therefore show a
high degree of correlation. Therefore, an enhanced proce-
dure has been introduced. The enhancement is based on
an improved approximation of the 〈k̂i, m̂i〉-domain. This
is achieved by using information on the eigenvalue ranges,
which are obtained using an additional eigenvalue optimi-
sation step in the modal part of the algorithm. An eigen-
value interval λI

i introduces an extra restriction on the quo-
tient of possible combinations of the modal parameters.
This restriction is mathematically expressed as:

λi ≤ k̂i

m̂i
≤ λi (11)

Graphically, the eigenvalue bounds represent lines through
the origin of the k̂i, m̂i-space tangent to the actual 〈k̂i, m̂i〉-
domain. These lines are extra delimiters for the 〈k̂i, m̂i〉-
domain approximation, and therefore give rise to an im-
proved 〈k̂i, m̂i〉-domain approximation as illustrated in fig-
ure 4. This domain is referred to as the Modal Rectangle
with Eigenvalue interval correction (MRE).

〈k̂i, m̂i〉

k̂i

m̂i

c1

c2

c3

c4

k̂i = λim̂i

k̂i = λim̂i

Figure 4. Effect of the introduction of the exact eigenvalue
interval in the 〈k̂i, m̂i〉-domain approximation of a positive
mode

It has been shown that the conservatism in the modal enve-
lope FRF contributions derived in step 1.2 is substantially
reduced by considering the MRE domain instead of the MR
domain as area of possible modal parameter pairs. The cor-
responding modal envelope FRF contributions are deter-
mined analytically by calculating the deterministic modal
FRFs at the vertex points of the MRE-domain (indicated
with ci, i = 1 . . . 4 in figure 4). This yields:

(
FRF i

jk

)I

=





[
λi

k̂i

(
λi − ω2

) ,
λi

k̂i

(
λi − ω2

)

]

for ω2 ≤ λi

[
λi

k̂i

(
λi − ω2

) ,
1

m̂i

(
λi − ω2

)

]

for ω2 ∈ [
λi, λi

]

[
1

m̂i

(
λi − ω2

) ,
1

m̂i

(
λi − ω2

)

]

for λi ≤ ω2

(12)
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Figure 5. Optimisation bound constraints for an analysis with fuzzy uncertain parameters

for positive modes, and:
(
FRF i

jk

)I

=





[
λi

k̂i

(
λi − ω2

) ,
λi

k̂i

(
λi − ω2

)

]

for ω2 ≤ λi

[
1

m̂i

(
λi − ω2

) ,
λi

k̂i

(
λi − ω2

)

]

for ω2 ∈ [
λi, λi

]

[
1

m̂i

(
λi − ω2

) ,
1

m̂i

(
λi − ω2

)

]

for λi ≤ ω2

(13)

for negative modes. A similar procedure was derived
for the bounds on the modal FRF contributions of switch
modes. It has been shown that after applying the final sum-
mation step, this enhancement on the modal level of the
algorithm leads to a close and guaranteed outer approxima-
tion of the actual modal envelope FRF contribution [12].

3. EFFICIENT IMPLEMENTATION OF THE
FUZZY FRF ANALYSIS METHOD

The procedure as described above is in general computa-
tionally expensive. For each mode taken into account in the
modal superposition scheme, the MRE analysis requires
six global optimisations over the total uncertainty space
spanned by the uncertainty intervals on the inputs. These
optimisations are used to find the minimum and maximum
modal stiffness (k̂i and k̂i), modal mass (m̂i and m̂i) and
eigenvalue (λi and λi). At this point an interval FRF at a
certain α-level can be calculated. However, if we want to
apply this interval procedure for a fuzzy analysis, the op-
timisations have to be performed using the input intervals
on each of the α-levels of interest. Consequently, a fuzzy
MRE analysis on 5 α-levels taking into account 10 modes
requires 300 global optimisations. Each of the objective
functions of these optimisation problems is the result of
a classical deterministic modal FE analysis, which can be
computationally expensive itself.

Generic non-linear optimisers can solve all optimisation
problems independently. Theoretically, the optimisation

problems can be non-convex, requiring global optimisation
software, but analysis on different industrial sized applica-
tions [13] showed that in practical applications almost all
the objective functions are convex or even monotonic, even
with large uncertainty intervals. For these problems, local
optimisation software gives accurate results. Because local
optimisation problems are computationally far less expen-
sive to solve, an efficient local optimiser is the best overall
choice, but the results should be examined carefully to pre-
vent false conclusions.

The efficient implementation of the fuzzy FRF procedure
now takes advantage of, on the one hand, the strong cou-
pling between the different goal functions, and, on the other
hand, the relation between the interval problems at each α-
level:

• The 6 objective function evaluations for all modes
are all resulting from a deterministic modal analy-
sis at a certain point in the uncertainty space. Con-
sequently, when optimising a modal parameter of a
specific mode, a goal function evaluation during the
global search will not only return the corresponding
goal function at this point, it also directly returns the
value of all other goal functions at this point. These
can be directly derived from the modal analysis re-
sults, as long as each modal analysis returns all the
modes requested in the modal super-positioning.

• A fuzzy analysis requires the same objective func-
tions to be minimised and maximised on different α-
levels. In optimisation terms, this means that the same
goal functions are optimised with different bound con-
straints. Figure 5 shows this for two fuzzy uncertain
parameters. The shaded rectangle shows the bound
constraints for the optimisation at α = 0.0. It is clear
that the search domains for all higher α-levels are con-
tained within the lowest level. The rectangles inside
this shaded rectangle show the bound constraints for
the optimisations at higher α-levels.

Both these properties of the fuzzy FRF analysis enable a
considerable increase in the computational efficiency of the
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total procedure, by including a response surface method
(RSM) approach in the optimisation loop. First, the RSM
builds approximations of the objective functions based on
function evaluations in some well chosen points in the in-
put parameter space at α = 0.0. The response surfaces
can be build simultaneously for all goal functions for all
modes. This response surface now is valid in the complete
search domain at α = 0.0 and therefore, can be applied
for the optimisations necessary on all higher α-levels. By
using this approach, the computational cost of a fuzzy anal-
ysis is only slightly higher than the computational cost of
an interval analysis when using a response surface based
optimisation technique.

4. APPLICATION OF THE FUZZY FRF ANALY-
SIS METHOD FOR INTERVAL UNCERTAINTY
IDENTIFICATION

The α-level strategy as described in section 2.1 and de-
picted in figure 1 forms the basis for the application of the
fuzzy finite element methodology for interval uncertainty
identification. Based on this strategy, a fuzzy FE analysis
can be interpreted as a global sensitivity study the result of
which reflects the influence of the input interval widths on
the range of possible outcomes of the analysis. As such,
fuzzy FE analysis becomes a tool to make numerical pre-
dictions on the changes in the range of possible physical
design behaviour due to changes in tolerances on the de-
sign. A designer now is able to choose appropriate toler-
ance fields by choosing an α-level on the input side, which
guarantees that the possible analysis results are located in-
side the allowable range for the physical behaviour (see
e.g.[14]).

The application of the fuzzy FE method for interval uncer-
tainty identification follows a similar path as the one de-
scribed above for the tolerance analysis. In this case how-
ever, the range of allowable analysis results is no longer
driven by design specifications, but results from collecting
all physical testing results. The fuzzy FE analysis is now
applied to derive an α-level at which the range of physical
testing results is located within the range of the predicted
analysis output. The corresponding intervals at the input
side of the problem than constitute a set of interval values
that will results in the observed physical behaviour.

It is clear that this procedure will result in a prediction of
the actual uncertainty interval in case a single input inter-
val is analysed with a fuzzy number that includes the actual
uncertainty interval at a certain α-level. However, if this is
not the case, in general a different input interval will be
identified. This is due to the fact that a different choice
of the fuzzy set at the input of the problem will generally
result in a different fuzzy output, yielding a different al-
lowable α-level and therefore a different identified interval
uncertainty. These different interval sets can be assessed
by specification of a performance measure based on the lo-
cation of the measurements within the range of the numer-
ical analysis results. For instance, the measurement cloud,
while located within the analysis outcome range, could be
strongly skewed to one of the bounds of the interval. This
indicates that the input interval set possibly yields analysis
results that were not found experimentally. Therefore, the
corresponding input interval set is found to have a lower
degree of possibility. The uncertainty interval identifica-
tion therefore consists of assessing intervals for the uncer-

tainty input property with respect to the obtained measure-
ments. This can be achieved by repeating the identification
for many different fuzzy sets which comply with the avail-
able information.

This procedure requires the fuzzy analysis to be repeated
for many different fuzzy input sets. The efficient imple-
mentation based on the RSM methodology as described in
section 3 enables the above procedure to be performed at a
very low cost. Indeed, if reliable response surfaces are built
based on the support interval of a specific fuzzy number
describing the input uncertainty, they enable the analysis
of any fuzzy set with that support interval. Consequently,
different fuzzy sets can be analysed easily without the need
for a single additional goal function evaluation.

The same procedure now can be applied when there are
several uncertain input parameters to be identified as inter-
vals. By choosing fuzzy sets for their representation, dif-
ferent possible combinations of input sets can be derived.
The next section illustrates this approach for a spacecraft
structural part with 2 uncertain properties.

5. APPLICATION: VEGA INTERSTAGE 1/2

5.1. Numerical model

The developed algorithms are tested on a model of the
VEGA interstage 1/2, kindly made available by Dutch
Space. Figure 6 shows the finite element model (left) and a
schematic view (right). The structure consists of five coni-
cal shell rings, connected and stiffened by stiffening rings.
The finite element model consists of about 38000 nodes
(228000 DOFs) and about 28000 elements (quadrilateral
plate elements for the skin and five- and six-sided solid el-
ements for the reinforcements). The model is subject to
uncertainties in the thicknesses of the shell structures be-
tween the reinforcement rings.

This interstage serves as a connection between two rela-
tively rigid structures, one rigidly bolted to the bottom ring
and the other rigidly bolted to the top ring. These are mod-
elled as rigid body elements. One is connected to all nodes
on the bottom ring, the other one is connected to all nodes
on the top ring. The acceleration transmittance FRF be-
tween the centres of these rigid body elements in the lon-
gitudinal direction is calculated. The large-mass method is
applied to simulate base excitation.

5.2. Efficiency of the RSM based algorithm

In order to illustrate the performance of the new effi-
cient implementation, the interstage model is subjected
to five uncertain parameters. These uncertainties are de-
scribed using fuzzy numbers: (3/4/5) mm, (3/4/6) mm,
(3/4/8) mm, (3/4/8) mm and (3/4/10) mm from the
lower to the upper side of the structure. These uncertain
parameters and uncertain parameter ranges are specified by
the designer of this conical shell structure.

The model is analysed using the MRE method based on re-
sponse surface based optimisation as described above. As
the vertex analysis is often considered as a good approxi-
mation for the interval results, it is included here to assess
the performance of the new algorithm.

The fuzzy analysis considers 6 α-levels (0.0, 0.2, . . . , 1.0).
Based on the magnitude of the modal mass mi and modal
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skin: (3/4/10) mm

skin: (3/4/8) mm

skin: (3/4/6) mm

skin: (3/4/5) mm

skin: (3/4/8) mm

ringframe
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ringframe

bottom ring

top ring

separation ring

Figure 6. Finite element model (left) and schematic description (right) of the stiffened conical shell structure. (courtesy
of Dutch Space, Leiden)

stiffness ki, three modes (number 1, 2 and 13) with a non-
negligible contribution to the observed FRF are selected.
Because the order of the modes can change when the un-
certain parameters change, the modes are tracked using a
modal assurance criterion (MAC).

For this model, a comparison is made in the computational
efficiency of the fuzzy FRF analysis based on three ap-
proaches:

• Using the original independent global optimisation
strategy, the MRE analysis would require 6 optimisa-
tions for each mode at each α-level taken into account.
Since three modes are considered at five α-levels (the
analysis at level 1.0 is a deterministic analysis), 90
optimisations are required. The number of function
evaluations per optimisation is unpredictable. How-
ever, due to the in general monotonic behaviour of the
goal functions, it tends to be mainly dependent on the
number of uncertain parameters.

• Using the automated response surface based optimisa-
tion procedure, 41 deterministic analyses are required
to construct reliable response surfaces for all objective
functions. The computational cost of the optimisation
using the response surfaces is negligible compared to
the computational cost to construct these response sur-
faces.

• The vertex analysis solves the deterministic model for
all combinations of minima and maxima of the un-
certain parameters. For this model with 5 uncertain-
ties, 32 (25) deterministic analysis are required at each
level, except for α = 1.0, where only 1 deterministic
analysis is required. In total, 161 deterministic analy-
ses are required.

The top graph of figure 7 shows the upper bound on the
FRF at α = 0.0, calculated using the RSM-based MRE
and vertex method. Additionally, all vertex samples are
plotted. The bottom graph shows the relative difference be-
tween the MRE and vertex results. These results prove that
the MRE method using the response surface based optimi-
sation method is able to calculate the bounds on the FRF
accurately.

Figure 8 shows the upper part of the fuzzy FRF assembled
from the interval FRFs at all 6 α-levels. This FRF shows
that the uncertain parameters influence all modes more or
less equally, so the uncertainty on the FRF is about equal
over the full frequency range of interest. The RSM-based
approach, while reducing the computational load by 75%
compared to the vertex analysis, optaines a comparable ac-
curacy. Furthermore, it has the advantage that intermedi-
ate α-levels can be included at a negligible cost. Also, a
change in the membership function at the input of the prob-
lem can be done at no cost as long as the support inerval of
the fuzzy numbers are retained. This last property is of spe-
cific importance in the application of the fuzzy analysis in
uncertainty identification routines, as described in the next
section.

5.3. Application for uncertainty identification
The procedure for uncertainty interval identification is now
applied on the same model, considered however in different
circumstances. In this case, the objective is to identify the
uncertainty present in the model. The identification pro-
cedure focuses on two uncertainties. One represents the
thickness of the three upper parts of the shell structure,
the other the thickness of the two lower parts. this means
that the five uncertain parameters as discussed in the pre-
vious section are lumped together to two uncertainties. As
no physical testing data are available, simulated FRF data
sampled using Monte Carlo simulation are used as mea-
surement references throughout the procedure.

The uncertainty identification procedure starts from the fol-
lowing fuzzy sets for the identification: (3/4/8) mm for the
shell thickness of the upper parts, and (3/6/6) for the shell
thickness of the lower parts. The latter can be interpreted
as an interval with a known upper bound but an unknown
lower bound.

The fuzzy FRF procedure is first applied with these fuzzy
input parameters. This results in the fuzzy FRF as shown
in figure 9. The procedure now searches for the α-level that
corresponds to the simulated test data.

The interval uncertainty identification is based on 10 sam-
pled FRF’s. These FRF’s are compared to the interval
FRF’s resulting from intersecting the fuzzy FRF at levels
α = 0.20, 0.40, 0.60. This comparison is shown in fig-
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Figure 7. Upper bound on the FRF between the upper and lower ring of the structure
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Figure 9. Fuzzy FRF between the upper and lower ring of the structure
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Figure 11. Comparison of the interval FRF at α = 0.40
with the sampled FRF’s

ures 10 to 12. From these figures, it is clear that the interval
FRF at α = 0.40 gives the best approximation of the ac-
tual range of the sample FRF’s. Therefore, the uncertainty
intervals at the input of the problem can be derived by in-
tersecting the input fuzzy numbers at this level, resulting in
the intervals [3.4 6.4] for the thickness of the upper part,
and [4.2 6] for the thickness of the lower part of the shell
structure.

6. CONCLUSIONS

This paper introduces a procedure for the identification
of interval uncertainty on numerical models based on the
fuzzy finite element method. The procedure is based on an
initial assumption on membership functions for the fuzzy
analysis. Starting from this initial assumption, numeri-
cal uncertainty intervals are gradually adapted based on
the knowledge on dynamic response scatter resulting from
a measurement campaign. The procedure compares the
fuzzy outcome of the numerical analysis with the measured
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Figure 12. Comparison of the interval FRF at α = 0.60
with the sampled FRF’s

data. The level of membership at which the output quantity
interval contains the reference data is selected. The inter-
vals at this level at the input side of the problem are then the
identified uncertainty ranges for the corresponding model
properties.

This method requires a high amount of fuzzy analysis to
be performed. For this purpose, this paper has introduced
a highly efficient response surface based optimisation tech-
nique. This techniques proves to be extremely useful in the
context of fuzzy analysis, as a fuzzy analysis requires the
same objective functions to be minimised and maximised
on different strongly related design spaces. Furthermore,
the response surfaces can be reused when different assump-
tions on the initial fuzzy membership functions are made,
as long as they have the same support. The validation case
shows that the efficient implementation gives highly accu-
rate results at a very low cost. It also illustrates the possible
application of this technique for non-deterministic model
updating.
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