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ABSTRACT

In this paper a finite element implementation of
Koiter’s initial post-buckling theory is presented. In
the present implementation the effect of pre-buckling
nonlinearity has been taken into account. Using
this implementation a reduced complexity analysis
has been done of the conical interstage of the Vega
Launcher, idealized as a conical shell. The general
purpose finite element software DIANA has been used
as the development platform. Results are compared
with a semi-analytical analysis.

1 INTRODUCTION

Thin-walled cylindrical and conical shells are the main
structural components in space industry for space-
craft and launch vehicles. Buckling is the key design
criterion for these thin-walled structures. Moreover,
this type of structures exhibit unstable post-buckling
behavior which make them highly sensitive to small
geometric or load imperfections. Standard finite
element based incremental-iterative analysis approach
of such structures is computationally expensive and
not suitable for repeated runs necessary for a design
and optimization process, and often it is difficult to
interpret the result and guarantee its correctness.
Hence there is a strong need for intermediate tools
that address the aforementioned shortcomings. In the
present work a modified form of Koiter’s perturbation
approach proposed by Byskov and Hutchinson [1] is
used as the foundation of such intermediate tools. In
this approach a perturbation expansion of the initial
post-buckling displacement field is made in terms

of buckling modes and corresponding second order
modes. Often a limited number of modes are sufficient
and consequently the initial post-buckling behaviour
can be described by a small set of nonlinear algebraic
equations (the number of equations are the same as
the number of buckling modes chosen). In this paper
we will present a single mode analysis. Along with
the computation of buckling and second order modes
the post-buckling slope (a coefficient) and curvature
(b coefficient) are also computed. These post-buckling
coefficients give a measure of the stability and im-
perfection sensitivity of the structure. For instance
in the case of conical and cylindrical shells we have
zero a coefficients and typically negative b coefficients
indicating unstable post-buckling behavior with high
imperfection sensitivity. It is to be noted that the
present paper is concerned with static analysis. The
perturbation approach can also be applied to dynamic
analysis [2], [3].

The theory of initial post-buckling behavior as
developed by Koiter [4] is a perturbation technique
based on the principle of stationary potential energy.
However in this paper we will follow an alternate
procedure, proposed by Budiansky and Hutchinson [1]
that writes the field equations directly in variational
form using the principle of virtual work. In Budiansky
and Hutchinson’s work the pre-buckling state was
assumed linear. In the present work we analyse the
idealized conical interstage of the Vega Launcher [5]
under axial compression where it is important to
account for the pre-buckling nonlinearity. In fact for
this particular problem it is not possible to determine
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the first buckling mode correctly if the pre-buckling
nonlinearity is ignored. Cohen [6] and Fitch [7] and
later Arbocz and Hol [8, 9] derived the modifications
triggered by the pre-buckling nonlinearity. These
modifications have been included in the present im-
plementation which has been done in the development
environment of the general purpose finite element
software DIANA [10]. The implementation is largely
based on DIANA’s existing implementation and Tiso’s
formulation [11].

2 THE PERTURBATION METHOD

In this section we will discuss the perturbation
method for buckling and post-buckling analysis with
the inclusion of pre-buckling nonlinearity. Detailed
derivation of the equations are available in the report
by Arbocz and Hol [9]. Here we will explain the basic
procedure and mention the essential equations. The
functional notation introduced by Budiansky [12] will
be used. In the following, symbols with bold font
denote vector and tensor quantities while the scalar
symbols are written in normal font.

Let us define u, ǫ, f and σ as the generalized
displacement, strain, load and stress variables. Then
the nonlinear strain-displacement relation (1) and the
linear elastic constitutive relation (2) can be written
as

(1) ǫ = L1(u) +
1

2
L2(u)

(2) σ = H(ǫ)

where L1 and H are linear functionals and L2 is a
quadratic functional. The equilibrium equation in
variational form is written as

(3) σ.δǫ − f.δu = 0

Here σ.δǫ and f.δu denote, respectively, the internal
virtual work of the stress σ through the strain vari-
ation δǫ, and the external virtual work of the load
f through the displacement variation δu, both inte-
grated over the entire structure. Further if the bilinear
functional L11 is defined such that

(4) L2(u + v) = L2(u) + 2L11(u,v) + L2(v)

then it follows from (1) that the first order strain vari-
ation δǫ produced by δu can be written as

(5) δǫ = L1(δu) + L11(u, δu)

We also assume that the reciprocity relation

(6) σi.ǫj = σj .ǫi (i, j = 1, 2 . . .)

holds. In this study we consider proportional load-
ing, i.e. f=λf0. Now the variables (u, ǫ, σ) of the
post-buckling equilibrium state can be expanded in the
following perturbation series about the pre-buckling
equilibrium state (u0, ǫ0, σ0) at the same value of the
variable load parameter λ

u = u0 + u1ξ + u2ξ
2 + u3ξ

3 + . . .

ǫ = ǫ0 + ǫ1ξ + ǫ2ξ
2 + ǫ3ξ

3 + . . .

σ = σ0 + σ1ξ + σ2ξ
2 + σ3ξ

3 + . . .

(7)

The variables (u0, ǫ0, σ0) and (u, ǫ, σ) are assumed
to be nonlinear functions of λ = λ(ξ), while the
expansion functions (uk, ǫk, σk) where k = 1, 2,
. . . are independent of λ and ξ. The perturbation
expansions (7) are assumed to be asymptotically valid
in the neighbourhood of the critical point defined by
λ = λc and ξ = 0.

Substituting equations (7) into equations (1), (2) and
(3), taking the limit ξ → 0 and with some further
manipulations one obtains the necessary equations for
the buckling load λc and the corresponding buckling
mode u1

(8) ǫ1 = L1(u1) + L11(uc,u1)

(9) σ1 = H(ǫ1)

(10) σ1.δǫc + σc.L11(u1, δu) = 0

where the pre-buckling quantities with the subscript
()c are evaluated at λ = λc. Next it is assumed that
the pre-buckling variables can be expanded in the Tay-
lor series

u0 =uc + (λ − λc)u̇c

+
1

2
(λ − λc)

2üc + . . .

σ0 =σc + (λ − λc)σ̇c

+
1

2
(λ − λc)

2
σ̈c + . . .

(11)

where the dots represent differentiation with respect to
λ. In addition it will be assumed that (λ−λc) admits
the asymptotic perturbation expansion

(12) λ − λc = aλcξ + bλcξ
2 + . . .

In view of equation (12), if a plot of load parameter
(λ) versus the mode amplitude (ξ) is made then
a and b coefficients respectively indicate the slope
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and curvature of the post-buckling curve. In the
present work we consider symmetric structures with
post-buckling slope, a = 0 and typically negative
post-buckling curvature, b < 0 indicating unstable
post-buckling behavior.

Inserting equations (11) and (12) together with
equation (7) into equations (1), (2) and (3) and
equating the coefficients of ξ2 with the assumption of
a = 0 (valid for symmetric structures) one can finally
obtain the necessary equations for the determination
of the second order mode u2

(13) ǫ2 = L1(u2) + L11(uc,u2) +
1

2
L2(u1)

(14) σ2 = H(ǫ2)

(15) σ2.δǫc + σc.L11(u2, δu) + σ1.L11(u1, δu) = 0

The second order mode u2 is further subject to the
following orthogonality condition

(16) σc.L11(u1,u2) = 0

In order to obtain the expression for the b coefficient
we set δu = u1 in equations (10) and (15) and make
use of the reciprocity relation (6). This gives

(17) b = −

2σ1.L11(u1,u2) + σ2.L2(u1)

λcλ̂

where

(18) λ̂ = 2σ1.L11(u̇c,u1) + σ̇c.L2(u1)

3 FINITE ELEMENT IMPLEMENTATION

In this section we will discuss the finite element
implementation of the perturbation approach de-
scribed in the section 2. An existing DIANA element
called CQ40S has been used. CQ40S is an eight-node
quadrilateral iso-parametric curved shell element. At
each node it has 3 displacement degrees of freedom
and 2 rotational degrees of freedom. Therefore the
element has 5 degrees of freedom per node leading to
40 (5×8) degrees of freedom for the whole element. It
is based on Mindlin’s shell theory and both displace-
ments and rotations are interpolated independently
using quadratic polynomials. To avoid membrane and
shear locking a reduced integration 2 × 2 scheme is
used over the element area. Integration in thickness
direction can be 3 point Simpson or 2 point Gauss.
Details of this element is available in DIANA manual
[10]. Here only the relevant parts concerning buckling
and post-buckling analysis are described. We use bold
font to denote vectors and matrices and normal font
for scalars.

In order to use the element CQ40S for post-buckling
analysis no modification of the element formulation
is required. However it is necessary to construct the
non-linear part of strain-displacement matrix named
as BNL. In FE notation the strain-displacement
relation is given as

(19) ǫ = BLq +
1

2
BNLq

where BL and BNL defined at each integration point
correspond respectively to L1 and L2 functionals in
equation (1) and q is the vector of nodal displacements
at each element corresponding to continuous displace-
ment field (u). Equation (19) is written in terms of
Green-Lagrange strain tensor as











ǫxx

ǫyy

ǫzz

ǫxy

ǫyz

ǫzx











=











ux,x

uy,y

uz,z
1
2 (ux,y + uy,x)
1
2 (uy,z + uz,y)
1
2 (uz,x + ux,z)











︸ ︷︷ ︸

BLq

+
1

2











u2
x,x + u2

y,x + u2
z,x

u2
x,y + u2

y,y + u2
z,y

u2
x,z + u2

y,z + u2
z,z

ux,xux,y + uy,xuy,y + uz,xuz,y

ux,yux,z + uy,yuy,z + uz,yuz,z

ux,zux,x + uy,zuy,x + uz,zuz,x











︸ ︷︷ ︸

BNL(q)q

(20)

where ǫxx, ǫyy, ǫzz, ǫxy, ǫyz and ǫzx are the strain
components and ux, uy and uz are the displacement
components. It is to be noted that unlike BL, BNL is
a function of q since it gives the nonlinear part of the
strain. Finally BNL is constructed as

(21) BNL(q) =











qTKxx

qTKyy

qT Kzz

qTKxy

qT Kyz

qT Kzx











where the matrices Kxx, Kyy, Kzz, Kxy, Kyz, Kzx

are defined as

Kxx = NT
,xN,x

Kyy = NT
,yN,y

Kzz = NT
,zN,z

Kxy =
1

2
(NT

,xN,y + NT
,yN,x)

Kyz =
1

2
(NT

,yN,z + NT
,zN,y)

Kzx =
1

2
(NT

,zN,x + NT
,xN,z)

(22)
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Here N,x, N,y, N,z are the derivatives of the interpola-
tion polynomial functions at each integration point of
the element. Thus the functional L2(u) is represented
by BNL(q) and in a similar way L11(u,v) is translated
to finite element notation as BNL(q1)q2 where the
nodal displacement vectors q1 and q2 correspond to
continuous displacement fields u and v respectively.

3.1 Buckling Analysis

According to equation (5) the strain variation at the
critical point (ǫc) can be written as

(23) δǫc = L1(δu) + L11(uc, δu)

Insertion of equations (8) and (9) into equation (10)
together with equation (23) gives

H[L1(u1) + L11(uc,u1)].[L1(δu)

+ L11(uc, δu)] + σc.L11(u1, δu) = 0
(24)

After some algebraic manipulation on equation (24)
and replacing L1 and L11 functionals with the finite
element matrices BL and BNL we get the discretized
form of equation (24)

δqT [BT
LHBLq1 + BT

NL(qc)HBLq1

+ BT
LHBNL(qc)q1 + BT

NL(q1)σc] = 0
(25)

Because δq is an arbitrary displacement vector we can
drop it and rewrite equation (25) after element level
integration and assembly process as

(26) [KM + KD(qc) + KG(σc)]q1 = 0

where KM , KD(uc) and KG(σc) are the material, ini-
tial displacement and geometric stiffness matrices re-
spectively. They are defined at the element level as

KM =

∫

v

BT
LHBLdv

KD(qc) =

∫

v

[BT
NL(qc)HBL + BT

LHBNL(qc)]dv

KG(σc) =

∫

v

[σxxcKxx + σyyc
Kyy + σzzcKzz

+ σxyc
Kxy + σyzc

Kyz + σzxcKzx]dv

where v is the element volume, σxxc, σyyc
, σzzc, σxyc

,
σyzc

, σzxc are the stress components and Kxx, Kyy,
Kzz, Kxy, Kyz, Kzx have already been defined in
equation (22). Now the sum of KM , KD(uc) and KG

gives the tangent stiffness matrix (Ktc) at the critical
point. Therefore equation (26) for the buckling prob-
lem can be written as

(27) Ktcq1 = 0

In order to solve equation (27) we can proceed in the
following way. First we perform a standard nonlin-
ear analysis to reach as close as possible to the criti-
cal point without encountering any negative diagonal
term in the system stiffness matrix. Let us define that
state as the base state which occurs at λ = λb with
the corresponding displacement and stress states qb

and σb respectively. We can now linearize q(λ) and
σ(λ) as

q(λ) = qb + (λ − λb)q̇b

σ(λ) = σb + (λ − λb)σ̇b

(28)

where dots denote derivatives with respect to λ. At
λ = λc equation (28) becomes

q(λc) = qc = qb + (λc − λb)q̇b

σ(λc) = σc = σb + (λc − λb)σ̇b

(29)

Insertion of equation (29) into equation (26) gives

[
[KM + KD(qb) + KG(σb)]

+ (λc − λb)[KD(q̇b) + KG(σ̇b)]
]
q1 = 0

(30)

We can write equation (30) in a concise form using
tangent stiffness matrix at the base state (Ktb) as

(31)
[
Ktb + (λc − λb)[KD(q̇b) + KG(σ̇b)]

]
q1 = 0

Equation (31) is the linear eigenvalue problem for the
buckling load λc and the buckling mode q1. For the
determination of q̇b one can proceed considering pro-
portional loading (f = λf0) as

(32) q̇b =

(
dq

dλ

)

b

=

(
dq

df

)

b

df

dλ
=

(
df

dq

)
−1

b

f0

Since
(

df
dq

)

b
= Ktb equation (32) can be rewritten as

(33) q̇b = Kt
−1
b f0

Therefore q̇b can be obtained from the linear solution
of

(34) Ktbq̇b = f0

3.2 Post-buckling Analysis

Insertion of equations (8), (9), (13), (14) and (23) into
equation (15) and some algebraic manipulations finally
give

H[L1(u2) + L11(uc,u2)].[L1(δu)

+ L11(uc, δu)] + σc.L11(u2, δu) =

−

1

2
H[L2(u1)].[L1(δu) + L11(uc, δu)]

− H[L1(u1) + L11(u1,uc)].L11(u1, δu)

(35)
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In terms of finite element matrices equation (35) can
be written as

δqT [BT
LHBLq2 + BT

NL(qc)HBLq2

+ BT
LHBNL(qc)q2 + BT

NL(q2)σc] =

− δqT
[1

2
[BL + BNL(qc)]

T
HBNL(q1)q1

+ BT
NL(q1)H[BL + BNL(qc)]q1

]

(36)

We notice that the left hand side of equation is iden-
tical to that of equation (25) with the only difference
that q2 appears in place of q1. Further we identify
the right hand side of equation as a force vector de-
noted by g. Under these considerations we can write
equation (36) in a compact form as

(37)
[
Ktb + (λc − λb)[KD(q̇b) + KG(σ̇b)]

]
q2 = g

where we assume the same linearization as defined in
equation (28). Because equation (37) is singular we
introduce a factor α < 1 and rewrite equation as

(38)
[
Ktb + α(λc − λb)[KD(q̇b) + KG(σ̇b)]

]
q2 = g

Solution of equation (38) gives the second order modes
q2. The associated orthogonality constraint as defined
by equation (16) can be translated to finite element
context as

(39) qT
1 KG(σc)q2 = 0

In order to determine the b coefficient as defined by
equation (17) one needs to compute q1, q2, qc and q̇c.
In subsections (3.1) and (3.2) we discussed about the
determination process of q1, q2, qc. Since we made
the base state (at λ = λb) very close to the critical
state we can assume

q̇c ≈ q̇b

σ̇c ≈ σ̇b

(40)

Solution of equation (34) gives q̇b and consequently
σ̇b.

4 NUMERICAL EXAMPLES

In order to verify the correctness of the approach
we will consider a reference isotropic conical shell
representative of the conical interstage of the Vega
Launcher structure. The conical shell is loaded under
axial compression. One end of the conical shell
is fixed and an axial load is applied at the other
end. In order to apply simply supported boundary
condition all the displacement degrees of freedoms
are restrained at the edge of the fixed end while the
rotational degrees of freedoms remain free. At the
loaded end the displacements in the plane of the edge
are restrained but the axial displacements are set free

so that the load can be applied. However we constrain
those axial displacements such that they remain the
same at all nodes of the edge and thereby eliminating
the possibility of warping at the edge. This boundary
condition is known as MSS4 [13]. The dimensions of
the reference conical shell are:

Top radius R1: 937 mm
Bottom radius R2: 1489.5 mm
Height H: 2138 mm

Apart from the reference shell we will also con-
sider a few other shells generated by varying the
height H, the thickness t and the semi vertex angle
α of the reference shell keeping the top radius R1

unchanged. For the case with α = 0 the reference
conical shell indeed becomes a cylindrical shell. For
the cylindrical shell we will use two different types
of simply supported boundary conditions known as
SS-3 and SS-4 [13]. In case of SS-3 warping at the
edges are allowed while for SS-4 it is not allowed. In
fact SS-4 is equivalent to MSS4 (applicable for conical
shells).

In table 1 the results obtained for the reference
conical shell and two other conical shells with half
height (height = 0.5H) and double thickness (thick-
ness = 2t) of the reference shell are given under MSS4
boundary condition. Table 2 shows the results for the
cylindrical shell generated by setting the semi vertex
angle to zero (α = 0) of the reference shell under both
MSS4 and SS3-Schiffner boundary conditions. The
first buckling loads and b coefficients are compared
between DIANA and the semi-analytical tools BAAC
[13] (for conical shells) and ANILISA [8, 9] (for
cylindrical shells) which are based on Donnell’s shell
theory. In the second column of both of the tables
‘N’ indicates the number of circumferential full waves
appearing in the first buckling mode. In the third
column ‘Mesh’ indicates the mesh size in terms of
the number of divisions around the circumference
times the number of divisions along the length. The
buckling modes are scaled such that the maximum
radial displacement is equal to the shell thickness.

Figure 1 shows the pre-buckling displacement
field of the reference conical shell at the base state
when λ = λb. Figures 2 and 3 show the first buckling
(q1) mode and the corresponding second order mode
(q2) respectively. The buckling mode consists of
10 circumferential full waves and does not contain
any axisymmetric component. The second order
mode contains twice the number of circumferential
full waves of the buckling mode. In addition an
axisymmetric contraction is also present. These dis-
placement modes show the same shape as predicted
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by the semi-analytical approach.

5 CONCLUSIONS

A finite element implementation of Koiter’s initial
post-buckling theory including the effect of pre-
buckling nonlinearity has been presented. This work
is an extension of the existing implementation in
DIANA and a similar implementation in MATLAB
done by Tiso [11]. In those implementations a linear
pre-buckling state was assumed. In this work we
dealt with axially loaded conical and cylindrical
shells where the effect of pre-buckling nonlinearity
is high and in these cases it is not always possi-
ble to capture the first buckling mode with the
assumption of the linear pre-buckling state. Also
the additional terms triggered by the pre-buckling
nonlinearity in the calculation of the second order
modes and the b coefficients are no longer negligible.
Therefore the effect of pre-buckling nonlinearity has
been included in the present implementation. The
obtained buckling modes and loads along with the
corresponding second order modes and b coefficients
were in reasonable agreement with those predicted by
the semi-analytical approach. The small discrepancies
in buckling loads and b coefficients are probably due
to the approximation of the Donnell’s theory used
in the semi-analytical approach as compared to the
kinematic model model used in the present approach
(see section 3).

This implementation has been done for a single
mode analysis (only the first buckling mode has been
considered). It can be further extended for a multi
mode analysis. Also geometric imperfections can
be included in the perturbation expansion in order
to estimate the reduction of the load carrying capacity.
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Geometric parameters N Mesh Buckling load [N] b coefficient
BAAC DIANA BAAC DIANA

Reference 10 120 × 36 9.1071 × 106 8.98950 × 106 -0.44032 -0.46870
Height = 0.5H 10 196 × 32 9.0649 × 106 8.9583 × 106 -0.38626 -0.39691
Thickness = 2t 7 120 × 36 3.6412 × 107 3.5649 × 107 -0.42213 -0.41319

Table 1: Comparison of buckling load and b coefficients of conical shells

Boundary condition N Mesh Buckling load [N] b coefficient
ANILISA DIANA ANILISA DIANA

SS-4 10 120 × 44 9.7523 × 106 9.645 × 106 -0.45467 -0.43667
SS-3 10 120 × 44 9.4996 × 106 9.379 × 106 -0.51188 -0.50208

Table 2: Comparison of buckling load and b coefficients of cylindrical shells

Figure 1: The pre-buckling mode
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Figure 2: The first buckling mode: (a) Isometric view (b) Top view

Figure 3: The second order mode: (a) Isometric view (b) Bottom view
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