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OVERVIEW

Statistical processing of shock test data are rarely 
employed in the aerospace industry because relevant 
database are not often available.  Nevertheless this 
processing is one method to define a maximum expected 
environment (MEE) or to build a zoning of a spacecraft 
that constitute crucial phases of a space project with 
regards to the shock environment. They result indeed in 
shock specifications for equipment that are committing the 
project and the associated subcontractors. 

Some statistical tools are reviewed in this paper. Among 
them, the classical Normal Tolerance Limit (NTL) method 
is examined. It aims at computing with a given confidence 
level a maximum environment corresponding to a 
specified probability of having a defined percentile of data 
under this level. The main drawback of this method 
resides in the strong assumption on the underlying 
distribution of the data that have to be normally distributed.  
As empirical data are rarely perfectly normally or log-
normally distributed, alternative methods are described. 

1. INTRODUCTION 

The availability of a meaningful valid set of shock test data 
is often difficult to obtain. However, with spacecrafts 
families, satellite manufacturers can more and more 
dispose of a shock test database allowing thus a statistical 
processing of the SRS in order to define or refine 
statistically a maximum expected shock environment.  

The specification process begins by defining some zones 
or regions where it is expected that the shock environment 
within that zone will be reasonably similar. Similar means 
that some limited scattering is expected within the 
particular zone, which is necessary to characterize. This 
phase is of paramount importance for the statistical 
processing because it is of no use to perform some 
statistical computation on very dissimilar or scattered data 
since the results will not be meaningful.  

Besides it is well known that for a given launch or ground 
shock test, there will be some flight-to-flight or spacecraft-
to-spacecraft variability. Some of this variability may be 
due to unavoidable differences between the flights, 

payload configuration ... But some can also be linked to 
the randomness of the launch or ground test events 
themselves. These uncertainties have also to be 
characterized if one wants to define the so-called 
maximum expected environment  as a level that would 
typically not be exceeded or be exceeded exceptionally.  

Hence, the MEE should account for both the expected 
spatial variation within a particular zone as well as the 
flight-to-flight changeability. This MEE is usually described 
in terms of the spectrum of a motion parameter, commonly 
acceleration.

Traditionally, NASA and U.S. Air Force Space Systems 
Division (AFSSD) have defined the one-sided NTL method  
to compute statistically the MEE.  

Alternative methods are described in this paper. The first 
proposed method is trying to bring back to the gaussian 
case by modelling the real data set with a simple function 
(continuously differentiable with positive derivative) of a 
single gaussian data set. The transformed Gaussian 
model can substantially improve the result of the NTL 
method at a very low cost. Nevertheless, if the original 
data set is too far from the normal hypothesis, then the 
transformation may not perform as expected. Hence, a 
second method has been investigated and is based on the 
Bootstrap technique. The Bootstrap is a statistical 
subsampling method which uses sample data to generate 
replicates that are utilized for parameter and confidence 
interval estimation. An important feature of this method is 
that it does not make any assumption on the underlying 
distribution of data.  

These statistical processing methods have been 
implemented and constitute now practical tools for defining 
standard environmental shock specification. Real shock 
data set extracted from clampband shock test  on 
SPACEBUS family are used to illustrate these methods. 

2. NORMAL TOLERANCE LIMIT METHOD 

The NTL method is described in numerous American 
NASA standards [3][4][5] and military standards [6] and is 
used to derive the MEE from random vibration, 
vibroacoustic, and shock environments. It consists in 
computing a normal tolerance limit for the predicted 
spectra in each frequency resolution bandwidth. NTL 
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method should be applied only to normally distributed
random variables. If this is true, then the one-sided normal
tolerance limit for the set of y variables, yi , i = 1, 2,…, n is
given by : 
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(4)  the one-sided tolerance factor with p

the percentile of data (e.g. 95%) and g the
confidence level (e.g. 50%). 
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TAB 1. K factor for NTL method 

A more complete K-factor table can be found in [2]. 

The K factor is both a function of the desired percentile
and the chosen confidence. This uncertainty in the
confidence results from using a sample mean and sample
standard deviation instead of the true or entire
population’s mean and standard deviation values which
are by nature unknown. For the special case where n is
infinite, the K one-sided normal tolerance factor becomes
the percentile point of the standardized gaussian
distribution (last row of TAB 1). It means that there is no
more uncertainty in the mean and standard deviation of
the population. One notices that increasing the level of
confidence, particularly when n is small is very costly and 
can lead to over-conservative results.

Both NASA and the U.S. AFSSD have standardized their
MEE to be the p=0.95, =0.50 level. This is commonly
referred to as the P95/C50 or P95/50 level. This level can
be interpreted as follows : there is a 50-50 chance of one
exceeding of the P95/50 level in 20 flights or ground test. 

Some other statistical levels are known as type A value
(p=0.99, =0.95) or type B value (p=0.90, =0.95) and are
typically used for determining allowable values.

The qualification level is not yet completely standardized

as the MEE. NASA and European Agencies use generally
the following definition :

(5) QL=MEE + 3 dB.

AFSSD has defined the qualification level as the p=0.99,
=0.90 level. 

The return on experience using such method is that shock
data set are generally not normally distributed but indeed
lognormal [7]. In order to apply correctly the NTL method,
one should use the following transformation on the data.
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An illustration is given in FIG 1 (radial direction) and FIG 3 
(longitudinal direction) representing the normal tolerance
limits of clampband interface data for the SPACEBUS
family, computed with p=95% and =50%.

The P95/50 level is logically exceeded on some frequency
bandwidth by some measurements. It is interesting to 
verify the percentage of points that exceeds the defined
level. This percentage should be compliant with the 
chosen percentile (i.e. 95%) with a confidence of 50 % if
the main assumption of this method is valid, that is to say
if the measurements follow a lognormal distribution (or
equivalently if the logarithm of the data follow a normal
distribution).

• For the radial direction : 7 % of the points are
higher P95/50 shock level : the NTL method is
slightly less conservative as expected.

• For the longitudinal direction : 5 % of the points
are higher P95/50 shock level : the NTL method
performs as expected.

To understand these numerical results, the best approach
consists in plotting the empirical probability distribution
function (PDF) and/or cumulative distribution function
(CDF) of the data and compare them with the
standardized normal one. FIG 2 and FIG 4 provide an
example of such empirical distribution functions and the
comparison with the theoretical standardized normal one
(red curves).  One notices that the radial direction data are
not perfectly normal whereas the longitudinal ones are
very close to the normal distribution.

As a general result, it is considered as very important to
verify that the spectral test data (SRS for shock data)
follow a lognormal distribution by computing the empirical
distribution functions. The defined level can indeed be
very conservative if the major hypothesis of normal
distribution has a low degree of validity. If this method is
used to specify a zone, then this recommended procedure
should be carefully followed to avoid any over specification
that can drive the structural hardware design (added mass
…) or alternatively, lead to late and then costly mitigation
treatments as isolation systems.  If the distribution of the
data is not lognormal, then an alternative solution has to
be found or at least the NTL level has to be compared with
another approach to determine the degree of
conservatism it has generated.
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FIG 1. Statistical processing of Clamp band test data at S/C I/F - radial direction
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FIG 2. Empirical probability distribution function and cumulative distribution function – radial direction

All SPACEBUS Heritage of Clampband Release test
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FIG 3. Statistical processing of Clamp band test data at S/C I/F - longitudinal direction
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FIG 4. Empirical probability distribution function and cumulative distribution function– longitudinal direction

3. NORMAL TOLERANCE LIMIT WITH 
TRANSFORMED GAUSSIAN MODEL

3.1. Principle 

Real measured data seldom perfectly support the
gaussian assumption. However, since the normal case is
well understood, it is often taken as a fact to perform some
statistical computations (see NTL method). 

If the usual gaussian assumption does not fit the observed
data, a broader class of model should be used. The
simplest model for a non-gaussian model is where X is a
function of a gaussian model Y with variance one (i.e.

) [9]. 1)var(Y

(7)

0)0(

0

)(

G
dX

dG

YGX

Different formulations (parametric and non-parametric)
exist in literature to estimate the function G  or its

inverse . The followed approach in this study

consists in estimating the function 

1Gg
g  from the empirical

cumulative distribution of the observed data.

3.2. Estimation of the function g

An example is provided hereafter and is based on the
clampband interface data, radial direction (FIG 1) for 
which the empirical distribution functions (FIG 2) are not
perfectly normal.

FIG 5 shows the gaussian reference (red dashed line), the
empirical estimated transform (blue line) and the
smoothed estimated transform (red line). In this example,
the function g is close to the normal distribution except in 

the tails of the distribution where some variations are
clearly visible. This variations are also reflected in the
smoothed estimation that is globally curved compared to 
the gaussian diagonal. The advantage of the smoothed
estimation is thus to be able to treat data that are out of 
the empirical tails of the source data. In particular, if the 
source data do not exhibit any value in the tail of the
distribution, the smoothed estimation has to be considered

to complete the procedure.
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FIG 5. Identification of 1Gg

FIG 6 shows the probability distribution function of the
transformed data using the function g . The empirical

distribution matches logically the standard normal one.
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FIG 6. Probability distribution of transformed
model

3.3. Use of the transformed model

Once defined the function g , it has to be used to compute

the specified level. Mathematically, the problem of defining
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a level Pp/   is, knowing x and s as the sample mean
and standard deviation,  to find k such that

(8) pksxXPrPr

This problem is equivalent to the following

(9) pksxXG )(PrPr

Equation (9) can be written

(10) pksxgY )(PrPr

where Y is a normal random variable of mean x and
standard deviation .s

One defines then

(11) )( ksxgskx

One finally obtain the modified k coefficient by inverting
(11).

(12)
s

xskxG
k
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with  the one-sided tolerance factor .k ,, pnK

3.4. Comparison with NTL method

The comparison between the NTL method and this
method is shown hereunder and is based on the example
of FIG 1.
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FIG 7. Comparison between P95/50 computed
with NTL and NTL with gaussian transformed

model

The NTL method, as explained in paragraph 2, performs
not as expected since 7 % of the points exceeds the level
instead of the theoretical 5%. With the gaussian
transformed model, the K factor is adjusted to take into
account the “non-normality” of the real data distribution.
For that example, the new level is exceeded by  only 4.4%
of the points which is closer to 5%. Moreover, this level is
slightly conservative compared to the theoretical 5% which
can be adequate for a specification procedure.

It is worth noting that this method is really efficient when
the discrepancy with the normal distribution is reduced, i.e.
when the function g is relatively smooth and close to the

gaussian case. For cases where this is not true, the
method may still be conservative even if it generally
improves the NTL computation.

4. BOOTSTRAP METHOD

4.1. Bootstrap origin and principle 

The Bootstrap method has been introduced and
developed by Efron in the late seventies [8]. The initial
problem Efron wanted to solve was : “given a random
sample X =(X1, X2,….Xn) from an unknown probability
distribution f, estimate the sampling distribution of some
pre-specified random variable R(X,f), on the basis of the
observed data x.” This method is directly linked to the
computational improvements of this period that allowed for
numerous advances in applied statistics.

The main idea of the model-based sampling theory
approach to statistical inference is that the data arise as a
sample from some existing probability distribution, f (most 
of the time, the normal distribution is assumed).
Uncertainties of our inferences can be measured if f can
be estimated. The most fundamental idea of the Bootstrap
method is that one computes measures of our inference
uncertainty from that estimated sampling distribution of f.

The method consists of : 

1) generating B Bootstrap replicate samples of the same
size n as the original data sample. Each value in the
original data sample is assigned an equal probability
of 1/n. The elements of these Bootstrap samples are
randomly chosen from the original data, with
replacements. It means that a particular data can be
chosen several times or not at all in a given replicate.

2) evaluating a parameter or statistic of interest for each
of the B Bootstrap samples generated. Each
computation produces a Bootstrap replicate of the
statistic of interest (mean, standard deviation, P95,
P99 …).

3) estimating an empirical cumulative distribution
function (CDF) for this parameter by using the
numerous Bootstrap replicates of this parameter.

4) establishing confidence intervals from this distribution.

The method principle is summarized in FIG 8. 

FIG 8. Bootstrap method principle

The set of B Bootstrap samples is a proxy for a set of B
independent real samples from f (in reality we have only
one actual sample of data). Properties expected from
replicate real samples are inferred from the Bootstrap
samples by analyzing each Bootstrap sample exactly as
the real data sample were first analyzed. From the set of
results of sample size B we measure our inference
uncertainties from sample to population. In other words,
the Bootstrap allows assessment of the accuracy and
uncertainty of estimated parameters (even if no closed
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form exists) from small samples, without any prior
assumptions about the underlying distribution (particularly
the usual normal distribution). In that case, when no
assumption or inference on the distribution f is made, the
bootstrap is called non parametric. Other forms of
parametric Bootstrap have been described in literature but
have not been treated in the frame of this work.

4.2. Application to shock data

As explained in [1] for vibroacoustic data, the statistics of
interest for the Bootstrap analysis are the P95 or P99
probability levels. This requires that the bootstrap mean
and bootstrap standard deviation be used as a bootstrap
pair to compute the desired probability level. In other
words, the statistic of interest mentioned in paragraph
4.1.2) is not just the mean and standard deviation but
instead the values generated by these that are associated
with the P95 or P99 probability levels.

In practice, the Bootstrap mean and standard deviation
are computed for each replicate. Then, in order to derive
the level P95 or P99 levels which can be expressed as

bb kxP95   , one needs to determine the coefficient

k. Several methods can be used. The k factor could be
chosen as the one-sided tolerance factor. However,

that method would assume a normal distribution of the
data which is not known, reducing consequently the
generality of the problem. The k factor can be computed
thanks to the original data sample itself. By using the CDF

of the standard normalized data

,, pnK

xx
z   (about which

the underlying distribution is not known). This solution has 
been retained for the present study.

For SRS, the size of each sample at a given frequency is
usually very small and does not allow to correctly define a
CDF and its tails per frequency. It is assumed thus that the
CDF can be computed by combining all the frequencies of
the SRS together. This assumption introduces an error
that is generally found acceptable.

The previous procedure leads to B replicate values of the
P95 or P99 level. The confidence levelis finally computed
by sorting all the values of the statistic of interest and then
selecting the percentage of the empirical sampling
distribution of the P95 or P99 level. For instance, for a
confidence level of 50% with 1000 Bootstrap replicates,
one will choose the 500th=0.5x1000 sorted value.

1000 to 2000 replicates are usually found acceptable for
defining correctly a Bootstrap statistic. 

4.3. Comparison with previous methods

The bootstrap method has been used to compute the
P95/50 and P99/90 levels of the clampband SRS data
shown in FIG 1and FIG 3. For that cases, the k factor can
be found using the CDF of the data. The k factors for the
P95 level can be read on FIG 2 and FIG 4 and are
respectively 1.786 and 1.661.

The computed levels are compared with the two other
methods presented in paragraphs 2 and 3. FIG 9 and FIG
10 show the results. The three methods gives similar
results especially in the longitudinal direction where the

PDF of the data are quite close to the standard distribution
(see FIG 4). This result is quite reassuring since the
Bootstrap method is quite different from the first two.
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FIG 9. P95/50 level computed for Clamp band
test data at S/C I/F - radial direction
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FIG 10. P95/50 level computed for Clamp band
test data at S/C I/F - longitudinal direction
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FIG 11. P99/90 level computed for Clamp band
test data at S/C I/F - radial direction
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FIG 11 and FIG 12 are very interesting since they provide
the influence of the non-normality of the original data
sample on the probability levels. They clearly show that
non-normality increases the scattering of probability levels
between the three methods when using high
percentile/confidence values. In the radial direction, the
PDF are not so close to the standard distribution than in
the longitudinal direction. As a consequence, the NTL
method provides more conservative results for the P99/90
level in radial direction than the NTL method with a
transformed gaussian model or than the Bootstrap
method. For the longitudinal direction, the P99/90 levels
given by the three methods are still in a good agreement
because the original data sample is close to the normal
distribution.

4.4. Comparison between P99/90 and 
P95/50+3dB levels

This comparison aims at determining the qualification level
that is defined by NASA as MEE+3 dB, i.e.  P95/50+3dB
and by AFSSD as P99/90 level. As the data in general
cannot be for sure associated with the normal distribution,
it was decided to compare these probability levels thanks
to the Bootstrap method.
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FIG 13 and FIG 14 show empirically that the P95/50+3dB
and the P99/90 level are quite equivalent and can both be
utilized to define a qualification level. The usual 3 dB
margin for qualification [3] finds with the P99/90 level a
statistical justification.

5. CONCLUSIONS AND FUTURE WORK

Statistical processing of shock test data constitutes one
method to define the MEE with regards to the shock
environment as other classical methods like extrapolation
techniques or numerical analysis. The classical NTL
method is widely used in the US aerospace industry with
success since more than 40 years. The simplicity of the
NTL method should not hide its fundamental assumption
that the original data have to be normally distributed. If it is 
not the case, the NTL method can become over-
conservative, especially for small samples. Two other
statistical techniques have been presented to be used with
shock test data aiming at correcting the NTL defaults.

The return of experience using these methods shows the
following : 

• The three methods give similar results for 
normally distributed data.

• Non-normality increases the scattering of
evaluation between the three methods when
using high percentile/confidence values (NTL
seems too conservative).

• If the distribution of observed data is not perfectly
normal, the NTL with transformed gaussian
model method tends to partially correct the
default of NTL method with almost no increase in
computation time.

• If the data are not distributed normally, the
Bootstrap method seems to give the most reliable
results but with an increased computation time
(linked to the number of replicates).

• The comparison between P95/50+3dB and 
P99/90 shock levels with the Bootstrap method
shows a good convergence. It provides a good
justification to the NASA choice to define the 
qualification environment as the MEE + 3 dB 

Future work will concentrate on the Bootstrap method
which seems very promising for applied statistics.
Particularly, the methods to define accurate and not
biased confidence intervals have been deeply studied,
notably by Efron.
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7. ACRONYMS

NTL Normal Tolerance Limit

MEE Maximum Expected Environment

SRS Shock Response Spectrum 

S/C Spacecraft

I/F Interface 

PDF Probability Distribution Function

CDF Cumulative Distribution Function
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