
TOPOLOGICAL DESIGN OF A HIGH ALTITUDE PLATFORM (HAP)

USING A SYSTEM DESIGN LANGUAGE

Prof. Dr.-Ing. habil. Bernd Kröplin Dipl.-Ing. Manan Haq
Institute for Statics and Dynamics of Aerospace Structures Design - Construction

University of Stuttgart, Germany TAO Technologies GmbH
Pfaffenwaldring 27, 70569 Stuttgart, Germany Nobelstraße 15, D-70569 Stuttgart

kroeplin @ isd.uni-stuttgart.de haq @ tao-group.de

ABSTRACT

In this paper the application of graph grammar based
design languages is presented. Design languages consist
of a set of vocabulary and a set of rules which have a
specific order within a production system. The design
graph generated by the design language is a formal and a
domain independent representation of the design object.
This allows to apply modifications by rules to the design
graph. Using the example of a High Altitude Platform
system (HAP system) it is shown how the design language
approach enables the automation of design processes by
facilitating the generation of a large variety of design
variants very effectively.

1. INTRODUCTION

Design of complex systems such as the topological design
of aerospace systems is a particular challenge for design
engineers. Several multidisciplinary sub-systems of
different domains are building a network of nodes. The
nodes are interacting with each other by exchanging
information. In case of modifications in one node these
information can propagate through all other nodes of the
network and vice versa. For analysis and simulation
purposes digital models of each domain are generated
separately. They are not fully linked with each other, which
causes a lack of model consistency. Therefore
parametrical and topological changes can only partially
propagate through adjacent models of each domain. Thus
modelling, management and model consistency problems
exist within the design process of these systems.

However, graph based design languages are well suited
for building master-models of such complex systems
where different domains can exist at the same time and
place. Such a design language consists of a set of basic
components, also called vocabulary, and a set of rules,
also called design patterns. These two sets enable the
designer to define a master- model in form of a design
graph. It is a formal - and at this level still domain
independent - representation of a design object. This
formal domain independency allows the designer to make
modifications by design rules to the design graph or
master model. So that the applied changes are
propagated consistently through all geometrical, physical
and other models contained therein. Out of this master-
model sub-models of each domain can be derived. Thus
model consistency over various design domains is
therefore intrinsically maintained.

The systematic is shown by an example of a High Altitude

Platform (HAP, FIG 1). This is a Lighter-Than-Air System
for telecommunication and telemetry purposes [19]. A
design language for such a HAP system is developed
within the software tool named “Design Compiler 43”
where sub-domains such as geometrical configuration-,
CAD-, rise analysis-, electronics-, drive-, aerodynamics-
and structural-model are embedded therein. By this design
language various parametrical and topological
configurations of HAP systems are analysed.

2. RELATED WORKS

In early stages of computational design synthesis, rule-
based information processing concepts of various kinds
have been developed to improve the formalisation of the
design process.

The Lindenmayer-Systems (also called L-Systems) were
developed in biology to describe the growth of plants and
trees [20]. L-Systems are based on string grammars, where
abstract symbols are represented by characters from an
alphabet and encode the topological plant structures
through their rules expressed as string substitutions.

Shape grammars were described by Gips and Stiny [12]. A
set of geometrical shape rules forms the design grammar
that is used to generate different truss designs. Mitchell
applied the concept of shape grammars in the field of
architecture to support the design process [7]. In these
approaches, the rules are expressed directly in
geometrical form. Further, Shea and Cagan [31]
developed a shape grammar for truss structure generation
and optimisation. With this technique, geodesic-like
domes, building roof structures and transmission towers
were generated and the design topologies were optimised
in terms of weight and strength. Furthermore, parallel

FIG 1. Concept of HAP System

505

grammars, based on a function-behaviour-structure, are
applied by Starling and Shea [33] for the parametric
synthesis of mechanical systems. Finally, Agrawal and
Cagan [1] developed a shape grammar for coffee makers.
In this grammar the so-called shape rules were coupled
with certain product functions. Also, a detailed cost
analysis of the manufacturing and assembly of novel
coffeemakers was obtained. In order to overcome the
limitation of consistency between function and form,

Finger and Rinderele [11] used the formalism of graph
grammars [13] for form and function configuration of
mechanical systems. Campbell et al. combined the
method of function structures and graph grammars for the
conceptual design of products [32]. Saitou et al. generated
the so-called topology graphs for decomposition-based
assembly synthesis of the structural characteristics of
products [10], [21] and [22], such as for the optimal
feasibility of manufacturing and assembly.

Alber and Rudolph [2], [3], [4] introduced the approach of a
generic graph grammar where a so-called design graph is
generated as an intermediate domain-independent
representation. Subsequently, this graph representation is
translated into the various object domains and multiple
domain-dependent models of the design object can be
generated. On the basis of this approach a design
language was developed to generate truss structures such
as transmission towers. In the same research group, Irani
and Rudolph [17] developed a graph grammar for
conceptual design of space stations, while Schaefer and
Rudolph [27] applied the formalism of graph-based design
grammars to support the automated design process of
satellites. Finally, Kormeier et al. [18] and Haq and
Rudolph [14], [15], [16] defined a graph-based design
language for aircraft surface conceptual design and
developed a design language for generic space-frame
structure design.

3. APPROACH OF GRAMMAR BASED DESIGN
LANGUAGE

3.1. Languages for engineering design

Natural languages are means of verbal and written
communication between humans. They are able to
transport most if not all relevant information in a specific
situation of a problem to other humans. The linguistic
structure of natural languages is formed out of a so-called
vocabulary and a set of rules that describe the
syntactically correct form of a sentence (i.e., the correct
order of the vocabulary in that sentence). It is important to
note that the vocabulary serves just as set of symbolic
placeholders. In order to give such a structured assembly
a meaning (or in other words to interpret a sentence), each
symbol is assigned with a certain meaning. This aspect is
called semantics. In the domain of pragmatics the effects
of such a sentence on humans in a specific situation,
under certain boundary conditions and other context-
related constraints is considered [16].

In engineering, formal languages [9] are most typically
known as string-based programming languages (e.g.,
Java, Pascal, C, C++ etc.). In analogy to these string-
based formal languages a graph-based design language
can be defined to describe technical objects. For this

purpose the components of a design object are considered
as the vocabulary (i.e., the graph nodes) as the basic
‘building blocks’ of the design language. They can
subsequently be composed together by graph-based
design rules. Within this approach, a grammar of a graph-
based design language for technical objects is developed,
which allows creating a set of possible rule combinations –
a so-called production system – which represents a
generative description of a technical object. It proves later
to be advantageous to handle complex objects on this
basis within a broad range of structural properties and
forms [15], [16].

3.2. Graph grammar based design language

With the approach of graph grammar based design
language the engineer is able to define a formal graph
based but domain-independent representation of a design
object. Within the rule-based design process a design
graph of an engineering artefact is generated by executing
a specific sequence of rules that represents a building plan
of a design object. This means that the first step in
developing a design language is to define the vocabulary
and the rules of the grammar of the design language (FIG
2). The vocabulary elements may be seen as abstract
containers that represent the basic geometrical and
functional components of the desired object domain. The
rules of the design language are the design patterns
consisting of the building instructions for the design object.
In a production system, a specific set of design rules is
composed together, which represents a building plan of an
object (FIG 2). These tasks must be done once in the
beginning of a design process. After this effort, the
vocabulary and the rules can be reused over and over
again. By executing a set of design rules, a new design
graph can be generated or an existing design graph can
be manipulated further. The reexecution of a set of design
rules with different boundary conditions (typically
contained in the axiom) leads to the generation of different
models under (re-) use of the know-how encoded in the
design patterns. In analogy to the aforementioned string-
based formal languages the graph-based language
translation can be described as a two-step translation
process: In a first translation step, a design graph is
created by executing the production system of the desired
engineering artefact. Such a design graph contains the
complete information about the desired engineering design
object. It describes the design object on a high abstraction
level. Therefore it is one common representation for all
domains, such as for the geometrical, for the physical
and/or for the functional model domain. This enables to
maintain the design model consistency between these
domains through constraint processing techniques. In the
second translation step, the achieved design graph is
interpreted via interfaces for analysis or visualisation
purposes. This may be arranged individually for each area
of application. For post processing purposes, analysis
tools can be connected to the design compiler ‘43’ via
specific interfaces [15], [16]. In the following sections, the
syntax of the design rules and the vocabulary definitions
are described in more detail.

3.2.1. Vocabulary definition

Within the definition of graph grammar based design
language, the nodes in a design graph and in a design rule

506

FIG 3. Four quadrants of a rule [15]
FIG 2. Elements of a design language

are called vocabulary of a design language. The
vocabulary are abstract placeholders for real geometrical
objects, procedures or ideas, which can be composed to
form a complete technical system during a design process.
FIG 2 shows some vocabulary of a HAP system. Some of
them are of geometrical and of functional nature. They
contain complete information to define the desired devise
or element of a HAP These are the description of
geometry in the form of a script for CAD modeller CATIA
V5 [6]. Physical information is embedded in the form of
equations for a symbolic computer algebra program
(Mathematica 5 [23]). The interfaces of the vocabulary, the
so-called ports, are defined to exchange data between
other nodes in design graph. Furthermore, parameters and
variables are defined to embed the measures of the
design object in the vocabulary for parameterisation
purposes. Such a definition of each vocabulary is
deposited in an XML file that enables easy and structured
extension and documentation capabilities.

3.2.2. Rule definition

The syntax for design rules as it is implemented in the
design compiler ‘43’ is represented by a geometrical
arrangement of graph nodes and edges in a plane. It is
divided into the four quadrants Q1–Q4 as illustrated in FIG
3. Such a four-quadrant scheme is a derivation from the
original X-scheme, which is quite common in the field of
graph grammars [13]. The left two quadrants Q1 and Q2

represent the if-part and are also called the conditional part
of the graph rule. The right two quadrants Q3 and Q4

represent the then-part and may also be called the
generative part of the graph rule. In case of rule execution,
a search is performed to check if there is any (sub-)graph
matching between the graph in the conditional part and the
actual existing design graph. If a matching is found, the
generative part of the rule is executed and the
modifications represented in the graph rule are mapped
onto the actual design graph. As represented in the rule in
FIG 3, the following modifications can be applied to the
design graph: All nodes in Q1 and all edges leading to
these nodes will be removed from the design graph.
Nodes in Q3 will be added to design graph. Edges
represented in the ‘then-part’ (Q3 and Q4) are assigned to
the design graph. Attributes of newly pasted or already
existing nodes in the then-part in Q3 and Q4 of the rule can
be set or modified [16].

3.2.3. Production system

A production system specifies the syntactically correct
arrangement of the rules of the design language in a
program. It presents a building plan of a design object,
which insures a feasible semantics of the describing
object. If the rules are not executed in a specific right
order, it may be that an object can be generated but it fails
the aspired behaviour of the desired object as a whole.
Similar to the natural languages where the meaningful
massage of the sentences are derived from the syntactical
right order of the words, in the design languages the
behaviour of the design object as a whole (i.e., the
semantics) depends on both the correctness of the
vocabulary and there syntactically correct arrangement in
a design rules, which have also a syntactical correct order
in a production system.

Every production system consists of an axiom and a set of
rules (FIG 2). The axiom presents a starting graph of a
design object and specifies a necessary condition of an
execution able program. Which means that in case of a
missing axiom a production system can not be executed.
The set of rules followed by the axiom presents a building
plan of the object. A production system can consist of
many sets of rules. The sequence of execution of rules
within a set has a specific order. Otherwise it may be that
the set of rules can not be completely executed so that the
generation of the design object with its aspired behaviour
could be fail. The sequence of execution of the sets of
rules of different domains could have an arbitrary order.
This facilitates the design engineer to generate a sub
graph of different design domains independently.

4. DEVELOPING THE DESIGN LANGUAGE FOR
HAP-SYSTEMS

In this section the development process of the graph
grammar based design language of a HAP System is
described. At first the preliminary step of feasible
decomposition and aggregation of the complete system is
presented. By this the vocabulary and rules of the design
language are defined, which is an essential condition for
developing a design language for any engineering object.
At least, the rules are composed to a production system,
which presents a building plan of the HAP system. By
executing the production system a design graph is
generated. It is an abstract representation of the HAP

507

FIG 4. Overview and system decomposition of HAP system

system including all necessary domains and facilitating
model consistency simultaneously over all domains.
Finally, the aspects of granularity within vocabulary and
rule definition are discussed. It is shown that a right
balance of granularity between vocabulary and rules of a
design language facilitates a high rate of freedom in
designing engineering artefacts.

4.1. System decomposition and aggregation

First step of developing any design language is the
decomposition process of the desired design object. In
case of the HAP system the complete system has to be
decomposed in its basic building blocks. The
decomposition has not only to be made for the structural
body of the HAP but also for all other domains of the
system. This concerns to the functional-, electrical- and
energy model etc. (FIG 4). The decomposition process for
vocabulary definition and the aggregation process for rules
definition are not done one after another, but they proceed
hand in hand and are complementing each other in
iterative steps. The right level of granularity in the
decomposition gives the direction of quality of the design
language. On one hand the aim is to decompose the

complete system in general building blocks which can be
commonly used for the whole system. On other hand the
aim is to define a minimum number of general rules or
building instructions, which facilitates a syntactically
correct arrangement of the vocabulary to their neighbours
within a graph.

FIG 4 illustrates an overview of the HAP system. It
consists of a diagram where the sub systems of the HAP
with there neighbourhood relations are presented
schematically. Such a representational form is an initial
step for the decomposition process of the desired object. It
is neither an absolutely top-down nor an absolutely bottom
up presentation, but a compound of both. The diagram has
also not a clear tree structure but a tree which leafs are
adhered in there ends.

The objects or the nodes in the diagram can be broken
down into there extractive elements until a feasible
commonality is distinguishable between them. As
presented in FIG 4 the hull [CASE-node], consists of many
segments, [SEG-nodes]. Each segment consists of a cell,
structure and system components: [Cell-node], [Struc-
node] and [Agr-node]. There is also a [Req-node] which

FIG 5. Functional and geometrical vocabulary of the design language

508

FIG 6. System aggregation by the HAP design language

contains the requirement parameters for the desired HAP.
A [ENV-node] consist of equations describing the
atmosphere from the ground to 20 km altitude. The [AST-
node] is responsible for the aerostatic calculations of each
segment of the HAP. The control system is implemented in
the [Control-node], which e.g. regulates the pressure, [P-
Fan-node], in each segment during the rise period,
[RiseSim-node], of the HAP from the ground to the target
altitude. The edges between the nodes represent the
relations between them. Thus a commonality is
distinguishable between many objects contained in the
diagram. These objects can be picked out and defined as
common objects or the vocabulary of the design language.
While defining the rules, these vocabulary can be used to
derive object or graph nodes of the design graph and there
relations in form of edges. These general relations
between the objects in the diagram are assertive for the
definition of the rules. E.g. every segment consists of a cell
and every cell is connected with a control node.

We present the hull geometry of the HAP as an example
to make the decomposition and aggregation process more
clear. As presented in FIG 6 the geometry of the hull
consist of five segments. Therefore a vocabulary is
defined as a general placeholder, which enables during
the rule definition the derivation of specific objects of
segments. Each segment consists of an elliptical and
cylindrical segment part (FIG 5, 6). So we define one
vocabulary for a cylindrical and one vocabulary for an
elliptical segment part. It is distinguished in the graph in
FIG 6 that common rules can be defined. One rule adds
two elliptical segment part nodes to every segment node.
Another rule adds a cylindrical segment part node between
two elliptical segment part nodes. A further general rule
which can be defined is to connects two segments with an
apron by adding an apron node between two segment
nodes (FIG 6 rule). We can proceed by this way extracting
common vocabulary and rules out of such a diagram of
each domain for expanding and improving the design
language.

5. SYSTEM ANALYSIS EXAMPLES WTH THE
DESIGN LANGUAGE

In the chapter before we have presented the development
process of the design language. It makes clear that a
feasible decomposition and aggregation are an importance
act for vocabulary and rule definition a design object.

Such a unique abstract representation of the HAP system
provides various analysis possibilities for the design
engineers which are not performable in such a less effort

In this chapter, the enhancement of the developed design
language of the HAP system is demonstrated by means of
some analysis examples.

5.1. Parametrical and topological analysis

In the first example a parametrical and topological analysis
is performed to the HAP system. As mentioned before, a
production system of a design language consists of an
axiom and a set of rules. Modifications can be done on the
one hand by changing the parameters in the axiom or in
any other rule in the set. On the other hand the topology of
the HAP system can be modified by executing rules, which
can add or delete corresponding nodes from the design
graph.

In FIG 7 (right) a production system with an axiom and a
set of rules is presented. In the same fig left we can see
the results of parametrical modifications done by changing
the axiom of the production system. In the first line we
have a HAP system with five segments and in the
corresponding axiom there are also five segment nodes. In
the second line the HAP system consist of three segments
and a smaller diameter. The jump from first HAP to third
HAP is only the modification of parameters. The third,
fourth and fifth HAP are from the same class, the
difference is up to the number of the segments.

509

FIG 7. Parametrical and topological analysis of the structure

FIG 8. Parametrical and topological analysis of the drive system

In FIG 8 we can see topological modifications concerning
the drive system. The part of the grammar responsible for
the dimensioning of the drive system consists of a set of
electrical motors with there technical parameters, a set of
rotor blades and electrical cables. On the one hand the
drive system dictates the dimensions of the power supply
system. On the other hand the size of the HAP system
dictates the dimensions of the drive system. The mass of
the drive and power supply system must not exceed the
given limits by the lift of the HAP system. In such a case
the size of the HAP system has to be enlarged, which
means a larger drive power and therefore a larger motor
with bigger rotor blades and more energy cells. So the
dimensioning problem begins again from the start.

5.2. Optimization of wiring harness

System integration is a complex problem within the design
of HAP systems. For each mission there are various
possibilities for the configurational integration of the board
systems. For each configuration a suitable dimensioning of
the wire harness is necessary. Even an optimum for the
wiring harness can be reached. Such a problem can not

be described analytically. Therefore it can also not be
solved by commercial optimization tools. It is a multi
objective optimization problem. One objective is to choose
a thick diameter of the power cable to reduce the attrition
power and therefore less battery power is needed. The
other objective is to reduce the mass of the cable by
choosing a less diameter of the cable.

For solving the problem mentioned above parameterized
rules and vocabulary are defined. Therefore the design
engineer only needs to generate a list of system
components with there location in each segment. FIG 9
presents such an example, where system components are
placed on a truss of a segment (FIG 9, left). The set of
rules responsible for the wiring are executed, which
automatically generates a parameterized wiring harness
which can be optimized with genetic algorithms. The rules
have an access to a database with a set of commercial
cable. For analysis purposes an electronic tool “LT-spice”
is used (FIG 9, right). It generates automatically a circuit
plan of the system configuration and the wire harness,
which is calculated for the result feedback to the design
graph for optimization loops. Hence, by this way of multi
objective optimization a pareto boundary is generated. By

510

FIG 9. System integration, analysis and optimization of wiring harness

consulting further weighting factors and restrictions the
design engineer can now evaluated the boundary curve
and pick an optimum solution which fulfils the mission
requirements. One of the weighting factors could be to
obtain a wiring harness which is optimized to mass and
attrition power and simultaneously meeting the goal of cost
function. In case of an alternative system integration the
same grammar is executed which generates an optimized
circuit plan of the desired HAP configuration. Thus the
design engineer is relieved of modelling the circuit planes
manually and is therefore able to concentrate on the
creative aspects of engineering design. Furthermore the
design languages facilitate generating a large variety of
design alternatives which are not conceivable in such short
time periods.

5.3. Rise analysis

To determine the behaviour of the HAP during the rise
phase from the ground to the target altitude, a detailed
analysis is required. It consists of the expanding behaviour
of the helium gas and its swapping in the cell during rising.
Also its angle of approach is essential. With this the drag
(air resistance) can be assessed. And finally its behaviour
of straitening up can be analysed.

FIG 10 shows a rise and a straightening up analysis of a
HAP system between 0m and 20000m altitude. The HAP
is filled with a certain amount of helium so that the hull is
plump after reaching the target altitude of 20000m.
Considering the thermodynamic equations of the
atmosphere, the gas has on the ground level only a 10 %
of the expansion of volume as in 20 km altitude. Therefore
the helium cell is not plump on the ground and the gas can
swash back and forth in the segment. As illustrated in FIG
10 each segment aspire to reach a momentum free stabile
attitude. For this the helium gas swash’s to the front and
the each segment props up and has an approach angle of
about 65° degrees. During the rise phase the helium gas
expands and it leads to a straightening up of the HAP.

FIG 10. Rise analysis from 0m to 20000m

This was done for a HAP system of 70 m length. The
curve is illustrated in FIG 11. Before we launch the 70 m
HAP it was essential to do preliminary tests with a 15 m
HAP demonstrator system to examine the striating up
behaviour in low altitudes for optical observations. This
can efficiently done in heights of about 2 or 3 km. So the
question is that, how a HAP system of 15 m length should
be filled with helium gas so that a similar rising behaviour

FIG 11. Straitening up behaviour of the 70m HAP

511

FIG 13. Rise and descent path of HAP System

FIG 12. Angle of approach of the 15m demonstrator

could be acquired. The analysis was done for two cases.
Both are presented in FIG 12.

In the first case (FIG 12 upper diagram) the gas cell of
each segment was filled with pure helium for the target
altitude. Each curve presents a course during the rise
phase. The HAP was filled with pure Helium and weighted
for the target altitude, so that the segments were plump at
the target altitude.

In the second case (FIG 12 lower diagram) the gas cells
were loaded with less minimum weight and filled with
helium, so that the HAP could reach the target altitude.
Additionally air was mixed to the helium for plumping the
segments at the target altitude. The curve for each altitude
is presented in FIG 12.

It can be easily indicated that only the second case is well
suited for a prior test for optical observation of the rise
behaviour of the HAP system. We can see that the rise
behaviour of the 15 m HAP is quite similar to the 70 m
HAP in only 2 or 3 km altitude.

It has to be mentioned that the diagrams in FIG 12 could
not be generated analytically. The points on the curves of
each diagram are a result of numerical calculations of
different states during the rise of the HAP system.
Performing the numerical calculation manually, it would
require a time period of about 3 hours for each point.
There are about 300 points in both diagrams, so that
manual calculations for both diagrams are not conceivable
in feasible time periods.

FIG 14. Flight duration and drive power analysis

5.4. Mission planning

The same design language can be used for mission
planning and analysis. One of the mission analysis goals is
to assess the rise and descent path of the HAP by a given
air speed map (FIG 13). By this way the driftage by the
wind can be acquired. So that the necessary manoeuvres
to handle the HAP within the rise and descent path could

512

be assessed. Such an analysis is essential for the
dimensioning of the drive and power supply system. E.g. if
it is asserted that the calculated landing position before
discharging the descent manoeuver is too far from the
starting point, than it has to be estimated how much drive
power is necessary to reach a starting point for the
descent path which leads to a reachable landing point.
This is very important information, which dictates the
duration of the mission and the particular time of starting
the descent maneuver.

An other analysis is illustrated in FIG 14. It shows a
diagram with the mission duration over the air speed for
6m/s, 10m/s and 15m/s in 20 km altitude. Each curve
presents a different HAP configuration. The HAP with 42m
length has an estimated flight duration of about 40 h by an
air speed of 6m/s. With the same length and an increased
airspeed of 10m/s the flight duration is reduced to about
10 h and by an airspeed of 15m/s the duration is only
about 5 h. Hence the over all behaviour of the four curves
is of cubical nature.

The next diagram contributes for a better understanding of
the first diagram. It presents the drive power over the air
speed for each HAP configuration. With increasing air
speed the air drag of the HAP increases simultaneously
which leads to a higher driver energy consumption. Thus
the flight duration decreases in a cubical manner by
increasing the speed of the HAP.

Considering the results in the diagram it is observable that
a feasible duration of the HAP mission can be realized
between an air speed between 5m/s and 10 m/s. In case
of higher air speed the portable energy in form of batteries
is not enough to facilitate a feasible duration of the HAP
mission. The diagrams in FIG 14 provide a deep insight
into the problematic of the design of power supply and
drive system and their relations to the neighbour domains.
It is considerable to develop design alternatives of energy
and drive system which enables flight durations above the
value of battery based power supply systems.

6. CONCLUSION AND FURTHER WORK

In this paper a graph grammar based design language has
been developed for the topological design of High Altitude
Platform systems (HAP systems). By this the design
engineer is able to generate design variants of different
parametrical and topological nature. The approach of
graph grammars facilitates to perform several kind of
analysis in a very short time period. The implementations
of these analysis were not done separately for each
domains but incorporating all domains consisting in the
HAP system. In spite the fact that the design of HAP
system is in its very nature non deterministic and also not
analytical, the approach of design language even enables
the analysis of such systems, so that a deep insight into
the problematic of both, the overall design and the design
of each domain is gained. Furthermore the approach of
graph grammars assists the design engineer to generate
design alternatives in a conceivable time period.

The use of graph grammar based design languages to
formalize the design of HAP system offers many
opportunities for future research and industrial application.
Through implementing more details in the graph grammar

definition and incorporating further domains in the design
language, further analysis can be perform which assist the
engineer designing HAP systems in a more precisely way.

Acknowledgements

The authors would like to express their sincere thanks to
the colleagues at TAO-Technologies and at Institute for
Statics and Dynamics of Aerospace Structures for their
contributions that have provided knowledge and
understanding of HAP systems.

References

[1] Agrawal M. and Cagan J., 1997, “Shape Grammars
and Their Languages – A Methology for Product
Design and Product Representation” Proceedings of
ASME Design Engineering Technical Conferences,
DETC97-DTM-3867, Sacramento, California, USA

[2] Alber R., Rudolph S. and Kröplin, B., 2002, “On
Formal Languages in Design Generation and
Evolution” WCCMV, Fifth World Congress on
Computational Mechanics, Vienna, Austria

[3] Alber R. and Rudolph S., 2002, “On a Grammar-
Based Design Language that Supports Automated
Design generation and Creativity”, Proceedings of
IFIP WG5.2 Workshop on Knowledge Intensive CAD
(KIC-5), Malta, Malta

[4] Alber R. and Rudolph S., 2003, “43” - A Generic
Approach for Engineering Design Grammar”,
Proceedings of American Association for Artificial
Intelligence 2003, Spring Symposium Technical
Report

[5] Bölling, M., 2005, “Multidisziplinärer Vorentwurf von
Luftschiffen (in German), Diploma Thesis, Faculty of
Aerospace Engineering, University of Stuttgat,
Germany

[6] CATIA V5 R12, Dassault Systems, www.dassault-
systemes.com

[7] Antonsson E. K. and Cagan J., 2001, Formal
Engineering Design Synthesis, Cambridge University
Press, USA

[8] Cetin O. L. and Saitou K., 2004, “Decomposition-
Based Assembly Synthesis for Structural Modularity”
ASME Journal of Mechanical Design, 126, pp. 234-
243.

[9] Chomsky N. 1957, “Syntactic Structures”, Mouton,
The Hague

[10] Cetin O. L. and Saitou K., 2004, “Decomposition-
Based Assembly Synthesis for Maximum Structural
Strength and Modularity” ASME Journal of
Mechanical Design, 126, pp. 244-253.

[11] Finger S. and Rinderele J. R., 1989, “A
transformational Approach to Mechanical Design
using a bond Graph Grammar”, In Proceedings of
First ASME Design Theory and Methodology
Conference, ASME, New York

[12] Gips, J. and Siny, G. (1980) ‘Production systems and
grammars: a uniform characterization’, Environment
and Planning B:Planning and Design, Vol. 7, pp.399–
408

[13] Göttler H.,1988, “Graphgrammatiken in der
Softwaretechnik”, Springer Press, Berlin

[14] Haq M. and Rudolph S., 2004, “”EWS-Car”: A Design
Language for Conceptual Car Design”, VDI-Berichte
1846, “Numerical Analysis and Simulation in Vehicle
Engineering”, pp. 213-237.

513

[15] Haq M. and Rudolph S., 2005, “A Design Language
For Generic Space Frame Structure Design”, IFIP
TC5 Working Conference on CAI, pp. 201-215, ULM,
Germany.

[16] Haq M. and Rudolph S., 2006, “Design Acceleration
of Automotive Structures by Structure Design
Language”, Proceedings of 2006 Conference on
“Virtual Product Development (VPD) in Automotive
Engineering”, Munich, Germany.

[17] Irani M. R. and Rudolph S., 2003, “Design Grammars
For Conceptual Design of Space Stations”,
Proceedings of IAC International Astronautical
Congress, 2003, IAC-03-T.P.02, Bremen, Germany

[18] Kormeier T., Alber R. and Rudolph S., 2003,
„Topological and Parametrical Design of Aircraft
Surfaces using Design Grammars“, Proceedings of
DGLR Symposium German Airospace Congress,
Munich, Germany

[19] Kröplin B., Kungl P., 2005,
“Verbundforschungsvorhaben Airchain, Autonome
hochfliegende Plattformen”, Abschlussbericht für das
Arbeitspaket ISD III, Integration und elektrische
Vernetzung Bordsystem, www.isd.uni-
stuttgart.de/airchain/

[20] Lindenmayer A. and Prusinkiewicz P., 1996, “The
Algorithmic Beauty of Plants”, Springer

[21] Lyu N., Saitou K. “Decomposition-Based Assembly
Synthesis of A 3D Body-In-White Model for Structural
Stiffness”, Department of Mechanical Engineering,
University of Michigan, Ann Arbor, MI. USA

[22] Lyu N., Saitou K. “Decomposition-Based Assembly
Synthesis of Space Frame Structures using Joint
Library”, Proceedings of ASME Design Engineering
Technical Conferences, DETC2000-14533, Baltimore,
Maryland, USA

[23] Mathematica 5.1, Wolfram Research,
www.wolfram.com

[24] Nishigaki H., Nishiwaki S., Amago T., Kikuchi N.,
2000, “First Order Analysis for Automotive Body
Structure Design”, Proceedings of ASME Design
Engineering Technical Conferences, DETC2000-
14533, Baltimore, Maryland, USA

[25] Pahl G. and Beitz W., 1996, “Engineering Design, a
systematic Approach” second edition, Springer, Berlin

[26] Prats M., Jowers I., Garner S. and Earl C., 2004,
“Improving Product Design Via a Shape Grammar
Tool”, Proceedings of International Design
Conference - Design 2004, Dubrovnik, Croatia

[27] Schaefer J. and Rudolph S., 2005, “Satellite Design
by Design Grammars”, Aerospace Science and
Technology,2005, 9, pp 81-91

[28] Schmidt L. C. and Cagan J., 1996, „Grammars for
Machine Design“ Proceedings of Artificial Intelligence
in Design 1996, Stanford

[29] Schmidt L. C., Shetty H. and Chase S. C., 2002, “A
Graph Grammar Approach for Structure Synthesis of
Mechanisms”, ASME Journal of Mechanical Design,
122, pp. 371-376.

[30] Schumacher Axel, 2004, “Optimierung mechanischer
Strukturen, Grundlagen und industrielle
Anwendungen”, Springer-Verlag, Heidelberg, Berlin,
Germany

[31] Shea K. and Cagan J., 1998, “Generating Structural
Essays from Languages of Discrete Structures”, J. S.
Gero and F. Sudweeks (eds), Artificial Intelligence in
Design 1998, pp. 365-385, Kluwer Academic
Publishers, Netherlands

[32] Sridharan P. and Campbell M. I., 2004, “A Grammar
for Function Structures”, Proceedings of ASME
Design Engineering Technical Conferences,
DETC2004-57130, Salt Lake City, USA

[33] Starling, A. and Shea, K. ,2005 ‘A parallel grammar
for simulation-driven mechanical design synthesis’,
ASME 2005 Internationsl Design Engineering and
Technical Conference, Long Beach, California, USA,
published by ASME, 2005, (DETC2005-85414)

514

	––––––––––––––––––
	< previous page
	> next page
	––––––––––––––––––
	Search
	Print
	Print Current Page
	––––––––––––––––––
	Show Thumbnails
	Hide/Show Toolbar
	Hide/Show Menu
	––––––––––––––––––
	© 2007 DGLR
	www.ceas2007.org
	www.dglr.de
	––––––––––––––––––

	host: 1st CEAS European Air and Space Conference
	paper#: CEAS-2007-153
	paper_title: Topological Design of a High Altitude Platform (HAP) using a System Design Language
	authors_short: M. Haq, B. Kröplin

