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OVERVIEW
The reliability of shell structures is a major theme in
aerospace engineering. This article argues that the
reliability issue can and should be addressed through
sensitivity analysis, that is, the assessment of the im-
pact of individual input parameters (loads, material
constants, geometry) or sets of input parameters on
the failure of the structure. A major challenge in
aerospace applications lies in the fact that high com-
putational costs have to be faced. Methods have to be
developed that admit assertions about the sensitivity
of the output with as few computations as possible.
This article explores and compares four probabilistic
and semi-probabilistic techniques – interval estimates,
Monte Carlo simulation, random set methods, fuzzy
sets – and reports on our experience with the suitabil-
ity of each method.

1. INTRODUCTION
This article addresses results of a research project in
aerospace engineering, in collaboration of academia
and industry. The project name is ICONA (Innovative
Concept for Nonlinear Analysis of Lightweight Struc-
tures) and is carried out jointly by Intales GmbH Engi-
neering Solutions, three departments of the University
of Innsbruck (Mathematics, Civil Engineering, Com-
puter Science), supported by EADS Astrium ST and
TransIT Innsbruck and involves a collaboration with
Delft University of Technology (Aerospace Engineer-
ing). The project is concerned with the determination
of the buckling load of the frontskirt of the ARIANE 5
launcher under various loading and flight scenarios. It
involves development of new shell elements, databanks
for the flight scenarios, new numerical substructure
techniques, and the development of concepts of sensi-
tivity analysis in order to more accurately assess the
reliability and the design of the structure or eventually
suggest guidelines for redesign.

The sensitivity analysis question will be addressed in
this article. Assessing the reliability of a structure
is one of the core tasks in engineering. We believe
that sensitivity analysis supplies more conclusive in-
formation in this respect, rather than saftey margins
or failure probabilities. It is probably less common
in use due to the computational effort involved. Fac-
ing the computational costs, the current challenge is
to conceive and develop practicable tools. The paper
explores various probabilistic and semi-probabilistic
techniques that promise a computationally feasible ap-

proach to sensitivity analysis.

The frontskirt is a reinforced light weight shell struc-
ture. The computation of the decisive parameter indi-
cating failure, the load proportionality factor (LPF),
is based on a large finite element model. The load
proportionality factor is defined as the limiting value
in an incremental procedure, in which the dynamic
loads during a flight scenario are increased stepwise
until breakdown of the structure is reached. The goal
is to determine the most influential input parameters
(loads, material constants, geometry) on the load pro-
portionality factor in a sensitivity analysis. The cal-
culation of the output variable LPF - under a given
single set of input parameters - takes about 32 hours
on a high performance computer. In addition to the
extremely high computational cost, the LPF may de-
pend in a non-differentiable manner on some of the
input parameters, especially variations in the geom-
etry. A classical sensitivity analysis of the complete
structure is currently out of reach.

For this reason, we introduce probabilistic methods
and employ tools from the rather new field of impre-
cise probability, in order to attain a conclusive repre-
sentation of the respective effects of parameter changes
(the term imprecise probability theory subsumes ran-
dom sets, fuzzy sets, interval arithmetic and interval
probability, among others). Engineering information
on the variability of the input parameters usually con-
sists of a central value and a coefficient or range of
variation. The basic strategy for arriving at a sen-
sitivity assessment will be to successively freeze the
input parameters and study the effect on the variabil-
ity of the output. We wish to do this without artificial
parametric assumptions and with as few calls of the
finite element program as possible.

In this exploratory study, we model the input variabil-
ity by the following set of methods:

(a) interval bounds estimated by sampling from a
Cauchy distribution;

(b) partial rank correlation coefficients obtained by
Monte-Carlo simulation, together with resampling (to
estimate accuracy while keeping the number of calls to
the program low).

(c) random sets constructed from Tchebycheff’s in-
equality;

(d) fuzzy sets and Hartley-like measures.

We test and compare the efficiency of the respective
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methods with the aid of a simplified finite element
model simulating part of a space craft launcher (Fig-
ure 1). The computational cost for the simplified
model is one hour per call of the program. In the sen-
sitivity analysis, up to 17 input parameters are taken
into account. A tentative description of the meaning
of the parameters as well as their nominal values can
be read off from Table 1. It turned out that the partial
rank correlation coefficient method gives the best re-
sults, requiring about 100 calls to the program. We are
working on further reducing the computational cost by
implementing the sensitivity analysis on a lower level
in the iterative solution procedure, thus making appli-
cation to the ARIANE 5 frontskirt feasible.

A detailed description of the respective methods will
follow in four sections, with a final section devoted to
a comparison of the methods. The question of mod-
elling correlations between the input variables will be
addressed in the appropriate sections. Tables and fig-
ures are collected at the end of the paper.

For background material on sensitivity analysis we
refer to the Special Issue [7], in particular the sur-
vey article [8] and to [6], for random sets, to [16, 17],
for random and fuzzy sets, to [4, 12], for probability
boxes, to [2], for a review on probabilistic treatment
of uncertainty in structural engineering as well as in-
formation on variability of typical input parameters,
to [23], for a survey on the mathematical methods
employed, to [18].

2. INTERVAL BOUNDS
We begin by showing how an interval estimate on
the desired output variable LPF can be obtained,
given knowledge about intervals between which the
input parameters lie. The computation of the LPF
can be viewed as an input-output map that assigns
to the input variables (x1, . . . , xd) the output value
y = g(x1, . . . , xd). In our application, the xi will be
taken as some or all of the parameters listed in Ta-
ble 1, and y will be LPF. To describe the method,
suppose that the variability of each input parameter
xi is described by an interval [µi−∆i, µi+∆i] of spread
∆i around a central value µi. It has been argued in
[14], that an estimate of the output interval can be
obtained by Monte Carlo simulation using the Cauchy
distribution. Monte Carlo simulation enters only as
a computational tool; the model of the uncertainty is
non-parametric.

The underlying theory from [14] is as follows. Suppose
we wish to estimate the difference

∆y = g(x1, . . . , xd)− g(µ1, . . . , µd)

where |∆xi| = |xi − µi| ≤ ∆i. Linearization around
the mean value gives

|∆y| ≤ ∆ =
d∑

i=1

|ci|∆i, ci =
∂g

∂xi

(
µ1, . . . , µd

)
.

If the Xi are independent random variables following
a Cauchy distribution with scale parameter ∆i, then
Y = c1X1 + . . . + cdXd obeys a Cauchy distribution
with scale parameter ∆. This offers the possibility
of computing the bound ∆ on the output spread by
Monte Carlo simulation.

The algorithm runs along the following lines. To
produce a single realization, a d-dimensional sample
(z1, . . . , zd) of Cauchy distributed variables with scale
parameters 1 is taken. Setting K = max1≤i≤d |zi|, one
has that δi = ∆izi/K has a Cauchy distribution with
scale parameter ∆i/K. Putting xi = µi + δi it follows
that

Z = K
(
g(x1, . . . , xd)− g(µ1, . . . , µd)

)
is a realization of a Cauchy distributed variable with
desired scale parameter ∆ (this is true exactly when
g is linear and otherwise approximately). An n-fold
repetition yields the Monte Carlo sample of size n
of the variable Z. Fitting a Cauchy distribution –
e.g. by the maximum likelihood method – produces
an estimate of the spread ∆ of the output interval
[g(µ1, . . . , µd) −∆, g(µ1, . . . , µd) + ∆]. The computa-
tional effort for this estimate is n calls of the finite
element program and thus independent of the dimen-
sion d. This offers the possibility to include a larger
number of input variables in the analysis.

Example 1. In this calculation, 17 input parameters
were included with nominal values displayed in Ta-
ble 1. The spreads ∆i were taken as 0.15-times the
nominal values µi. We used a direct Monte Carlo
method to produce a sample of size n = 100. The
value of the load proportionality factor LPF was ob-
tained as µ = g(µ1, . . . , µd) = 3.5443. The simulation
resulted in an estimate for its spread of ∆̂ = 0.2924.

This method allows to produce a confidence estimate
for the desired spread ∆ as well – without further es-
sential computational effort, namely by means of re-
sampling, thus approximating the empirical distribu-
tion of ∆. We employed 10000 random subsamples of
size 100 (with repetition), following the suggestions in
[22]. This resulted in a 95%-confidence interval for ∆
of CI0.95(∆̂) = [0.2281, 0.3685]. Since the resampling
procedure is based on the original n = 100 calls of the
finite element program, the additional computational
effort is negligible.

It should be noted here that the accuracy of the
Cauchy method is in question in this context. In
fact, the justification of the Cauchy method relies
on the fact that the output function g is near lin-
ear. This is not the case in our situation where the
output function g is a nonlinear finite element com-
putation resulting in the LPF. It turned out that the
simulations of the auxiliary variable Z actually failed
the Kolmogorov-Smirnov-test for being Cauchy dis-
tributed. In fact, a direct Monte Carlo simulation
of size n = 100 of the output variable LPF, with uni-
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formly distributed input variables, produced an output
range of [3.45, 3.65]. This indicates that the range was
largely overestimated by the Cauchy method. This
could possibly be overcome by the suggestion of [14]
of repeated bisection of the input interval, though at
an increase in computational cost.

3. MONTE CARLO SIMULATION
In this section, we turn to direct Monte Carlo simula-
tion in sensitivity analysis. Given a certain statistical
distribution of the input variables, Monte Carlo sim-
ulation is a numerical procedure for calculating the
distribution of the output. By means of a random
number generator, n independent realizations of the
input variables are produced. The finite element pro-
gram yields a histogram of n realizations of the output
variable, from which its statistical properties can be
estimated. The method is parametric in as much as
assumptions on the type of input distributions have to
be made. We always assumed uniformly distributed
input variables.

Further, we employed Latin hypercube sampling, an
efficient stratified sampling strategy. To obtain a sam-
ple of size n, the Latin hypercube sampling plan di-
vides the range of each variable Xi into n disjoint
subintervals of equal probability. First, n values of
each variable Xi, i = 1, . . . , d, belonging to the re-
spective subintervals are randomly selected. Then the
n values for X1 are randomly paired without replace-
ment with the n values for X2. The resulting pairs are
then randomly combined with the n values of X3 and
so on, until a set of n d-tuples is obtained. This set
forms the Latin hypercube sample. The advantage of
Latin hypercube sampling is that sampled points are
evenly distributed through design space, thereby cov-
ering regions possibly important for the input-output
map which might be missed by direct Monte Carlo
simulation. It can be shown that the variance of
an estimator based on Latin hypercube sampling is
asymptotically smaller than the variance of the di-
rect Monte Carlo estimator, and possibly markedly
smaller when the input-output map is partially mono-
tonic [6, 15, 25].

For additional accuracy in view of the rather small
sample size we subjected the simulated variables to
correlation control (see [10, 11]). This procedure con-
sists in a rearrangement of the originally simulated
values such that the resulting empirical rank corre-
lation matrix is close to diagonal. Based on such a
direct Monte Carlo simulation, a considerable number
of methods is available for sensitivity analysis.

Example 2. To estimate the influence of each of the
17 input parameters from Table 1 on the output LPF,
we performed a Monte Carlo simulation of size n = 100
with uniformly distributed input variables (on the in-
tervals as in Example 1). A first scan of the influence
of the individual input parameters on the output can

be done by means of scatterplots (input Xi against
output Y ), see Figure 2.

It appears that parameter X13 (booster load) is most
significantly correlated with the output LPF. To reveal
more subtle dependencies, a detailed calculation is re-
quired, as e.g. computing the weighted contribution
of each input variable to the variance of the output
(this can be done by successively freezing variables at
their mean value and observing the effect on the total
output variance). However, hidden interactions may
have a significant effect on the decomposition of the
variance (as well as on the scatterplot). We therefore
turn to a method which intends to remove the influ-
ence of co-variates on the correlation between a given
input variable Xi and the output variable Y . This
method is based on the partial rank correlation coeffi-
cient (PRCC).

We recall that partial correlation between two random
variables Xi and Y given a set of co-variates Xri =
{X1, . . . , Xi−1, Xi+1, . . . , Xd} is defined as the corre-
lation between the two residuals eXi·Xri

and eY ·Xri

obtained by regressing Xi on Xri and Y on Xri , re-
spectively. More precisely, one first constructs the two
regression models

X̂i = α0 +
∑
j 6=i

αjXj , Ŷ = β0 +
∑
j 6=i

βjXj ,

obtaining the residuals

eXi·Xri
= Xi − X̂i, eY ·Xri

= Y − Ŷ .

Since eXi·Xri and eY ·Xri are those parts of Xi and Y
that remain after subtraction of the best linear esti-
mates in terms of Xri, the partial correlation coeffi-
cient

ρXi,Y ·Xri
= ρ(eXi·Xri

, eY ·Xri
)

quantifies the linear relationship between Xi and Y
after removal of any part of the variation due to the
linear influence of Xri. Applying a rank transforma-
tion to the variables Xi and Y leads to the partial
rank correlation coefficient (PRCC). For further back-
ground on PCCs and PRCCs, see [5, 9, 21].

Example 3. The same Monte Carlo sample as in
Example 2 was used to calculate the PRCCs. The re-
sult can be seen in Figure 3. For further statistical
confirmation, we performed a resampling procedure
as in Example 1, producing bootstrap confidence in-
tervals for the partial rank correlation coefficients as
displayed in Figure 4. Accordingly, only the PRCCs
of the parameters X1, X3, X9, X13 and X14 test to be
nonzero (initial temperature, temperature cylinder 2,
hydrostatic pressure sphere 2, booster load node 1 in
z-direction, booster load node 2 in z-direction).

The outcome shows that among the parameters X3,
X13 and X14, the one with the biggest influence is
X13, followed by X3 and X14.

We also ran various tests with correlated input which
confirmed the observed sensitivities. However, each
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test required a new Monte Carlo simulation with sam-
ple size n = 100. In addition, we computed Sobol
indices [24] for groups of variables; this, however,
again requires additional Monte Carlo simulations.

4. RANDOM SET METHODS
In this and the following section we present two com-
pletely non-parametric methods for a sensitivity as-
sessment. Both methods produce good visualizations
of the influence of each individual parameter, but they
turn out to be computationally expensive. For this
reason, we restrict their application to the three in-
put parameters X3, X13, X14 (temperature cylinder 2,
booster load node 1 in z-direction, booster load node
2 in z-direction) which turned out to be the most im-
portant parameters in the previous analysis.

As has been demonstrated in [19, 20], random inter-
vals constructed by Tchebycheff’s inequality can serve
as a non-parametric model of the variability of a pa-
rameter, given its mean value and variance as sole in-
formation. We first explain the univariate case of a
real-valued random variable X. Let µ = E(X) be its
expectation and σ2 = V(X) be its variance. Tcheby-
cheff’s inequality asserts that

(1) P
(
|X − µ| > dα

)
≤ α, dα = σ/

√
α.

Equipping the unit interval (0, 1] with the uniform
probability distribution, the non-parametric confi-
dence intervals

(2) Iα = [µ− dα, µ + dα], α ∈ (0, 1]

define a random set, i.e. a set-valued random variable.
By construction, the following formulas for the belief
in the set Iα and the plausibility of its complement Ic

α

hold:

P (Iα) =
∫
{β∈(0,1]:Iβ⊂Iα} dβ = 1− α ≤ P (Iα),

P (Ic
α) =

∫
{β∈(0,1]:Iβ∩Ic

α 6=∅}
dβ = α ≥ P (Ic

α).

This shows that the random set description provides
a conservative assessment of the variability X. In ap-
plications, the range of the parameter X may be con-
fined to a compact interval [xmin, xmax]. In this case,
the random set will be truncated to

Iα = [(µ− dα) ∨ xmin, (µ + dα) ∧ xmax].

In the multivariate case X = (X1, . . . , Xd) where each
parameter Xi is modelled as a random set as in (2),
we form the joint random set (assuming random set
independence)

α = (α1, . . . , αd) → Aα = I1
α1
× . . .× Id

αd

again with the uniform distribution on the probability
space (0, 1]d.

Let g : Rd → R be a continuous function. If the input
variables X = (X1, . . . , Xd) are modelled as a random

set Aα, α ∈ (0, 1]d (equipped with the uniform prob-
ability distribution), the output variable is given by
the random set g(Aα), α ∈ (0, 1]d. A visualization of
the output can be obtained by means of the upper and
lower distribution functions (or probability box, [2])

(3)
F (x) = P

(
α : g(Aα) ∩ (−∞, x] 6= ∅

)
F (x) = P

(
α : g(Aα) ⊂ (−∞, x]

)
.

In the numerical evaluation, the joint random set is
approximated by a finite random set with focal ele-
ments

I1
α1
× . . .× Id

αd
, αj ∈ { 1

n , 2
n , . . . , 1},

each with probability weight n−d. The input-output
function is evaluated as follows: First, an interval
Q ⊂ Rd is determined that bounds the relevant range
of the input variables X. Next, the values of the func-
tion g are computed at the md nodes of a uniform grid
on Q. The output g(Q) is approximated by a response
surface ĝ(Q) obtained by multilinear splines. More
precisely, to compute the image of one of the sets Aα,
ĝ(Q) is evaluated at all grid points inside Aα and all
points on its edges intersecting one of the grid lines.
The interval g(Aα) is approximated by the minimum
and maximum value thus obtained. Finally, the proba-
bility box (3) is calculated by adding the weights when
appropriate. The essential computational effort thus
amounts to md calls of the finite element program.

Figure 5 shows the result of the calculation of the
load proportionality factor (LPF) where the three in-
put parameters X3, X13, X14 were kept variable. The
variance σ for the Tchebycheff model was adjusted
such that the base intervals [xmin, xmax] for each of the
parameters was symmetric around the corresponding
mean µ with spread ±0.15µ. In this case, d = 3 and
we chose m = 5 so that 125 calls to the FE-program
were required.

Example 4. To assess the sensitivity of the load pro-
portionality factor LPF with respect to the parameters
X3, X13, X14 we again use the Tchebycheff model for
each of the parameters with spread 0.15 times their
mean values. Then we successively set one of the re-
sulting σ3, σ13, σ14 equal to zero (while keeping the
others at their given value), go through the calculation
indicated above and plot the resulting probability box
(solid lines – the thin lines indicate the unperturbed
result from Figure 5). This is displayed in Figure 6
and shows that setting σ13 = 0 produces the biggest
reduction of the width of the probability box, while
setting σ14 = 0 has little effect. This confirms that
the parameter X14 has the least influence on the vari-
ability of the response, while X13 exerts the biggest
influence.

The strategy of successively freezing variables, to-
gether with probability boxes is further explicated in
[3] and applied in [20]. Questions of dependence or
interactivity of the input variables are postponed to
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the next section. Dependence could be modelled by
copulas on the underlying probability space (0, 1]d or
by restrictions on the set of probability measures on
Rd defined by the random set.

5. FUZZY SETS
Another non-parametric, in fact, non-probabilistic
method for sensitivity analysis can be based on fuzzy
sets. In this section, one-dimensional input variables
will be modelled as normalized fuzzy numbers, that is
as fuzzy subsets B of the real line with upper semi-
continuous membership function πB(x) that attains
the value 1. The α-level set of B is the set

Bα = {x ∈ R : πB(x) ≥ α}, α ∈ (0, 1].

In the multivariate case, the non-interactive joint fuzzy
set is defined as follows. Given d univariate fuzzy sets
B1, . . . , Bd, the joint fuzzy set has the α-level sets

Bα = B1
α × . . .×Bd

α, α ∈ (0, 1].

Correlation – or rather interactivity in the language
of fuzzy logic – can be modelled by certain parametric
restrictions on the α-level sets. To avoid combinatorial
complications, we shall treat interactivity of at most
two out of the d variables. Since an α-level set of the
form Bi

α × Bj
α is an affine image of the unit square,

it suffices to give the definitions for B1
α = B2

α = [0, 1].
Following [26], interactivity will be modelled by re-
placing the unit square by a diamond-shaped region,
symmetric around one of the diagonals. Let 0 ≤ ρ ≤ 1
and define the points P1, . . . , P4 by

P1 = (ρ/2, ρ/2), P2 = (1− ρ/2, ρ/2),
P3 = (1− ρ/2, 1− ρ/2), P4 = (ρ/2, 1− ρ/2).

Interactivity of positive degree ρ is modelled by tak-
ing the rhombus with corners {(0, 0), P2, (1, 1), P4}
as joint level set, while interactivity of negative de-
gree −ρ is modelled by the rhombus with corners
{(0, 1), P1, (1, 0), P3} as joint level set (Figure 7).

Let g : Rd → R be a continuous function. If the input
variables X = (X1, . . . , Xd) are modelled as a non-
interactive or interactive fuzzy set with α-level sets
Bα as above, Zadeh’s extension principle yields the
output variable as the fuzzy number with level sets
g(Bα), α ∈ (0, 1].

While a fuzzy set can be interpreted as a random set
(cf. e.g. [4]) and the procedure appears similar to the
one of Section 4, there is a fundamental difference in
the multivariate case: in fuzzy set theory, only α-level
sets of the same level are combined to produce the joint
fuzzy set, while for random sets, the focal elements are
obtained as products with respect to any combination
and thus are indexed by the product space (0, 1]d.

Example 5. In the assessment of the sensitivity of
the load proportionality factor LPF with respect to

the input parameters X3, X13, X14, these parameters
were modelled as symmetric triangular fuzzy numbers,
with central values µi from Table 1 and spread±0.15µi

as before. The numerical calculation is based on the
response surface method explained in Section 4. The
images of the α-level sets are again computed by piece-
wise multilinear combination. To handle possible lack
of monotonicity of the function g, we start with level
α = 1 and go the way down to α = 0, insuring at each
step that the approximations satisfy g(Aβ) ⊂ g(Aα)
for α < β.

In the non-interactive case, the procedure for deter-
mining the sensitivity of the output with respect to the
input variables is the same as in Example 4. The ini-
tial calculation is performed with proportional spreads
±0.15µi. Then we successively replace one of the tri-
angular fuzzy numbers by its crisp central value µi,
and compute the output as a fuzzy number. The re-
sult gives a good visual representation of the change
of variability. This can be quantified using e.g. the
Hartley-like measure

HL(B) =
∫ 1

0

log
(
1 + λ(Bα)

)
dα

of fuzzy sets B as proposed by [12] (see also [1] for
further implementation of this idea in sensitivity anal-
ysis).

The result is depicted in Figure 8, where the outer con-
tour is the membership function of the fuzzy LPF with
all input parameters fuzzy, while the shaded region is
bounded by the membership function of the fuzzy LPF
with successively frozen input parameters. It confirms
the observations obtained by the random set method:
X13 is the most influential parameter, followed by X3

and then X14. This can be explained by the model set-
up: X13 refers to a large booster load on one side of the
frontskirt, while X14 signifies a much smaller booster
load on the opposite side. The Hartley-like measures
displayed in Table 2, though, show that some, albeit
small, influence of parameter X14 is detectable.

Example 6. This example serves to show how the
effect of possible correlations between two of the input
parameters on the sensitivity can be assessed. Corre-
lation will be interpreted here as degree of interactiv-
ity as described above. In this example, we assume a
degree of interactivity ρ = 0.98 between parameters
X13 and X14. The remaining parameters are treated
as non-interactive. The α-level sets are of cylindrical
shape with a rhombic base Rα, say. Their images are
again computed by piecewise multilinear combination.
Otherwise, the procedure of successively freezing vari-
ables is similar: For example, when X13 is frozen at
its central value µ13, the interactivity restricts X14 to
vary along the intersection of Rα with the line through
µ13 parallel to the x14-axis, while X3 varies in its orig-
inal α-level interval.

The result is shown in Figure 9; the meaning of the
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contour and the shaded region is the same as in Fig-
ure 8. The outcome confirms the prominence of pa-
rameter X13; as a consequence of the correlation,
parameter X14 is seen to exert a comparable influ-
ence. The result also demonstrates that the correla-
tion changes the sensitivity of the output with respect
to parameter X3. Table 3 shows the Hartley-like mea-
sures of the fuzzy output under successive freezing of
input variables. One may note that the study of the
influence of correlations can be implemented in the
fuzzy approach with ease.

As in Example 5, the computational effort using the
response surface consisted in 125 calls of the finite
element program. The vertical jumps of the mem-
bership function in Figure 9 indicate that the output
does not depend monotonically on the input variables.
Closer inspection (done by producing an array of two-
dimensional plots of the partial maps Xi → LPF)
showed that this is indeed the case. Therefore, the
accuracy of the method using just 125 grid values is in
question. A number of additional explicit evaluations
showed that the accuracy of the boundaries of the
α-level sets for the LPF is in the range of ±0.02 in
absolute value.

6. SUMMARY AND CONCLUSIONS
Starting from a research project in aerospace engineer-
ing one of whose goals was to determine the sensitivity
of the buckling load of the frontskirt of the ARIANE 5
launcher with respect to certain input parameters, we
explored various methods from probability and impre-
cise probability theory. In view of the excessive com-
putational costs of a single run of the finite element
program, the major challenge was to develop methods
with as few calls of the program as possible. We used
a simplified model of the launcher for the numerical
tests of the methods.

The methods under scrutiny were random sets and
Tchebycheff’s inequality, fuzzy sets and Hartley-like
measures, intervals and sampling from a Cauchy distri-
bution, standard Monte-Carlo simulation and resam-
pling. Criteria for the evaluation are: computational
effort; applicability to large scale problems; accuracy;
avoidance of tacit assumptions; reliability and clarity
of interpretation; possibility of analyzing correlated in-
put.

Generally speaking, the Monte Carlo simulation meth-
ods are computationally least expensive. For our sen-
sitivity study, a sample size of n = 100 appeared suf-
ficient. In addition – as is well known – the sample
size can be chosen independently of the number of in-
put variables, so that we could include all 17 variables
in our study. These methods are clearly applicable
to large scale problems. Disadvantages are that para-
metric assumptions on the input variables have to be
made and that freezing of variables requires repetition
of the n = 100 simulations. Thus computing PRCCs

plus resampling is possible irrespective of the problem
scale, but variance decomposition by freezing variables
is not. The same applies to analyzing sensitivity with
respect to input correlations, which requires repetition
of the simulation as well. The numerical accuracy of
the Monte Carlo simulation is well known to be of
order 1/

√
n times the standard deviation of the simu-

lated variable. In view of the coefficients of variation
which were in the range of 10% this appeared sufficient
for the sensitivity study.

We emphasize that the results of a Monte Carlo sim-
ulation are amenable to resampling, which introduces
little additional computational effort (no further eval-
uations of the costly input-output map are needed).
In this way, bootstrap confidence intervals can be ob-
tained that may serve as statistical estimates of the ac-
curacy of the results. For example, we estimated the
bias of each partial rank correlation coefficient, that
is, the absolute value of the difference of the mean
of the resampled data and the initial estimate. The
estimated bias resulted to be less than 2% of the ini-
tial estimate. Further, the significance of the resulting
ranking of the influence of the respective input pa-
rameters can be assessed by comparing the bootstrap
confidence intervals.

The Cauchy method is a simulation method for es-
timating the spread of the output interval. The re-
sulting estimate is non-parametric in as much as only
the spreads of the input variables enter. As a subcase
of Monte Carlo simulation, everything that has been
said above applies here as well. A problematic point
is that the method is derived under the assumption
that the output function is approximately linear. In
our case, the output function is substantially nonlin-
ear. By means of repeated simulations we observed a
quite substantial lack of accuracy of the estimate of
the output spread, as described in Section 2.

Both in the fuzzy set and random set methods, the out-
put α-level sets and focal sets, respectively, are com-
puted by searching for the maximum and minimum of
the corresponding output range. Sufficient accuracy
can only be obtained by a larger number of calls of
the output function, evaluated on a grid of input data.
In addition, the grid size increases exponentially with
the number of input variables. These methods appear
feasible only in the case of medium size problems and
a small number of input variables. Monotonicity or
partial monotonicity of the output function increases
accuracy and helps reducing the number of computa-
tions required.

Test runs with finer grids showed that the numerical
error of the interpolation (i.e. replacing the true out-
put function by a piecewise bilinear response surface)
was less than 1%, thus definitely satisfactory. How-
ever, the optimization error introduced when calculat-
ing the boundaries of the output level sets turned out
to be about ±0.02 in absolute value, which is around
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10 - 20% of the spread of the base level (see end of
Section 5).

The numerical error in the boundaries of the output
level sets appears less influential in the random set
method. This is due to a certain averaging effect. In-
deed, in the fuzzy model the computation of ` output
level sets corresponds to ` input level sets, whereas in
the random set model – at least when using random
set independence – a combination of `d input focal sets
enters (d the number of variables).

Both methods are essentially non-parametric. The
random set model we used is generated by Tcheby-
cheff’s inequality and hence non-parametric by defini-
tion. In the fuzzy set model, we used triangular fuzzy
numbers as input. These can be seen as a collection of
intervals of linearly changing length. The α-level sets
resulting from the computation determine the output
range when the input varies over d-dimensional inter-
vals of length proportional to 1− α.

The fuzzy model in combination with the response sur-
face technique has an additional advantage: it allows
the a-posteriori introduction of interactivity between
the input variables without the need for new calls of
the output function. The effect of interactive input can
simply be evaluated by interpolation in the response
surface.

We finally comment on the practicality of upscaling to
the full problem. This remains a major challenge. The
computational structure of the given problem consists
in a nonlinear, incremental procedure. The LPF is
obtained as the ultimate load value beyond which the
computed solution cannot be prolonged. This may be
either due to a bifurcation point or to a breakdown
of the structure. We currently pursue two strategies.
One strategy is a perturbation method that replaces
the full model by a quadratic approximation when a
bifurcation point is reached. This is based on Koi-
ter’s asymptotic analysis of post-buckling of shells,
see e.g. [13]. The sensitivity analysis would be done
with the asymptotic model in place of the full model.
The second strategy is to start the sensitivity analy-
sis at a later stage of the iterative procedure. Both
methods require to access the finite element code at
a deeper level. A certain difficulty which we expect
to encounter stems from the fact that the incremental
procedure is path dependent. Thus varying the input
parameters late in the process could be misleading,
as initial variations might result in a quite different
path to breakdown. Further directions of research
will focus on the sensitivity of the eigenmodes com-
puted by means of domain decomposition with respect
to the boundary conditions connecting the domains.
This will be particularly relevant in a situation where
computations of different parts of a shell structure are
done separately and should clarify what additional in-
formation is needed to arrive at a robust assessment.
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9. TABLES

i Parameter Xi Mean µi

1 Initial temperature 293 K
2 Step1 thermal loading cylinder1 450 K
3 Step1 thermal loading cylinder2 350 K
4 Step1 thermal loading cylinder3 150 K
5 Step1 thermal loading sphere1 150 K
6 Step1 thermal loading sphere2 110 K
7 Step2 hydrostatic pressure cylinder3 0.4 MPa
8 Step2 hydrostatic pressure sphere1 0.4 MPa
9 Step2 hydrostatic pressure sphere2 0.4 MPa
10 Step3 aerodynamic pressure −0.05 MPa
11 Step4 booster loads y-direction node1 40000 N
12 Step4 booster loads y-direction node2 20000 N
13 Step4 booster loads z-direction node1 3.e6 N
14 Step4 booster loads z-direction node2 1.e6 N
15 Step4 mechanical loads x-direction 100 N
16 Step4 mechanical loads y-direction 50 N
17 Step4 mechanical loads z-direction 300 N

TABLE 1: Description of input parameters no. 1 – 17.

Fuzzy set HL-measure

no fixing 0.1481
X13 fixed 0.0398
X14 fixed 0.1430
X3 fixed 0.1268

TABLE 2: Hartley-like measures of outputs,
non-interactive input.

Fuzzy set HL-measure

no fixing 0.1357
X13 fixed 0.0287
X14 fixed 0.0329
X3 fixed 0.1011

TABLE 3: Hartley-like measures of outputs,
interactive input.
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10. FIGURES

FIG. 1: Simplified finite element model.

FIG. 2: Scatterplot input – output.

FIG. 3: Partial rank correlation coefficients.

FIG. 4: Partial rank correlation coefficients,
confidence intervals.

FIG. 5: Probability box: LPF, 3 input variables.

FIG. 6: Probability box: LPF, frozen variables.

FIG. 7: Positive/negative interactivity.

FIG. 8: Fuzzy sets: LPF, frozen variables,
noninteractive case.
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FIG. 9: Fuzzy sets: LPF, frozen variables, interactive
case.
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