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Abstract. Optimal design techniques are not routinely used in the industry when dealing with
complex physical phenomena, due to high computing costs. The parameterization method de-
scribed in this paper is based on the differentiation and high-order Taylor-series expansion of the
discretized Reynolds-Averaged Navier-Stokes equations. A flow database containing the derivatives
of the physical variables with respect to the design variables is produced by the Turb’Opty c© pa-
rameterization tool and thoroughly explored by a multi-objective Genetic Algorithm coupled to the
extrapolation tool Turb’Post c©. The optimization case of an automotive engine cooling fan blade is
fully described. Five geometric parameters have been chosen to characterize the fan blade. Three
objective functions have been taken into account: the minimization of the loss coefficient, the
maximization of the static pressure rise and the minimization of the torque. Two geometric con-
straints have been imposed to the extrapolated profiles: the monotonicity of the thickness variation
and the convexity of the pressure and suction sides. Quantitative results are finally discussed. A
noticeable reduction in CPU time cost has been demonstrated.
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NOMENCLATURE

ρ, E Density and specific total energy
V Velocity vector
k, ω Specific turbulent kinetic energy and vorticity
PS, PT Static and total pressures
q Vector of conservative and turbulent variables
p Vector of parameters
F Discretized Reynolds-averaged Navier-Stokes flux vector
G Jacobian matrix
R First-order residual due to a variation ∆p of p

q(n), G(n), R(n) nth-order total derivatives of q, G and R with respect to p
q̃ Reconstructed solution
ω̃, ∆PS, M Cascade loss coefficient, static pressure rise and torque
xin, xout Values of the variable x imposed at the inlet and outlet

1 INTRODUCTION

In the design of engine cooling systems, CFD plays a key role for the optimization of axial
fans and, more recently, in the performance analysis of the whole fan system. Unfortunately, the
computational times required by 3D simulations still limit the possibility of varying the necessary
number of design parameters to cover a relevant map of fan performance characteristics. Indeed,
for a given number P of geometrical and/or physical parameters (e.g. 5), the total number of
numerical experiments would be NP = 105, if each parameter was given N = 10 different values.
Therefore, even the 2D preliminary design of a fan blade is still a challenge.

Simplified flow solvers, clever optimization schemes and interpolation tools, such as neural
networks [9] or gradient methods [10], have been recently investigated to overcome the previous
drawbacks. However, these approaches can only provide discrete solutions. On the contrary, the
parameterization method described in [2, 7] provides all the results corresponding to a continuous
variation of the design parameters in one single design step, which means one flow computation on
one grid. This method is based on the differentiation and high-order Taylor-series expansion of the
discretized Reynolds-Averaged Navier-Stokes (RANS) equations around an independently com-
puted reference flow solution. It has been implemented by Fluorem in the CFD solver Turb’Flow c©

developed at the ECL/LMFA laboratory [1] to yield the parameterized code Turb’Opty c©.

The paper is organized as follows. The parameterization method and the Genetic Algorithm
(GA) that has been used in the optimization loop are successively introduced in section 2 and
section 3. Section 4 describes the coupling procedure between the different tools. The blade
cascade test-case and the results are respectively presented and analyzed in section 5 and in
section 6. Finally, some conclusions are drawn in section 7.

2 PARAMETERIZATION METHOD

The parameterization method is based on the differentiation of the RANS equations and the
computation of a high-order Taylor-series expansion of their solution. The discretized steady
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Navier-Stokes equations are first written in the symbolic form:

F (q(p),p) = 0 (1)

with F being the flux vector expressing mass, momentum and energy conservation with respect
to the conservative variables (ρ, ρV , ρE) and the transport of turbulent variables ρk and ρω.
F includes both convective and viscous fluxes. From equation 1, the first-order derivation with
respect to the design variables p gives:

∂F

∂q
(q,p) · q(1) · ∆p = −∂F

∂p
(q,p) · ∆p (2)

where q(1) is the desired first-order derivative of q with respect to the parameters vector p.
Denoting G = ∂F /∂q the Jacobian matrix and R(q,p, ∆p) the right hand side of equation 2,
the high-order derivatives q(n) of q with respect to p are then recursively built by subsequent
multi-parameters total differentiations of equation 2:

G · q(1) · ∆p = R (3)
G · q(2) · ∆p = R(1) − G(1) · q(1) · ∆p (4)

· · ·
G · q(n) · ∆p = R(n−1) − ∑i=n−1

i=1 Ci
n−1G

(i) · q(n−i) · ∆p (5)

Finally, the flow field corresponding to the modified parameters vector p+∆p can be approx-
imated by a multi-parameters high-order Taylor-series expansion [4]:

q̃ = q(p) + q(1) · ∆p + · · · + q(n)

n!
· ∆pn = q(p + ∆p) + O(∆pn+1) (6)

In equation 6, the truncation error is of the order of magnitude of ∆p(n+1) and q̃ satisfies the
equilibrium condition to the nth-order approximation:

F (q̃,p + ∆p) = 0 + o(∆pn) (7)

3 EFFICIENT GA FOR COMPLEX OPTIMIZATION PROBLEMS

The GA that has been used in this study is based on a previous version of a home-made
computer code developed at the University of Liège/Turbomachinery Group. It has already
been validated and successfully applied to design problems [5, 6]. This GA includes the classical
genetic operators, and its main features are the following: a real-valued coding for the decision
variables, a BLX-alpha and a one-point crossover respectively for the continuous and the discrete
design variables, a mutation operator, and a Pareto based approach coupled with an efficient
constraint-handling technique.

As we can see in figure 1, the constraints are firstly evaluated for each individual. The feasible
solutions are ranked according to the MOGA algorithm proposed by Fonseca and Fleming [3].
Besides, the infeasible solutions are assigned a ranking factor according to MOGA on the basis
of the violation of the constraints. At last, a selection, based on a “penalized tournament”, is
applied. This consists of randomly choosing and comparing the (generally two) individuals :
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• if both are feasible OR infeasible, the best ranked element (according to MOGA) wins,

• if one is feasible and the others are infeasible, the feasible individual wins.

An archiving procedure has also been added to the GA. This new operator externally stores the
non-dominated solutions found at each generation by copying all the individuals of the current
Pareto front to the archive, removing any dominated solutions from the archive and applying
a clustering strategy [8] if the number of non-dominated individuals in the archive is greater
than a given maximum Narch (figure 1). This archiving procedure has been inspired from the
SPEA (Strength Pareto Evolutionary Algorithm) proposed by Zitzler [11]. However, in our
implementation, the individuals stored in the archive do not participate to the selection phase,
which results in a less disturbed evolution process.

The clustering step (e.g. reducing the size of the archive while maintaining its characteristics)
is mandatory: the Pareto front (and the archive) could sometimes contain a huge number of
non-dominated individuals. However, the designer is not interested in being offered too many
solutions from which he has to choose.

Figure 1: Proposed GA flowchart

4 COUPLING PROCEDURE BETWEEN THE DIFFERENT TOOLS

The geometric parameterization is based on the preprocessing code Turb’Mesh c© which pro-
vides the Taylor-series expansion of the computational grid with respect to the shape parameters,
to a specified order, hence allowing smooth reconstruction of a new grid for any variation of the
geometrical parameters.

The distortion of the blade profile and the associated movement of the grid points are analyti-
cally defined by a devoted tool developed by Fluorem. Once the grid parameterization is achieved
with Turb’Mesh c©, the flow parameterization can be computed with Turb’Opty c©, with the flow
solution obtained by Turb’Flow c© on the reference grid used as the reference flow field.

The GA explores the design space through an exploitation, with the Turb’Post c© extrapolation
tool, of the database provided by the parametric flow solver, which contains high-order derivatives
of the physical variables with respect to the design variables.
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5 DESCRIPTION OF THE INDUSTRIAL TEST-CASE

5.1 Blade cascade configuration

The configuration is a blade-to-blade bidimensional cut of an isolated rotor chosen by Valeo
Motors and Actuators. A 13-domains grid in the (x, y) plane with a total of 30 400 points was
created by Fluorem. The domains outline is drawn in figure 2. The grid x and y directions are
respectively associated with the rotation and pitch periodicity, and with the upstream direction,
the inlet being located at maximum y.

Figure 2: Grid configuration

5.2 Physical model and boundary conditions

The fluid is modeled as a viscous perfect gas. The heat capacity ratio is γ = 1.4 and the
perfect gas constant is r = 287 J kg−1 K−1. The dynamic viscosity µ = 1.82 105 kg m−1 s−1 and
the thermal conductivity λ = 2.54 kg m s−3 K−1 are assumed independent of the temperature.

The density, the relative speed and the turbulent variables are imposed at the inlet:

ρin = 1.164 kg m−3 (8)
Uxin = 31.41593 m s−1 (9)
Vy in = −7.72145 m s−1 (10)
kin = 1.412885 m2 s−2 (11)
ωin = 440.2401 s−1 (12)

The outlet static pressure is set to PSout = 105 Pa.

A no-slip condition is imposed on the blade profile which is assumed adiabatic. Periodic
boundary conditions are applied in the pitch direction.

A low-Mach number turbulent flow is first computed around the reference fan blade cascade
with Turb’Flow c© using a low-mach preconditioning method in order to yield the reference flow
field.
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5.3 Geometric Parameterization

In this study, the geometric parameterization is led on the blade cascade case with five design
parameters, which are:

• the stagger angle (δ),

• the tangent to the camber line at the leading edge angle (A),

• the tangent to the camber line at the trailing edge angle (B),

• the ratio of the maximum camber to the chordlength (d),

• the ratio of the maximum thickness to the chordlength (e).

The variation ranges of these parameters are summarized in table 1. They correspond to
automotive engine cooling fan applications.

Parameter Minimum Reference Maximum
δ (o) −25.6212 −23.2920 −20.9628
A 0.1173 0.2346 0.3519
B −0.2600 −0.1734 −0.0867
d 0.0353 0.0588 0.0883
e 0.0114 0.0229 0.0344

Table 1: Initial range for the blade cascade

The calculation of the reference flow field and the whole parameterization need about 30
hours CPU time. An optimization loop based on a GA and complete flow computations would
require a tremendous amount of CPU time (several thousands of hours for about 3 000 flow
computations). The advantage provided by the parameterization method in this optimization
approach is therefore clear.

5.4 Geometric constraints

Two geometric constraints have been defined for the extrapolated profiles. The first one
enforces the monotonicity of the thickness variation along the profile. The second constraint
ensures that the number of couples of inflexion points equal one.

6 RESULTS

6.1 Two-objective optimization: pressure rise and loss factor

In this first case, we consider a Pareto-based optimization of two objective functions. The first
one contains the static pressure rise:

∆PS = PSout − PSin (13)
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which has to be maximized. The second objective corresponds to the loss coefficient:

ω̃ =
PTin − PTout

PTin − PSin
(14)

and has to be minimized.

The proposed GA (section 3) has been run with a population of Npop = 500 individuals during
Ngen = 100 generations (corresponding to 50 000 calls to the extrapolation tool Turb’Post c© in
order to exploit the database provided by the parametric flow solver).

Figure 3 shows the 241 Pareto-optimal solutions that have been obtained at the end of the
optimization process. The CPU time required by the optimization loop was about 1 850 seconds.
The Narch = 20 solutions stored in the archive are also depicted in figure 3. All the non-dominated
solutions clearly underline the conflicting nature of the two objectives.
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Figure 3: Pareto front and Archive - Maximization of ∆PS with minimization of ω̃

Two optimal configurations located near the extreme sides of the Pareto front have been
retained. The first one maximizes the static pressure rise to the detriment of a higher loss factor,
and the second one minimizes the loss coefficient, thus involving a lower static pressure gain. The
values of the objective functions and the torque are given for both configurations in table 2.

For each solution, another profile has been finally tested with an increased thickness, because
the optimal profiles did not meet the manufacturing requirements.

The profiles maximizing ∆PS and minimizing ω̃ are respectively displayed in blue and red in
figure 4, where the optimized profiles with the increased thickness are drawn in bold. Compared
to the reference profile, both new configurations have a decreased stagger angle. The maximum
camber is also decreased, but in a stronger way in the case of the minimization of the loss factor.
The absolute values of the tangent to the camber line at the leading and the trailing edges are
increased.
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Reference ∆PSmax ∆PSmax ω̃min ω̃min

(thick) (thick)
∆PS 269.5200 290.4900 287.1500 289.0000 285.6570
ω̃ 0.1408 0.1265 0.1270 0.1248 0.1253
M 1.0750 1.1240 1.1120 1.1140 1.1020

Table 2: Maximization of ∆PS and minimization of ω̃

Figure 5 respectively presents the iso-velocity contours of the reference flow and the extrap-
olated flow around the ω̃min optimized profile. One can observe that the flow separation area
at the trailing edge is strongly reduced in thickness. This is the main reason why the fan blade
performances are improved.

ω̃min
∆PSmax

Figure 4: Profiles for ω̃ and ∆PS optimization

Figure 5: Velocity modulus for reference (left) and ω̃min-optimized (right) profiles

6.2 Three-objective optimization: pressure rise, loss factor and torque

In this last optimization case, the torque (M), which is the product of the force in the x
direction by the fan radius at the bidimensional cut, has been added as a third objective function.
It has to be minimized simultaneously with the optimization of the two previous objectives
(pressure rise and loss factor).

The GA has been run with the same parameters (Npop = 500, Ngen = 100, Narch = 20).

Figure 6 presents the archive and the 350 Pareto-optimal solutions found at the end of the
optimization process. The CPU time required by the optimization loop was about 2 600 seconds.
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Figure 6: Pareto front and Archive - Maximization of ∆PS with minimization of ω̃ and M

The Pareto surface describing the trade-off between the three objectives shows that ∆PS and
ω̃ are strongly correlated with each other in respect to M . One can observe that the pure mini-
mization of the torque would yield a low static pressure rise and a high loss factor. Consequently,
the optimal profiles are quite different from those obtained by the two-objective optimization. In
that case, the torque was overvalued (table 2).

Three configurations have been hereby retained. The first one presents the same torque as
the reference profile (Mref), the second one minimizes the torque (Mmin), and the last one corre-
sponds to an intermediate torque value (Mmid). The values of the three objective functions are
summarized for each retained configuration in table 3.

Mref Mmin Mmid

M 1.0770 0.9590 1.0160
∆PS 279.3300 242.5300 261.5500
ω̃ 0.1255 0.1348 0.1285

Table 3: Minimization of M

As usual in the framework of multi-objective evolutionary optimization, the final choice of
a preferred configuration will be a posteriori determined by a smart compromise between the
different objectives, based on engineering criteria.

7 CONCLUSIONS

The coupling procedure between a genetic optimizer, a flow parameterization method and an
extrapolation tool has been proved feasible. All the results demonstrate the complementarity
of these softwares. The performances of the optimized profiles have been noticeably improved.
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Moreover, a significant reduction of the computational time is offered by this cutting edge ap-
proach. The flexibility of the proposed method would allow a very quick implementation of other
objectives.
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