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1. OVERVIEW

Over the last two decades, laminated composites have 
been widely used in aerospace, automotive, marine, civil, 
and sport industries. In most of these applications, the 
composite laminates are subjected to cut outs especially 
for aircraft parts where other causes such as weight
reduction dictate some openings in the parts structure. 
So, the design of each panel depends on a substantial 
number of design variables namely (number of layers, 
layer thickness, fiber orientation, and the materials for the 
composite constituents, shape and the geometry of the 
cutout, etc.). 

Aircraft engineers can neither tolerate the added weight 
inherent with large safety factors nor the dangers to lives 
implied by a small value of this factor. As a result, high 
reliability of aerospace components must be assured by 
detailed analysis and accurate optimization in order to 
meet minimum weight requirements, while satisfying 
strength constraints. Here, in this research work, Genetic 
Algorithm (GA) which is a general optimization tool for 
searching of large, nonlinear, discrete, and poorly-
understood design spaces that arise in many areas of 
science and engineering like the design and optimization 
of laminated composite panels, is utilized. However, 
constrained optimization via the Genetic Algorithm (GA) is 
often a challenging endeavor, as the GA is most directly 
suited to unconstrained optimization problems. Note that, 
traditionally, external penalty functions are used to convert 
a constrained optimization problem into an unconstrained 
problem for GA-based optimization studies. Therefore, 
here, the death, static, linear-dynamic, and a newly 
developed penalty function so called Two-Part penalty 
factor are employed for the GA design optimization of two 
laminated composite test cases. The study is focused on 
two straight and curved composite panels (1 m long × 
0.5m wide) which are to be optimized for minimum weight 
and deflection in presence of an opening and under 
several other constraints. Note that the shape and 
dimension of the cut out are also considered as the 
design variables.

2. INTRODUCTION

Composite materials are becoming the material of choice 
in structural applications today and for the future. 
Although the high strength-to-weight properties of 
composite materials are attractive, their greatest 
advantage is that they provide the designer with the ability 
to tailor the directional strength and stiffness of a material 
to a given loading environment of the structure.

Designers have been reluctant to use composite materials 

in aerospace applications where there is a high demand 
for strong, yet light weight structures, because it is difficult 
to absolutely determine and design for the range of all 
possible loading conditions that a structure will encounter. 
An example of this is the latest and most technically 
advanced commercial transport aircraft, the Boeing 777. 
The structure of this revolutionary aircraft, which first flew 
in 1994, is only comprised of 9% by weight of composite 
materials [1]. Composite structures usually involve large, 
non-convex, integer programming problems that are 
discrete in nature therefore using composite materials in 
structural components has significantly increased the 
complexity of the design process. In fact, the numerous 
variations in ply thickness and orientation have extended 
the design space and reduced the effectiveness of the 
general design methods that are usually used with 
conventional materials. The most challenging aspect 
within the design and optimization of composite panels is 
that how to find the global optimum solution, which is 
usually obscured among a large number of local 
optimums. Moreover, the discrete nature of the design 
variables and nonlinearity of the constraints normally lead 
to more difficulties. Genetic Algorithm (GA) method is 
recently used as a general optimization tool for searching 
of large, nonlinear, discrete, and poorly-understood 
design spaces that arise in many areas of science and 
engineering [1-5] like the design and optimization of 
laminated composite panels, which is under consideration 
here. Constrained optimization via the Genetic Algorithm 
(GA) is often a challenging endeavor, as the GA is most 
directly suited to unconstrained optimization. Traditionally, 
external penalty functions have been used to convert a 
constrained optimization problem into an unconstrained 
problem for GA-based optimization studies. This approach 
requires a somewhat arbitrary selection of penalty draw-
down coefficients. In this research work, several static and 
dynamic penalty functions with changing values for the 
draw-down coefficients are utilized.

3. GENETIC ALGORITHM 

A simple genetic algorithm includes a population of 
chromosomes. Each chromosome consists of some 
genes that represent the design variables of a problem 
under consideration. Several genetic operators such as 
crossover, mutation, and elitism are implemented to 
create new chromosomes. During the GA process, the 
next generation of chromosomes is selected by a specific 
schema that considers the probability level of survival for 
each of the chromosomes. In fact, better chromosomes 
result in higher values for the fitness function. The 
reproduction process is stopped when some or all of the 
conditions set by the selected criteria are met and an 
optimum or near-optimum solution is obtained. However, 
maintaining the feasibility of the results is among the most 
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important and endeavor tasks in a GA process due to 
application of the genetic operators that may easily 
produce infeasible children despite the proven feasibility 
of the parents. 

The techniques for handling the constraints within the 
evolutionary algorithms are classified either as direct 
(when only feasible elements of the searching space are 
considered) or as indirect (when both feasible and 
infeasible elements are used) during the search process 
[6]. The direct techniques are comprised of the design of 
special closed genetic operators, the use of special 
decoders, repair techniques, and the death penalty. 
However, the indirect techniques include the use of 
Lagrange multipliers, special selection techniques, and 
"lethalization" (i.e. any infeasible offspring is assigned a 
very small fitness value [6]). The most important and 
widely used schema from among the large number of 
proposed indirect methods in the literature [7, 8] is the 
penalty function method, which includes the death 
penalty, most of the penalty schemes, and "lethalization" 
[9]. 

The penalty function method, which originally proposed by 
Courant in 1940’s and then extended by Carroll, Fiacco, 
and McCormick, is a method that transforms a 
constrained optimization problem into an unconstrained 
one. In this way, based on the amount of violation of a 
constraint [9], a certain value is added to the objective. 
Usually, for problems with inequality constraints the 
penalty functions are divided into two exterior and interior 
categories. For the interior penalty functions, the penalty 
term forces the generated searching points to always 
remain within the borders of the design space [10]. 
However, for the exterior category a penalty value is 
added to the violating designs considering their distance 
from the feasible domain and also the number of violated 
constraints to bring them back to the feasible area. By 
means of these penalty values it will be possible to reuse 
the valuable parts (or genes) of the generated infeasible 
chromosomes in order to steer the optimization progress 
up toward the optimum solution(s). Eq. 1 depicts the 
general form of a penalizing function;
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Where f(x) is the fitness function (or penalized objective 
function, )(xϕ  is the objective function, and P(x) is a 
function of the constraints, and α’s are positive constants 
(or rising factors) normally called ‘‘penalty factors’’. In all 
available penalty schemes, the degree of penalty can be 
further controlled by means of the values for α coefficient. 
Most of these coefficients are treated as constants during 
the calculations and their values have to be specified at 
the beginning of the calculations. The penalty functions 
with these coefficients are normally called ‘‘static external 
penalty functions (SEPF)’’. These coefficients usually 
have no clear physical meanings. Thus, it is nearly 
impossible to know appropriate values for them even by 
experience. Consequently, for all problems with either 
similar or different natures, appropriate values of the 
coefficients are generally obtained by trial and error. Many 
researchers, however, have tried to suggest the 
appropriate ranges for the coefficients. Most of these 
suggestions are obviously doubtful. The reason is simply 
that the selected values are usually given without any 

reference to the units used in the problems. Another 
important concern is that the conventional penalty 
schemes were not provided appropriate penalty strength 
during the calculations, as the coefficients used are 
always kept constant. As a result, sometimes very week 
or very strong penalty values during different phases of 
the evolution may occur. This may lead to inaccurate 
solutions. To overcome this limitation, some penalty 
schemes that vary the values of the coefficients to adjust 
the strength of the penalty during the calculation have 
been proposed [1, 11]. One of these schemes is called 
linear dynamic penalty function (LDEPF). In this scheme, 
the penalty function is dependent on the penalty factors 
which may somehow be related to the generation 
numbers. Normally, the penalty function is defined in such 
a way that it increases during the processing time. In 
general, the problems associated with static penalty 
functions may also be presented with dynamic penalties. 
If an appropriate penalty factor is chosen, the GA may 
converge to either non-optimal feasible solutions for high 
penalty values or to infeasible solutions for very small 
penalty values [11, 12]. 

4. PROBLEMS DESCRIPTION

The design problems under consideration consist of 24
ply laminated symmetric composite straight and curved
plates (1 m length × 0.5m width) which are subjected to a 
concentrated load (P=300 N) at the midpoint of the plates
as depicted in Fig 1. There is a cutout at the center of the 
plates. The shape, size and orientation of the cutout are 
considered as the design parameters. The cutout shape 
can be in the form of circle or polygons with three to 
seven sides and its orientation respect to the center line 
of the plate can vary from 0 to 180 degrees in increments
of 30 degrees. Each ply in the stacking sequence is 
allowed to be oriented at any angle between 0 to 90
degrees in increments of 15 degrees. The constitutes of 
the composite plates are also considered as design 
variables and can be selected from 16 materials which are 
listed in Table 1.The design parameters and the meaning
of each gene in a typical chromosome are summarized in 
Table 2. 

The main goals of the optimization process considered 
here are to find the shape, geometry and orientation of the 
cutout and also the stacking sequence and the thickness
and sequence of the layers and the suitable material in 
order to obtain minimum weight and deflection for the 
panel. Therefore, the considered problems are multi 
objective functions which consist of non dimensional state
variables that their particularly weighted values are 
linearly combined. The mentioned weighting parameters 
are selected regarding the significance of each state 
variable in a real engineering problem. These parameters 
are selected to be 80% for the non dimensional weight 
and 20% for the non dimensional deflection. Here, in this
study, regarding the pervious studies, the restriction or 
constrains imposed are as follows:

1) Safety factor must be greater than 1.2

2) The weight must remain under 35 kg

3) The max allowable deflection is 5 cm (at the mid point)

The problem is converted to the standard form of a 
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constrained maximization of a positive objective function
in form of  Eq.2; 
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As mentioned before, the GA is an ideal method for 
unconstrained optimization problems and constrains are 
handled by using penalty functions. Therefore penalty 
term P( x ) is used to preserve the feasibility of the 
solutions and it is subtracted from the maximization 
problem as in Eq.3; 

(3) )()()( xPxxFMax ×−=→ αϕ

Where P( x )  has the form as shown in Eq.4; 

(4)
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Here, the weighting parameters for the three terms of the 
penalty function are chosen regarding the significance of 
each term in achieving the optimum objective value. It 
could be related to the positive or negative effects of one 
constraint change on the rest of the related constraints. 
However, it should be mentioned that choosing these 
weighting parameters is often arbitrary and not a definite 
way for it has been set, yet [2, 13 and 14]. For instance, in 
this example, increasing the panel weight is a 
disadvantage; however, it could positively affect the 
process by causing the advantage of decreasing the 
deflection. Since these state variables (i.e. weight and 
deflection) are appeared by 80% and 20% weighting 
factors in the objective function φ( x ), therefore it is 
assumed that any increase in the panel weight could 
produce a maximum drawback of %80 for the weight and 
maximum benefit of %20 for the deflection (see Table. 3). 
It is noted that since the objective function φ( x ) appears 

by the weight of unity in F( x ), the weighting factors for the 

terms of the penalty function P( x ) are also calculated 
such that they add up to unity. Note again that, in this 
way, the relationship between the weighting factors of the 
Two-Parts of the fitness function (F( x )) plays a significant 
role in penalizing infeasible chromosomes. It is reminded 
that there is not a clear way to define the optimum value 
for these factors, yet. It is only known that they should be 
kept as low as possible, just above the limit below which 
infeasible solutions are optimal [15]. For the problem in 
hand, the effect of α (see Eq. 3), which is defined as the 
penalty factor, could be easily highlighted. For doing the 
analysis, the specially provided GA code is linked with 
ANSYS FEM software for evaluation of the objective value 
corresponding to each one of the chromosomes.

5. RESULTS

The effects of the dynamic, static, death, and a newly 
developed (so called Two-Part) penalty factors on the 
design of two laminated composite plates are 
investigated. The first problem consists of a straight 
laminated composite plate, while for the next test case, 
the plate is considered to have a curved configuration. In 
these cases, the geometry, size and orientation of the 
cutout at center of the plates are also added to the design 
parameters. Here for the straight plate the effect of all 
mentioned penalty factors will be compared but for the 
second case study the attention is focused on the 
dynamic and Two-Part penalty factors.

5.1. CASE STUDY1: STRAIGHT PLATE

DEATH AND CONSTANT PF

To study the effects of the discussed penalty approaches 
on the efficiency of the GA in optimization of the problem 
under consideration, here two of the simplest forms of the 
penalty functions i.e. the death and constant PF's are 
applied. The Death penalty is implemented by relating a 
large penalty factor (i.e. 10,000 in this case) to the 
infeasible solutions. However, the constant PF is 
assumed to penalize the infeasible solutions with a value 
that is in the same order as the weighting factor of the 
objective value i.e. (α=1).  This penalty factor is kept 
unchanged during the whole reproduction process. In 
other words, neither the penalty function nor the penalty 
factor is considered to be dependent on the number of 
generations. Note in this text when the fitness value 
quoted it may be related to both feasible and infeasible 
chromosomes. But, when the objective value is quoted 
the related chromosomes all are feasible. For the applied 
penalties, Figure 2 shows the maximum fitness values 
obtained in 200 GA generations. As it is observed, higher 
maximum fitness values are obtained with the constant 
PF compared to the death PF but some of the 
chromosomes in each population for α=1 are found to be 
infeasible. In other words, using the constant PF benefits 
the process by fast improvement in the fitness values, but 
unfortunately it may force the algorithm to converge to 
infeasible solutions. It is important to note that if the 
feasible chromosomes of the last population obtained by 
the two penalties are also compared, the fitness of the 
solution found by the constant PF (fitness=9.9442) is 
slightly above the one that is found by the death PF 
(fitness=9.9361). Also, the placement of the fitness curve 
of the constant PF above the one for the death PF shows 
that how the survival of infeasible solutions with 
employing constant PF robust the searching method. 
However, for the constant PF, increasing the number of 
infeasible chromosomes and converging to some 
infeasible solutions is highly presumable if the value of the 
penalty factor is not adequately set. It should be noted 
that since an ideal penalty factor must satisfy the 
minimum penalty rule, it is not easily possible to select a 
value for the PF when the design space or objective 
function is not clearly known.

Linear-Dynamic PF

In order to overcome the mentioned disadvantages of 
constant PF, two linear-dynamic PF’s are utilized to adjust 
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the amount of penalty during the optimization process. In 
these cases, the value of the penalty factor is linearly 
increased with increasing the generation number. Eq. 7
presents these dynamic penalty factors which are here 
named as GN_20 and GN_40 as mentioned in Eq.5; 

 

(5) 

 

Regarding the plots of the maximum fitness value 
(obtained for 200 generations) vs. the generation number 
(see Fig. 3 and Fig.4) it is clear that, In comparison both 
cases of the linear-dynamic PF’s end up with a higher 
fitness values found in the last generation than the 
constant and death PF’s. Note that though GN_20 (that 
implies higher penalty factor) is more robust than GN_40, 
but not a clear way could be found in the literature for 
setting the value of the penalty factor. As it can be seen in 
some generations if the process of GN_40 is stopped, 
better results than GN_20 could be found. A comparison
of all PF’s discussed so far shows that in most 
generations between 1 and 200, GN_20 produces higher 
fitness values than others. Also, the objective values of 
the chromosomes in all generations indicates that using a 
rising PF (either linearly or in any other complicated form) 
results in survival of infeasible solutions in early 
generations , while it could relatively ensure the feasibility 
of the final solutions.

Two-Part PF

The introduced Two-Part penalty factor enjoys the 
convergence speed of the linear-dynamic penalty factors 
in early generation. Note this penalty showed a 
reasonably well performance in previous section. As for 
the second part of the penalty, an exponentially rising 
factor with the number of generations is considered as 
indicated in Figure 5. Note that the exponential nature of 
this part of the penalty guarantees the swift transition from 
the dynamic part to the death penalty at higher number of 
generations by attributing very large penalty values to the 
infeasible chromosomes. Here, for these test cases, the 
switching point between the two parts of the penalty is set 
at the generation number of 130. It is assumed that for 
generation numbers higher than 130 the death PF is more 
effective than the others. So at this point the penalty factor 
is set to start to increase exponentially with the number of 
generations. In comparison to the linear-dynamic and 
death PF’s, fast convergence to a near-optimum is 
secured with using the Two-Part PF. Note that this could 
not be considered as a sole measurement parameter of 
efficiency for the GA, yet it is seen merely as a sign of 
relative efficiency. A more close observation of the 
maximum fitness found by the discussed PF's shows 
higher accuracy of the results for the Two-Part penalty 
function, see Figure 6. The figure clearly depicts that, in
comparison to other methods, the value of the fitness
found after 200 generations (i.e. 9.9498) is also higher for 
the Two-Part PF, see Table 4. 

5.2. CASE STUDY 2: CURVED PLATE

Linear-Dynamic and Two-Part PF’s

Figure 7 shows the fitness values obtained in 200
generations for a curved plate using GN-20 and GN-40
PF’s. It is clear that in this case GN_40 produces better 
results during the whole process because the graph of 
fitness value is placed above the graph for GN_20. As 
mentioned before there is not any obvious way for setting
the value of penalty factor. Figure 8 also shows the fitness
values obtained in 200 generations for a curved plate
using GN-40 and Two-Part PF’s. It is clear that in this 
case also GN_40 produces better results than Two-Part 
during the whole generations. Note that the Two-Part in 
comparison to GN-20 produces better results

5.3. Quantitative Comparison of the Results 

For measuring the accuracy of the results the global 
optimum should be known, but for the current test cases
this information is not in hand. Therefore, for such 
situations, it is recommended that the accuracy to be 
approximately studied through the efficiency 
measurement. In this way, a method that finds a better 
solution in fixed number of generations is considered to 
be more efficient. Note that the maximum number of 
generations is selected by the user and also it is 
considered to be constant for all cases. So the 
computational cost or the number of required evaluations 
is equal for all the trials assumed. Therefore, the trial that 
runs always above the others is considered to be more 
effective rather the one that finds a better optimum in a 
haphazard jump in the last generations. As a result, the 
confined area by the progressive rout of the average of 
maximum fitness and the axis of generation number as in 
Figure 9 and Figure 10 is assumed as a proper quantity 
for such a comparison. Based on these results, the Two-
Part penalty factor improves the accuracy and efficiency 
of the GA analysis and ranked first among all of the 
studied PF's in the first case study but in the second one 
as it is shown the GN_40 improves the accuracy and 
efficiency  of the GA.

5.4. Optimum plates

Table 4 summarizes the characteristics and properties of 
optimum straight plates obtained by different penalty 
factors. It is noticeable that the plate obtained by the 
constant penalty factor is not feasible because its safety 
factor in less than 1.2. However it could be concluded that 
the material must be Ultrahigh modulus Graphite/Epoxy 
(material number 6) or  High modulus Graphite/Epoxy GY-
70/493 (material number 15). Another point that can be 
concluded is the total thickness of the plate. Multiplying 
the number of layers by the thickness of each layer the 
total thickness of the plates are found to be between 2.4 
to 3.0 mm. 

Table 5 also summarizes the optimum curved plates 
obtained by different penalty factors. It is very clear when 
the plate is curved all penalty factors lead to very thin and 
light plates with thicknesses lower than 0.5mm and 
weights below 700gr, but like the straight plate materials 
are number 6 or 15. 









=→

=→

40
40_

20
20_

sgenerationofnumberGN

sgenerationofnumberGN

α

α

2918



5.5. Cutout geometry

Figure 11 shows the cutout geometry of the straight plates 
obtained in different runs. Comparison of these cutouts 
shows that for the constant, GN-20 and two-part penalty 
factors the optimum plates obtained have circular cutout 
shapes with very similar geometries. But for the Death 
and GN-40 polygons cutout shapes are found which in 
geometry are very near to two-part cutout shapes. 

Figure 12 shows the cutout geometry of curved plates 
obtained from different penalty factors. Comparison of 
these cutouts shows that all three curved plates have 
small cutouts and none of them has regular circular cutout
shape. Comparison of the two case studies here clearly
shows that the optimum curved plates have smaller 
cutouts than straight plates (about 5% to 10% smaller) 
and also it is noticeable that the optimum curved plates 
are thinner than straight ones (about 7% to 17%).

6. CONCLUSIONS 

1. In laminated composite plates the optimum 
cutout shapes are not necessarily circular and 
the size and geometry of the optimum cutout are 
controlled by the material, number of layers and 
stacking sequences of them.

2. There is a significant difference in optimum 
cutout shape and thickness of the straight and 
curved plates with the same size and constrains. 
The optimum curved plates are much thinner
than the straight plates with smaller cutouts.

3. A smart use of conventional penalty factors could 
lead to superior results which may rule out the 
necessity for define and application of complex 
penalties.
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FIG 1. Schematic of Problem

FIG 2. Max Fitness for the Death and Constant PF for 
the Straight Plate in 200 Generations.

FIG 3. Max Fitness for Linear Dynamic PF’s for the 
Straight Plate in 200 Generations.

FIG 4. Max Fitness for Linear-Dynamic and constant 
PF’s for the Straight Plate in 200 Generations.

FIG 5. Schematic of Two-Part PF

FIG 6. Max Fitness for GN_20 and Two-Part PF’s for the 
Straight Plate in 200 Generations.

FIG 7. Max Fitness for Linearly Dynamic PF’s for the 
Curved Plate in 200 Generation.

FIG 8. Max Fitness for Linearly Dynamic and Two-Part 
PF’s for the Curved Plate in 200 Generations.
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FIG 9. Comparison of robustness of the Straight Plate.
(1: Death, 2: Constant, 3: GN_40, 4: GN_20, 5: Two-part)

FIG 10. Comparison of robustness of the Curved Plate.
(1: GN_40, 2: GN_20, 3: Two-part)

FIG 11. Optimum Cutout Shapes for Straight Plate.
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