
A HIERARCHICAL APPROACH FOR THE BUCKLING ANALYSIS OF THE 

VEGA 1/2 INTERSTAGE 

E. Jansen
1
, J. Wijker

2
, J. Arbocz

1

1
Delft University of Technology, Faculty of Aerospace Engineering

Kluyverweg 1, 2629 HS Delft 

The Netherlands 

2
Dutch Space BV 

Newtonweg 1, 2333 CP Leiden 

The Netherlands 

ABSTRACT 

Many practical shell structures can be idealized as 

cylindrical shells, conical shells, and more in 

general, shells of revolution. In order to demonstrate 

the accuracy and reliability of the nonlinear buckling 

Finite Element analysis of the real, not-idealized 

structure, one can use complementary analyses 

(analytical and semi-analytical methods) that are 

available for the corresponding idealized structure. A 

step-by-step approach is presented for the buckling 

analysis of an important class of aerospace 

structures using methods with different levels of 

analysis complexity. These methods give 

information and provide reference solutions that are 

prerequisites for the preparation and interpretation 

of the Finite Element calculations of the real 

structure. This step-by-step, Hierarchical Approach 

is illustrated for the buckling analysis of the 1/2 

Interstage of the Vega Launcher, idealized as a 

conical shell. 

1. INTRODUCTION 

The light-weight shell structures used in aerospace 

industry are often buckling critical. The buckling load 

calculations are usually carried out by one of the 

many available Finite Element codes. In principle, 

these numerical codes make it possible to simulate 

the behaviour of the structure accurately through 

detailed discretizations and advanced procedures.   

When one uses this advanced analysis capability, 

referred to here as High-Fidelity Analysis, to carry 

out buckling load calculations, it must be 

demonstrated beyond reasonable doubt that the 

results obtained are indeed accurate and reliable.  In 

order to arrive at a reliable prediction of the critical 

buckling load and to make an estimate of its 

imperfection sensitivity which can be used with 

confidence, one must proceed step by step from 

relatively simple analytical solutions (denoted as 

Level-1 Analysis), via more refined semi-analytical 

models (Level-2 Analysis), to High-Fidelity Finite 

Element solution procedures (Level-3 Analysis).
1,2

Central in this so-called Hierarchical Approach is the 

possibility of identification of an idealized structure
that corresponds to the real structure under 

consideration. The real, not-idealized structure 

typically has stiffeners, cut-outs, and reinforcements. 

An idealized structure is a reference model that is a 

simplification of the real structure under 

consideration but represents important 

characteristics of the geometry and behaviour of the 

real structure and for which analytical and/or semi-

analytical methods have been developed.

For many practical structural components this 

reference model is available in a natural way. 

Typical idealized structures are main structural parts 

such as beams, plates, panels, and shells of 

revolution. Shells of revolution are at the upper level 

of idealized structures and they form the idealization 

of important structural components in various 

branches of engineering. Also for space applications 

(spacecraft and launch vehicles), different types of 

shells of revolution constitute the idealized 

structures. The analysis of shells of revolution is 

therefore playing a key role in the Hierarchical 

Approach, which consists of methods at three levels 

of complexity. 

The strategy for a step-by-step, Hierarchical 

Approach is illustrated in Figure 1. Methods with a 

reduced level of complexity and the Finite Element 

model of the idealized structure give information and 

provide reference solutions that are essential for the 

preparation and interpretation of the High Fidelity 

Finite Element calculations for the real structure. 

Only when the correlation of “Level 3 – Idealized 

structure” results with the Level-2 results is 

satisfactory, one can proceed with the execution of 

the Finite Element analysis of the real structure 

(“Level-3 – Real structure”). 
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FIG 1. Hierarchical Approach for High-Fidelity Buckling 

Analysis 

2. HIERARCHICAL APPROACH FOR 
BUCKLING ANALYSIS 

A classification of Reduced Complexity levels based 

on the type of discretization makes use of three 

analysis levels. The different components in the 

Hierarchical Approach will be outlined in this section.

2.1. Level-1 - Analytical solution of idealized 
structure

The Level-1 Analysis is characterized by a Fourier 

series discretization and results in analytical 

solutions. Methods based on series expansions (trial 

function methods) are used. The two most 

commonly used methods are the Galerkin method, 

which starts from the governing differential 

equations, and the Rayleigh-Ritz method, which 

starts from an energy expression. Sets of algebraic 

equations are obtained. Often simple support 

boundary conditions are assumed, in combination 

with a membrane prebuckling state. 

2.2. Level-2 - Semi-analytical solution of 
idealized structure 

The Level-2 Analysis is characterized by a Fourier 

series discretization in one direction (circumferential 

direction), and numerical discretization in the second 

direction (meridional direction), and results in semi-

analytical solutions. Shell of revolution (axisymmetric 

structures) codes like BOSOR and SRA fall in this 

class.
3,4

 A one-dimensional discretization is obtained 

after a Fourier decomposition in the circumferential 

direction of the shell has been carried out. Very 

accurate solutions can be obtained, including the 

effects of boundary conditions and a nonlinear 

prebuckling state, by solving the resulting sets of 

ordinary differential equations for the meridional 

direction numerically by means of the Shooting 

Method or the Finite Difference Method. These 

solutions form reference solutions for the Finite 

Element model of the idealized structure.

LEVEL-1 
Idealized 
structure 

2.3. Level-3 - Finite Element solution of  
idealized structure 

The Level-3 Analysis is characterized by a two-

dimensional or three-dimensional numerical 

discretization. Refined nonlinear analysis of the 

idealized, axisymmetric structure using codes for 

shells with general shape like STAGS, 

MSC.Nastran, ABAQUS etc. are carried out.
5,6,7

When the agreement between Finite Element results 

of the idealized structure are in satisfactory 

agreement with the results of the Level-2 analysis, 

the Finite Element model of the real structure can be 

developed on the basis of the Finite Element model 

of the idealized structure. This can be seen as a 

prerequisite for the development of the Finite 

Element model of the real structure.

2.4. Level-3 - Finite Element solution of  real 
structure

The “Level-3 real structure” component of the 

Hierarchical Approach involves the High-Fidelity 

nonlinear analysis for the real structure under 

consideration using a two-dimensional or three-

dimensional numerical discretization with Finite 

Elements (e.g. using STAGS, ABAQUS, 

MSC.Nastran). It is based on the discretization of 

the “Level-3 idealized structure” analysis, modified 

to include: 

 Stiffeners 

 Local discontinuities (holes, reinforcements) 

 Measured or assumed initial imperfections 

 Measured or assumed boundary initial 

imperfections

LEVEL-2 
Idealized 
structure 

LEVEL-3 
Idealized 
structure 

Qualification 
Test

LEVEL-3 
Real structure correlation 

satisfactory?

ASSESSMENT of REAL 
STRUCTURE 

Computational assessment 
Comparison with test  
Risk assessment 
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2.5. Test  

Testing activities include 

 Test plan (number and location of strain 

gauges, displacement measurement, load 

application, etc.) 

 Test procedure (including test rig and load 

application)

 Initial imperfection measurements 

 Establishing uncertainties (stochastic 

analysis)

 Material characterization for stochastic 

analysis

 Test execution and acquisition of test data 

2.6. Assessment of real structure  

The assessment of the real structure includes 

 Computational assessment of real structure 

 Test/analysis correlation  

 Risk assessment 

3.  VEGA INTERSTAGE 1/2 

In the present paper, the Hierarchical Approach is 

illustrated for the buckling analysis of the 1/2 

Interstage of the Vega Launcher
8
, idealized as a 

conical shell. In particular, the first three 

components in Figure 1, Level-1 Analysis, Level-2 

Analysis, and Level-3 Analysis of the idealized
structure, will be considered.

The functions of the VEGA launcher interstage 1/2 

structure are as follows: 

 To provide an intermediate structure to 

connect the cylindrical structures of stage 1 

and stage 2 with sufficient global stiffness. 

 To transfer the mechanical loads from stage 

2 to stage 1 (normal load N, shear load D 

and bending moment M). 

 To provide a separation plane 

(pyrotechnics).

 To provide mounting provisions for the 6 

retro rockets to create a delta velocity 

between the first stage and the other part of 

the VEGA launch vehicle. 

 To provide mounting provisions for other 

instrumentation and harness. 

 To provide a smooth surface for the airflows 

along the launch vehicle. 

 To provide mounting for the pressure plate. 

The idealized structure corresponding to the VEGA 

launch vehicle interstage structure that will be 

considered in Hierarchical Approach is a conical 

structure with the following characteristics: 

 Top diameter 1874 mm 

 Bottom diameter 2979 mm 

 Height 2138 mm 

An isotropic monocoque shell is used. The holes are 

not considered in the idealized model. The loading 

case of axial compression will be investigated. The 

following boundary conditions are applied: 

 Bottom side simply supported:  meridional 

displacement u, circumferential 

displacement v, and lateral displacement W 

are restrained, bending moment resultant

Ms = 0. 

 Top side simply supported, free to move 

uniformly in the vertical direction, radially 

restrained (stiff end ring): v is restrained, u 

and W are uniform in the circumferential 

direction, W – u tan  = 0, Ms = 0. 

4. LEVEL-1 ANALYSIS 

In the Level-1 Analysis, analytical solutions are used 

as a first characterization regarding the buckling 

behaviour. The critical axial compression load 

of an isotropic truncated cone with Young’s 

modulus

critF

E , Poisson’s ratio ,  wall thickness 

and semi-vertex angle 

t
 can be obtained from 

NASA SP-8019 (Ref. 9)   and Ref. 10, 

(1)

)1(3

cos2
2

22Et
Fcrit

where  is the knock down factor. 

The expression for the critical buckling load is based 

on standard Donnell-type governing equations, and 

based on simplifying assumptions with respect to 

prebuckling state and boundary conditions. 

Depending on the knock-down factor used, the 

required wall thickness can be calculated. The order 

of the wall thickness that has been obtained using 

this formula is between 6.0 mm and 6.5 mm. The 

two values of the wall thickness that will be used in 

the present study are denoted with t1 and a slightly 

higher value with t2, respectively.   

5. LEVEL-2 ANALYSIS 
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At the Level-2, a special purpose code for conical 

shells is used, BAAC (Bifurcation Analysis of 

Anisotropic Cones).
11

  The code has been written as 

part of the shell buckling research and development 

of the suite of shell buckling codes DISDECO (Delft 

Interactive Shell Design Code) in the Aerospace 

Structures Group of the Delft University of 

Technology.
1

It is capable of accurately taking into 

account the effect of boundary conditions at the shell 

edges (corresponding to the Level-2 class). Using 

the analysis option 'membrane prebuckling' gives 

results that closely correspond to the Level-1 

Analysis. Another code at the Level-2 used in this 

study is BOSOR4 (based on finite differences).
3

With these two semi-analytical methods, buckling 

and initial postbuckling calculations are performed.  

The reduction of the load carrying capability of the 

shell in the case of asymmetric imperfections is 

evaluated via initial-postbuckling and imperfection 

sensitivity analysis.

5.1. Numerical integration (Shooting Method) 

In the present analysis, the boundary conditions at 

the shell edges can be taken into account 

accurately. The solutions of the sets of governing 

equations are represented by a Fourier 

decomposition in the circumferential direction of the 

shell. This reduces the problem to sets of boundary 

value problems with ordinary differential equations 

for the length direction. The specified boundary 

conditions at the shell edges are satisfied rigorously 

by solving the resulting two-point boundary value 

problems numerically via the parallel shooting 

method. The theory of the program for buckling 

analysis of laminated conical shells (BAAC) that will 

be used in this study is described in detail in Ref. 11. 

The conical shell that will be used in this 

investigation is isotropic. However, the theory of 

buckling analysis of conical shells is presented in 

Ref. 11 for the general case of laminated shells, 

employing classical lamination theory. Nonlinear 

Donnell-type equations formulated in terms of the 

lateral displacement W and an Airy stress function F 

are used. Koiter's initial postbuckling theory, 

including the effect of a nonlinear prebuckling state, 

is applied in order to analyse the imperfection 

sensitivity.

Three different prebuckling state solutions can be 

distinguished,

 Membrane prebuckling: A membrane 

prebuckling state corresponds to the case 

that the prebuckling state is represented by 

the linear membrane equations. In this case 

bending is disregarded.

 Linear prebuckling: A linear prebuckling 

state corresponds to the case in which the 

nonlinear interaction between the 

membrane stress resultants and the out-of-

plane deformations is neglected in the 

prebuckling state equations. 

 Nonlinear prebuckling: A nonlinear 

prebuckling state corresponds to the case 

that the nonlinear interaction between the 

membrane stress resultants and the out-of-

plane deformations is included in the 

prebuckling state equations. The full set of 

prebuckling state equations is taken into 

consideration.

 An extensive list of different types of boundary 

conditions is included in Ref. 11. In the present 

semi-analytical approach, for the prebuckling state 

the top edge of the shell is assumed to be fixed, 

while the other edge is assumed to be movable.  

The lateral displacement W is assumed to be zero at 

the top edge of the cone. The boundary conditions in 

the prebuckling state is assumed to be “simply 

supported” (Ms = 0). For the buckling state, the 

boundary condition MSS4 (the meridional 

displacement is zero, u = 0) has been used in the 

calculations. The loading case considered is axial 

compression. 

In the case of a nonlinear prebuckling state, the 

lowest buckling load occurs for 10 waves in the 

circumferential direction. The postbuckling modes 

obtained from the initial-postbuckling analysis are 

shown for the case of nonlinear prebuckling in 

Figure 2. The results will be compared with the 

results from the Finite Difference program BOSOR 

in the next section. 

Using BAAC, also an estimate of the imperfection 

sensitivity can be obtained. The so-called b-factor 

gives information about the initial curvature of the 

load versus deflection curve of the structure without 

‘asymmetric’ imperfections. In the presence of 

asymmetric initial imperfections, buckling occurs at a 

limit-point in the load versus deflection curve. For 

imperfect shells the following expansion is used for 

the load parameter ,

(2)

2 3( )

( ) (

c c c

c

a b

O )

where  corresponds to the normalized amplitude 

of an asymmetric initial imperfection, and the 

imperfection form factors  and  depend on the 

assumed imperfection pattern. Expressions for 

and  can be found in Ref. 11. Further,  has been 

normalized with respect to the shell thickness h. The 
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reduction of the load carrying capacity with respect 

to the bifurcation buckling load (the case that the 

structure does not have asymmetric imperfections) 

can be estimated using the modified Koiter formula,

(3)
2 23

(1 ) 3 1 (1 ) | |
2

s sb

where

(4)
s

s
c

is the ratio between the limit-point buckling load s

and the bifurcation buckling load .c

Two types of imperfection shapes can be 

distinguished, an imperfection with the same shape 

as the buckling mode, referred to as affine 

imperfection, and an imperfection with a shape 

specified in advance, referred to as modal 

imperfection. In the case of an affine imperfection, 

for the Vega shell the reduction in buckling load is 

very significant (Table 1). Imperfection amplitudes of 

0.1 to 0.5 of the wall thickness give considerable 

reductions as compared to the bifurcation buckling 

load. The results should be interpreted with caution. 

The initial postbuckling and imperfection sensitivity 

analysis provide approximations to the load 

deflection curves that are valid close to the 

bifurcation point.

Imperfection

amplitude

s
s

c

0.1 0.81

0.5 0.29

TABLE 1. Reduction of load carrying capacity (t = t2).

It is noted that when a modal imperfection is 

specified with one full wave in the meridional 

direction and 10 waves in the circumferential 

direction, the limit-point buckling load leads to more 

moderate reductions, in the order of a few percent.  

w0

Prebuckling shape

z = log s
s1

w
0

=
W

(0
)
/
h
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Buckling mode

z = log s
s1

w
1

=
W

(1
)
/
h
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z = log s
s1

w
i
=

W
(i

)
/
h

0.50.40.30.20.10

1

0.5

0

-0.5

-1

FIG 2. Prebuckling mode, buckling mode, and the different 

components of the postbuckling mode obtained with semi-

analytical program BAAC using nonlinear prebuckling (t = 

t2); s1 is the meridional coordinate at the top edge.
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5.2. Finite Difference Method: BOSOR 

The BOSOR4 software package is a stability 

analysis program for axi-symmetric thin-walled 

structures based on the Finite Difference Method.
3

Buckling load and corresponding wave number N 

are determined, including nonlinear prebuckling 

effects.  

Within the software package BOSOR4 (Buckling Of 

Shells Of Revolution) the applied loads are 

considered to be axi-symmetric. The loading case 

considered here is axial compression. The boundary 

conditions as specified  in Section 3 are imposed. 

Three BOSOR4 models have been made in order to 

study the convergence characteristics. Models with 

100, 200, and 300 nodes have been used. The 

analysis results for these cases and for two different 

values of the wall thickness (t = t1 and t = t2) are 

given in Tables 2 and 3. In these tables, also the 

buckling loads obtained with the program BAAC are 

shown. The buckling mode obtained for the model 

with 300 nodes (for the thickness t = t1) is shown in 

Figure 3. 

FIG 3. Buckling mode obtained with semi-analytical 

program BOSOR4 using nonlinear prebuckling (t = t1).

There is a very good agreement between the results 

obtained by the two different programs for the 300 

nodes BOSOR model. The BOSOR4 buckling 

analysis show a minimum buckling load for a mode 

with 10 waves in the circumferential direction and 

this is in accordance with the results of BAAC. 

Analysis

Tool

Buckling

load

(N/mm)

Wave 

number

N

BOSOR4

(100 nodes) 

1524.6 10

BOSOR4

(200 nodes) 

1478.1 10

BOSOR4

(300 nodes) 

1473.6 10

BAAC 1477.4 10

TABLE 2. Buckling loads including nonlinear prebuckling (t 

= t1).

Analysis

Tool

Buckling

load

(N/mm)

Wave 

number

N

BOSOR4

(100 nodes) 

1596.2 10

BOSOR4

(200 nodes) 

1553.4 10

BOSOR4

(300 nodes) 

1544.8 10

BAAC 1546.9 10

TABLE 3. Buckling loads including nonlinear prebuckling (t 

= t2).

6. LEVEL-3 ANALYSIS (FINITE ELEMENTS) 

At Level-3, Finite Element calculations for the 

conical shell under consideration have been carried 

out using the ABAQUS code. The ABAQUS general 

purpose finite element software package is capable 

of performing linear and nonlinear buckling 

analysis.
7
 The results will be compared with the 

Level-2 analysis results. 

The loading conditions are axisymmetric (axial 

compression). The running load  (N/mm) is 

converted to discrete loads in 120 nodes. The 

boundary conditions that are used in the Finite 

Element model were specified in Section 3. The S4 

shell element is applied in order to obtain reliable 

results.  

0q

Firstly, a linear prebuckling state was assumed. The 

linear bifurcation analysis results in a buckling load 

that is significantly higher than the buckling load 

obtained from the BOSOR4 analysis including a 

nonlinear prebuckling state, and the associated 

buckling mode is different. The ABAQUS bifurcation 

analysis compares very well with a linear bifurcation 

analysis using MSC.Nastran.
6
 The buckling loads 

are given in Table 4. The buckling mode associated 

with a linear prebuckling state is illustrated in Figure 

4.
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FIG 4. Buckling mode obtained with ABAQUS using a 

linear prebuckling state (t = t1).

Analysis

Tools

Linear

Bifurcation Load 

(N/mm)

MSC.Nastran 1718.15

ABAQUS 1713.26

TABLE 4. Comparison of buckling loads using linear 

prebuckling (t = t1).

Subsequently, a nonlinear prebuckling analysis was 

used in combination with a bifurcation analysis. In 

this case, the stability analysis in the ABAQUS finite 

element software package is done in two steps. The 

first step is a nonlinear geometric prebuckling 

analysis followed by a linearized eigenvalue 

analysis. The following eigenvalue problem is 

solved,

(5) ,0]K[]K[ 0

where 0K  is the tangent stiffness matrix at the 

end of the nonlinear prebuckling analysis and  

0 0P PK K K  is the geometric stiffness 

matrix,  is the eigenvalue to be multiplied by the 

applied load (combination)  , and P  is the 

associated buckling mode.

For the wall thickness t = t1, the buckling load 

including a nonlinear prebuckling state is found at 

1505 N/mm for a mode with 10 waves in the 

circumferential direction of the shell. The buckling 

mode is shown in  Figure 5.

0q

FIG 5. Buckling mode obtained with ABAQUS using a 

nonlinear prebuckling state (t = t1).

The buckling analysis including a nonlinear 

prebuckling state with ABAQUS gives results that 

agree reasonably well with the Level-2 Analysis 

results (BOSOR finite difference results and BAAC 

shooting method results). It is noted that in order to 

ensure the quality of the model one should carry out 

a convergence study. Using appropriate mesh 

refinement one can attain results that correspond 

closely to the Level-2 Analysis results.

The ABAQUS Finite Element results presented here, 

obtained using a mesh with 120 elements in the 

circumferential direction and 100 elements in the 

longitudinal direction, predict the buckling behaviour 

of the idealized Vega Interstage model including a 

nonlinear prebuckling state with reasonable 

accuracy. The mesh is able to capture the correct 

number of circumferential waves. The MSC.Nastran 

results were obtained with fewer elements in the 

circumferential direction (100 elements).

The buckling load level of the most accurate 

BOSOR model (300 nodes) and the result of the 

semi-analytical program BAAC are somewhat lower 

than the results obtained with the ABAQUS and 

MSC.Nastran Finite Element models. The buckling 

loads including a nonlinear prebuckling state are 

summarized in Table 5. The result of the BOSOR 

model with 100 nodes is included.

Analysis Tool Bucklin

g load 

(N/mm)

Wave 

numbe

r N 

BOSOR 4 

(100 nodes) 

1524.6 10

MSC.Nastra

n

1517.3 9

ABAQUS 1505.0 10

TABLE 5. Comparison of buckling loads using nonlinear 

prebuckling (t = t1).
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A nonlinear buckling analysis (limit point analysis) 

was done assuming the first bifurcation buckling 

mode, with a nonlinear prebuckling analysis, as 

initial imperfection. The amplitude of the 

imperfection was scaled with respect to the wall 

thickness of the cone (t = t1),

 25% of the wall thickness (  = 0.25) 

 50% of the wall thickness (  = 0.5) 

The results are tabulated in Table 6, where the limit-

point buckling load is denoted as s  and the 

bifurcation buckling load as c .

Imperfection

amplitude

s
s

c

0.25 0.62

0.5 0.48

TABLE 6: Reduction of load carrying capacity (t = t1) using 

ABAQUS.

The results of the imperfection sensitivity analysis 

(for a different wall thickness) using the semi-

analytical program BAAC also showed a significant 

sensitivity to an affine initial imperfection 

(imperfection with the shape of the first buckling 

mode).

7. CONCLUDING REMARKS 

The Hierarchical Approach for High-Fidelity Buckling 

Analysis has been illustrated for a typical case, a 

conical shell, representative of the 1/2 interstage of 

the Vega Launcher. The results provide reference 

solutions for the Finite Element modelling and 

calculations of the real structure with cut-outs and 

reinforcements. One should proceed with the Finite 

Element modelling of the real structure, only if the 

correlation between the Finite Element results of the 

idealized structure and the Level-2 results is 

satisfactory. 

It should be noted that the approach requires good 

background knowledge about the buckling and post-

buckling analysis of thin-walled shell structures, and 

about the dedicated and general purpose software 

codes that are available. In order to obtain reliable 

buckling predictions, it is strongly recommended that 

the Hierarchical Approach proposed in this paper is 

applied when performing High-Fidelity Analysis for 

practical aerospace applications.
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