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ABSTRACT

In this paper the application of graph grammar based 
design languages is presented. Design languages consist 
of a set of vocabulary and a set of rules which have a 
specific order within a production system. The design 
graph generated by the design language is a formal and a 
domain independent representation of the design object. 
This allows to apply modifications by rules to the design 
graph. Using the example of a High Altitude Platform 
system (HAP system) it is shown how the design language 
approach enables the automation of design processes by 
facilitating the generation of a large variety of design 
variants very effectively. 

1. INTRODUCTION 

Design of complex systems such as the topological design 
of aerospace systems is a particular challenge for design 
engineers. Several multidisciplinary sub-systems of 
different domains are building a network of nodes. The 
nodes are interacting with each other by exchanging 
information. In case of modifications in one node these 
information can propagate through all other nodes of the 
network and vice versa. For analysis and simulation 
purposes digital models of each domain are generated 
separately. They are not fully linked with each other, which 
causes a lack of model consistency. Therefore 
parametrical and topological changes can only partially 
propagate through adjacent models of each domain. Thus 
modelling, management and model consistency problems 
exist within the design process of these systems. 

However, graph based design languages are well suited 
for building master-models of such complex systems 
where different domains can exist at the same time and 
place. Such a design language consists of a set of basic 
components, also called vocabulary, and a set of rules, 
also called design patterns. These two sets enable the 
designer to define a master- model in form of a design 
graph. It is a formal - and at this level still domain 
independent - representation of a design object. This 
formal domain independency allows the designer to make 
modifications by design rules to the design graph or 
master model. So that the applied changes are 
propagated consistently through all geometrical, physical 
and other models contained therein. Out of this master-
model sub-models of each domain can be derived. Thus 
model consistency over various design domains is 
therefore intrinsically maintained. 

The systematic is shown by an example of a High Altitude 

Platform (HAP, FIG 1). This is a Lighter-Than-Air System 
for telecommunication and telemetry purposes [19]. A 
design language for such a HAP system is developed 
within the software tool named “Design Compiler 43” 
where sub-domains such as geometrical configuration-, 
CAD-, rise analysis-, electronics-, drive-, aerodynamics- 
and structural-model are embedded therein. By this design 
language various parametrical and topological 
configurations of HAP systems are analysed. 

2. RELATED WORKS 

In early stages of computational design synthesis, rule-
based information processing concepts of various kinds 
have been developed to improve the formalisation of the 
design process. 

The Lindenmayer-Systems (also called L-Systems) were 
developed in biology to describe the growth of plants and 
trees [20]. L-Systems are based on string grammars, where 
abstract symbols are represented by characters from an 
alphabet and encode the topological plant structures 
through their rules expressed as string substitutions. 

Shape grammars were described by Gips and Stiny [12]. A 
set of geometrical shape rules forms the design grammar 
that is used to generate different truss designs. Mitchell 
applied the concept of shape grammars in the field of 
architecture to support the design process [7]. In these 
approaches, the rules are expressed directly in 
geometrical form. Further, Shea and Cagan [31]
developed a shape grammar for truss structure generation 
and optimisation. With this technique, geodesic-like 
domes, building roof structures and transmission towers 
were generated and the design topologies were optimised 
in terms of weight and strength. Furthermore, parallel 

FIG 1. Concept of HAP System 
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grammars, based on a function-behaviour-structure, are 
applied by Starling and Shea [33] for the parametric 
synthesis of mechanical systems. Finally, Agrawal and 
Cagan [1] developed a shape grammar for coffee makers. 
In this grammar the so-called shape rules were coupled 
with certain product functions. Also, a detailed cost 
analysis of the manufacturing and assembly of novel 
coffeemakers was obtained. In order to overcome the 
limitation of consistency between function and form, 

Finger and Rinderele [11] used the formalism of graph
grammars [13] for form and function configuration of 
mechanical systems. Campbell et al. combined the 
method of function structures and graph grammars for the 
conceptual design of products [32]. Saitou et al. generated 
the so-called topology graphs for decomposition-based 
assembly synthesis of the structural characteristics of 
products [10], [21] and [22], such as for the optimal 
feasibility of manufacturing and assembly. 

Alber and Rudolph [2], [3], [4] introduced the approach of a 
generic graph grammar where a so-called design graph is 
generated as an intermediate domain-independent 
representation. Subsequently, this graph representation is 
translated into the various object domains and multiple 
domain-dependent models of the design object can be 
generated. On the basis of this approach a design 
language was developed to generate truss structures such 
as transmission towers. In the same research group, Irani 
and Rudolph [17] developed a graph grammar for 
conceptual design of space stations, while Schaefer and 
Rudolph [27] applied the formalism of graph-based design 
grammars to support the automated design process of 
satellites. Finally, Kormeier et al. [18] and Haq and 
Rudolph [14], [15], [16] defined a graph-based design 
language for aircraft surface conceptual design and 
developed a design language for generic space-frame 
structure design. 

3. APPROACH OF GRAMMAR BASED DESIGN 
LANGUAGE

3.1. Languages for engineering design 

Natural languages are means of verbal and written 
communication between humans. They are able to 
transport most if not all relevant information in a specific 
situation of a problem to other humans. The linguistic 
structure of natural languages is formed out of a so-called 
vocabulary and a set of rules that describe the 
syntactically correct form of a sentence (i.e., the correct 
order of the vocabulary in that sentence). It is important to 
note that the vocabulary serves just as set of symbolic 
placeholders. In order to give such a structured assembly 
a meaning (or in other words to interpret a sentence), each 
symbol is assigned with a certain meaning. This aspect is 
called semantics. In the domain of pragmatics the effects 
of such a sentence on humans in a specific situation, 
under certain boundary conditions and other context-
related constraints is considered [16].

In engineering, formal languages [9] are most typically 
known as string-based programming languages (e.g.,
Java, Pascal, C, C++ etc.). In analogy to these string-
based formal languages a graph-based design language 
can be defined to describe technical objects. For this 

purpose the components of a design object are considered 
as the vocabulary (i.e., the graph nodes) as the basic 
‘building blocks’ of the design language. They can 
subsequently be composed together by graph-based 
design rules. Within this approach, a grammar of a graph-
based design language for technical objects is developed, 
which allows creating a set of possible rule combinations – 
a so-called production system – which represents a 
generative description of a technical object. It proves later 
to be advantageous to handle complex objects on this 
basis within a broad range of structural properties and 
forms [15], [16].

3.2. Graph grammar based design language  

With the approach of graph grammar based design 
language the engineer is able to define a formal graph 
based but domain-independent representation of a design 
object. Within the rule-based design process a design 
graph of an engineering artefact is generated by executing 
a specific sequence of rules that represents a building plan 
of a design object. This means that the first step in 
developing a design language is to define the vocabulary 
and the rules of the grammar of the design language (FIG 
2). The vocabulary elements may be seen as abstract 
containers that represent the basic geometrical and 
functional components of the desired object domain. The 
rules of the design language are the design patterns 
consisting of the building instructions for the design object. 
In a production system, a specific set of design rules is 
composed together, which represents a building plan of an 
object (FIG 2). These tasks must be done once in the 
beginning of a design process. After this effort, the 
vocabulary and the rules can be reused over and over 
again. By executing a set of design rules, a new design 
graph can be generated or an existing design graph can 
be manipulated further. The reexecution of a set of design 
rules with different boundary conditions (typically 
contained in the axiom) leads to the generation of different 
models under (re-) use of the know-how encoded in the 
design patterns. In analogy to the aforementioned string-
based formal languages the graph-based language 
translation can be described as a two-step translation 
process: In a first translation step, a design graph is 
created by executing the production system of the desired 
engineering artefact. Such a design graph contains the 
complete information about the desired engineering design 
object. It describes the design object on a high abstraction 
level. Therefore it is one common representation for all 
domains, such as for the geometrical, for the physical 
and/or for the functional model domain. This enables to 
maintain the design model consistency between these 
domains through constraint processing techniques. In the 
second translation step, the achieved design graph is 
interpreted via interfaces for analysis or visualisation 
purposes. This may be arranged individually for each area 
of application. For post processing purposes, analysis 
tools can be connected to the design compiler ‘43’ via 
specific interfaces [15], [16]. In the following sections, the 
syntax of the design rules and the vocabulary definitions 
are described in more detail. 

3.2.1. Vocabulary definition 

Within the definition of graph grammar based design 
language, the nodes in a design graph and in a design rule 

506



FIG 3. Four quadrants of a rule [15] 
FIG 2. Elements of a design language  

are called vocabulary of a design language. The 
vocabulary are abstract placeholders for real geometrical 
objects, procedures or ideas, which can be composed to 
form a complete technical system during a design process. 
FIG 2 shows some vocabulary of a HAP system. Some of 
them are of geometrical and of functional nature. They 
contain complete information to define the desired devise 
or element of a HAP These are the description of 
geometry in the form of a script for CAD modeller CATIA 
V5 [6]. Physical information is embedded in the form of 
equations for a symbolic computer algebra program 
(Mathematica 5 [23]). The interfaces of the vocabulary, the 
so-called ports, are defined to exchange data between 
other nodes in design graph. Furthermore, parameters and 
variables are defined to embed the measures of the 
design object in the vocabulary for parameterisation 
purposes. Such a definition of each vocabulary is 
deposited in an XML file that enables easy and structured 
extension and documentation capabilities. 

3.2.2. Rule definition 

The syntax for design rules as it is implemented in the 
design compiler ‘43’ is represented by a geometrical 
arrangement of graph nodes and edges in a plane. It is 
divided into the four quadrants Q1–Q4 as illustrated in FIG 
3. Such a four-quadrant scheme is a derivation from the 
original X-scheme, which is quite common in the field of 
graph grammars [13]. The left two quadrants Q1 and Q2

represent the if-part and are also called the conditional part 
of the graph rule. The right two quadrants Q3 and Q4

represent the then-part and may also be called the 
generative part of the graph rule. In case of rule execution, 
a search is performed to check if there is any (sub-)graph 
matching between the graph in the conditional part and the 
actual existing design graph. If a matching is found, the 
generative part of the rule is executed and the 
modifications represented in the graph rule are mapped 
onto the actual design graph. As represented in the rule in 
FIG 3, the following modifications can be applied to the 
design graph: All nodes in Q1 and all edges leading to 
these nodes will be removed from the design graph. 
Nodes in Q3 will be added to design graph. Edges 
represented in the ‘then-part’ (Q3 and Q4) are assigned to 
the design graph. Attributes of newly pasted or already 
existing nodes in the then-part in Q3 and Q4 of the rule can 
be set or modified [16].

3.2.3. Production system 

A production system specifies the syntactically correct 
arrangement of the rules of the design language in a 
program. It presents a building plan of a design object, 
which insures a feasible semantics of the describing 
object. If the rules are not executed in a specific right 
order, it may be that an object can be generated but it fails 
the aspired behaviour of the desired object as a whole. 
Similar to the natural languages where the meaningful 
massage of the sentences are derived from the syntactical 
right order of the words, in the design languages the 
behaviour of the design object as a whole (i.e., the 
semantics) depends on both the correctness of the 
vocabulary and there syntactically correct arrangement in 
a design rules, which have also a syntactical correct order 
in a production system. 

Every production system consists of an axiom and a set of 
rules (FIG 2). The axiom presents a starting graph of a 
design object and specifies a necessary condition of an 
execution able program. Which means that in case of a 
missing axiom a production system can not be executed. 
The set of rules followed by the axiom presents a building 
plan of the object. A production system can consist of 
many sets of rules. The sequence of execution of rules 
within a set has a specific order. Otherwise it may be that 
the set of rules can not be completely executed so that the 
generation of the design object with its aspired behaviour 
could be fail. The sequence of execution of the sets of 
rules of different domains could have an arbitrary order. 
This facilitates the design engineer to generate a sub 
graph of different design domains independently. 

4. DEVELOPING THE DESIGN LANGUAGE FOR 
HAP-SYSTEMS

In this section the development process of the graph 
grammar based design language of a HAP System is 
described. At first the preliminary step of feasible 
decomposition and aggregation of the complete system is 
presented. By this the vocabulary and rules of the design 
language are defined, which is an essential condition for 
developing a design language for any engineering object. 
At least, the rules are composed to a production system, 
which presents a building plan of the HAP system. By 
executing the production system a design graph is 
generated. It is an abstract representation of the HAP 
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FIG 4. Overview and system decomposition of HAP system 

system including all necessary domains and facilitating 
model consistency simultaneously over all domains. 
Finally, the aspects of granularity within vocabulary and 
rule definition are discussed. It is shown that a right 
balance of granularity between vocabulary and rules of a 
design language facilitates a high rate of freedom in 
designing engineering artefacts. 

4.1. System decomposition and aggregation 

First step of developing any design language is the 
decomposition process of the desired design object. In 
case of the HAP system the complete system has to be 
decomposed in its basic building blocks. The 
decomposition has not only to be made for the structural 
body of the HAP but also for all other domains of the 
system. This concerns to the functional-, electrical- and 
energy model etc. (FIG 4). The decomposition process for 
vocabulary definition and the aggregation process for rules 
definition are not done one after another, but they proceed 
hand in hand and are complementing each other in 
iterative steps. The right level of granularity in the 
decomposition gives the direction of quality of the design 
language. On one hand the aim is to decompose the 

complete system in general building blocks which can be 
commonly used for the whole system. On other hand the 
aim is to define a minimum number of general rules or 
building instructions, which facilitates a syntactically 
correct arrangement of the vocabulary to their neighbours 
within a graph.  

FIG 4 illustrates an overview of the HAP system. It 
consists of a diagram where the sub systems of the HAP 
with there neighbourhood relations are presented 
schematically. Such a representational form is an initial 
step for the decomposition process of the desired object. It 
is neither an absolutely top-down nor an absolutely bottom 
up presentation, but a compound of both. The diagram has 
also not a clear tree structure but a tree which leafs are 
adhered in there ends. 

The objects or the nodes in the diagram can be broken 
down into there extractive elements until a feasible 
commonality is distinguishable between them. As 
presented in FIG 4 the hull [CASE-node], consists of many 
segments, [SEG-nodes]. Each segment consists of a cell, 
structure and system components: [Cell-node], [Struc-
node] and [Agr-node]. There is also a [Req-node] which 

FIG 5. Functional and geometrical vocabulary of the design language 
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FIG 6. System aggregation by the HAP design language 

contains the requirement parameters for the desired HAP. 
A [ENV-node] consist of equations describing the 
atmosphere from the ground to 20 km altitude. The [AST-
node] is responsible for the aerostatic calculations of each 
segment of the HAP. The control system is implemented in 
the [Control-node], which e.g. regulates the pressure, [P-
Fan-node], in each segment during the rise period, 
[RiseSim-node], of the HAP from the ground to the target 
altitude. The edges between the nodes represent the 
relations between them. Thus a commonality is 
distinguishable between many objects contained in the 
diagram. These objects can be picked out and defined as 
common objects or the vocabulary of the design language. 
While defining the rules, these vocabulary can be used to 
derive object or graph nodes of the design graph and there 
relations in form of edges. These general relations 
between the objects in the diagram are assertive for the 
definition of the rules. E.g. every segment consists of a cell 
and every cell is connected with a control node. 

We present the hull geometry of the HAP as an example 
to make the decomposition and aggregation process more 
clear. As presented in FIG 6 the geometry of the hull 
consist of five segments. Therefore a vocabulary is 
defined as a general placeholder, which enables during 
the rule definition the derivation of specific objects of 
segments. Each segment consists of an elliptical and 
cylindrical segment part (FIG 5, 6). So we define one 
vocabulary for a cylindrical and one vocabulary for an 
elliptical segment part. It is distinguished in the graph in 
FIG 6 that common rules can be defined. One rule adds 
two elliptical segment part nodes to every segment node. 
Another rule adds a cylindrical segment part node between 
two elliptical segment part nodes. A further general rule 
which can be defined is to connects two segments with an 
apron by adding an apron node between two segment 
nodes (FIG 6 rule). We can proceed by this way extracting 
common vocabulary and rules out of such a diagram of 
each domain for expanding and improving the design 
language.

5. SYSTEM ANALYSIS EXAMPLES WTH THE 
DESIGN LANGUAGE 

In the chapter before we have presented the development 
process of the design language. It makes clear that a 
feasible decomposition and aggregation are an importance 
act for vocabulary and rule definition a design object. 

Such a unique abstract representation of the HAP system 
provides various analysis possibilities for the design 
engineers which are not performable in such a less effort 

In this chapter, the enhancement of the developed design 
language of the HAP system is demonstrated by means of 
some analysis examples. 

5.1. Parametrical and topological analysis 

In the first example a parametrical and topological analysis 
is performed to the HAP system. As mentioned before, a 
production system of a design language consists of an 
axiom and a set of rules. Modifications can be done on the 
one hand by changing the parameters in the axiom or in 
any other rule in the set. On the other hand the topology of 
the HAP system can be modified by executing rules, which 
can add or delete corresponding nodes from the design 
graph.

In FIG 7 (right) a production system with an axiom and a 
set of rules is presented. In the same fig left we can see 
the results of parametrical modifications done by changing 
the axiom of the production system. In the first line we 
have a HAP system with five segments and in the 
corresponding axiom there are also five segment nodes. In 
the second line the HAP system consist of three segments 
and a smaller diameter. The jump from first HAP to third 
HAP is only the modification of parameters. The third, 
fourth and fifth HAP are from the same class, the 
difference is up to the number of the segments. 
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FIG 7. Parametrical and topological analysis of the structure 

FIG 8. Parametrical and topological analysis of the drive system 

In FIG 8 we can see topological modifications concerning 
the drive system. The part of the grammar responsible for 
the dimensioning of the drive system consists of a set of 
electrical motors with there technical parameters, a set of 
rotor blades and electrical cables. On the one hand the 
drive system dictates the dimensions of the power supply 
system. On the other hand the size of the HAP system 
dictates the dimensions of the drive system. The mass of 
the drive and power supply system must not exceed the 
given limits by the lift of the HAP system. In such a case 
the size of the HAP system has to be enlarged, which 
means a larger drive power and therefore a larger motor 
with bigger rotor blades and more energy cells. So the 
dimensioning problem begins again from the start. 

5.2. Optimization of wiring harness 

System integration is a complex problem within the design 
of HAP systems. For each mission there are various 
possibilities for the configurational integration of the board 
systems. For each configuration a suitable dimensioning of 
the wire harness is necessary. Even an optimum for the 
wiring harness can be reached. Such a problem can not 

be described analytically. Therefore it can also not be 
solved by commercial optimization tools. It is a multi 
objective optimization problem. One objective is to choose 
a thick diameter of the power cable to reduce the attrition 
power and therefore less battery power is needed. The 
other objective is to reduce the mass of the cable by 
choosing a less diameter of the cable. 

For solving the problem mentioned above parameterized 
rules and vocabulary are defined. Therefore the design 
engineer only needs to generate a list of system 
components with there location in each segment. FIG 9 
presents such an example, where system components are 
placed on a truss of a segment (FIG 9, left). The set of 
rules responsible for the wiring are executed, which 
automatically generates a parameterized wiring harness 
which can be optimized with genetic algorithms. The rules 
have an access to a database with a set of commercial 
cable. For analysis purposes an electronic tool “LT-spice” 
is used (FIG 9, right). It generates automatically a circuit 
plan of the system configuration and the wire harness, 
which is calculated for the result feedback to the design 
graph for optimization loops. Hence, by this way of multi 
objective optimization a pareto boundary is generated. By 
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FIG 9. System integration, analysis and optimization of wiring harness 

consulting further weighting factors and restrictions the 
design engineer can now evaluated the boundary curve 
and pick an optimum solution which fulfils the mission 
requirements. One of the weighting factors could be to 
obtain a wiring harness which is optimized to mass and 
attrition power and simultaneously meeting the goal of cost 
function. In case of an alternative system integration the 
same grammar is executed which generates an optimized 
circuit plan of the desired HAP configuration. Thus the 
design engineer is relieved of modelling the circuit planes 
manually and is therefore able to concentrate on the 
creative aspects of engineering design. Furthermore the 
design languages facilitate generating a large variety of 
design alternatives which are not conceivable in such short 
time periods. 

5.3. Rise analysis 

To determine the behaviour of the HAP during the rise 
phase from the ground to the target altitude, a detailed 
analysis is required. It consists of the expanding behaviour 
of the helium gas and its swapping in the cell during rising. 
Also its angle of approach is essential. With this the drag 
(air resistance) can be assessed. And finally its behaviour 
of straitening up can be analysed. 

FIG 10 shows a rise and a straightening up analysis of a 
HAP system between 0m and 20000m altitude. The HAP 
is filled with a certain amount of helium so that the hull is 
plump after reaching the target altitude of 20000m. 
Considering the thermodynamic equations of the 
atmosphere, the gas has on the ground level only a 10 % 
of the expansion of volume as in 20 km altitude. Therefore 
the helium cell is not plump on the ground and the gas can 
swash back and forth in the segment. As illustrated in FIG 
10 each segment aspire to reach a momentum free stabile 
attitude. For this the helium gas swash’s to the front and 
the each segment props up and has an approach angle of 
about 65° degrees. During the rise phase the helium gas 
expands and it leads to a straightening up of the HAP. 

FIG 10. Rise analysis from 0m to 20000m 

This was done for a HAP system of 70 m length. The 
curve is illustrated in FIG 11. Before we launch the 70 m 
HAP it was essential to do preliminary tests with a 15 m 
HAP demonstrator system to examine the striating up 
behaviour in low altitudes for optical observations. This 
can efficiently done in heights of about 2 or 3 km. So the 
question is that, how a HAP system of 15 m length should 
be filled with helium gas so that a similar rising behaviour 

FIG 11. Straitening up behaviour of the 70m HAP 
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FIG 13. Rise and descent path of HAP System 

FIG 12. Angle of approach of the 15m demonstrator 

could be acquired. The analysis was done for two cases. 
Both are presented in FIG 12. 

In the first case (FIG 12 upper diagram) the gas cell of 
each segment was filled with pure helium for the target 
altitude. Each curve presents a course during the rise 
phase. The HAP was filled with pure Helium and weighted 
for the target altitude, so that the segments were plump at 
the target altitude. 

In the second case (FIG 12 lower diagram) the gas cells 
were loaded with less minimum weight and filled with 
helium, so that the HAP could reach the target altitude. 
Additionally air was mixed to the helium for plumping the 
segments at the target altitude. The curve for each altitude 
is presented in FIG 12. 

It can be easily indicated that only the second case is well 
suited for a prior test for optical observation of the rise 
behaviour of the HAP system. We can see that the rise 
behaviour of the 15 m HAP is quite similar to the 70 m 
HAP in only 2 or 3 km altitude. 

It has to be mentioned that the diagrams in FIG 12 could 
not be generated analytically. The points on the curves of 
each diagram are a result of numerical calculations of 
different states during the rise of the HAP system. 
Performing the numerical calculation manually, it would 
require a time period of about 3 hours for each point. 
There are about 300 points in both diagrams, so that 
manual calculations for both diagrams are not conceivable 
in feasible time periods. 

FIG 14. Flight duration and drive power analysis 

5.4. Mission planning 

The same design language can be used for mission 
planning and analysis. One of the mission analysis goals is 
to assess the rise and descent path of the HAP by a given 
air speed map (FIG 13). By this way the driftage by the 
wind can be acquired. So that the necessary manoeuvres 
to handle the HAP within the rise and descent path could 
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be assessed. Such an analysis is essential for the 
dimensioning of the drive and power supply system. E.g. if 
it is asserted that the calculated landing position before 
discharging the descent manoeuver is too far from the 
starting point, than it has to be estimated how much drive 
power is necessary to reach a starting point for the 
descent path which leads to a reachable landing point. 
This is very important information, which dictates the 
duration of the mission and the particular time of starting 
the descent maneuver. 

An other analysis is illustrated in FIG 14. It shows a 
diagram with the mission duration over the air speed for 
6m/s, 10m/s and 15m/s in 20 km altitude. Each curve 
presents a different HAP configuration. The HAP with 42m 
length has an estimated flight duration of about 40 h by an 
air speed of 6m/s. With the same length and an increased 
airspeed of 10m/s the flight duration is reduced to about 
10 h and by an airspeed of 15m/s the duration is only 
about 5 h. Hence the over all behaviour of the four curves 
is of cubical nature. 

The next diagram contributes for a better understanding of 
the first diagram. It presents the drive power over the air 
speed for each HAP configuration. With increasing air 
speed the air drag of the HAP increases simultaneously 
which leads to a higher driver energy consumption. Thus 
the flight duration decreases in a cubical manner by 
increasing the speed of the HAP. 

Considering the results in the diagram it is observable that 
a feasible duration of the HAP mission can be realized 
between an air speed between 5m/s and 10 m/s. In case 
of higher air speed the portable energy in form of batteries 
is not enough to facilitate a feasible duration of the HAP 
mission. The diagrams in FIG 14 provide a deep insight 
into the problematic of the design of power supply and 
drive system and their relations to the neighbour domains. 
It is considerable to develop design alternatives of energy 
and drive system which enables flight durations above the 
value of battery based power supply systems. 

6. CONCLUSION AND FURTHER WORK 

In this paper a graph grammar based design language has 
been developed for the topological design of High Altitude 
Platform systems (HAP systems). By this the design 
engineer is able to generate design variants of different 
parametrical and topological nature. The approach of 
graph grammars facilitates to perform several kind of 
analysis in a very short time period. The implementations 
of these analysis were not done separately for each 
domains but incorporating all domains consisting in the 
HAP system. In spite the fact that the design of HAP 
system is in its very nature non deterministic and also not 
analytical, the approach of design language even enables 
the analysis of such systems, so that a deep insight into 
the problematic of both, the overall design and the design 
of each domain is gained. Furthermore the approach of 
graph grammars assists the design engineer to generate 
design alternatives in a conceivable time period. 

The use of graph grammar based design languages to 
formalize the design of HAP system offers many 
opportunities for future research and industrial application. 
Through implementing more details in the graph grammar 

definition and incorporating further domains in the design 
language, further analysis can be perform which assist the 
engineer designing HAP systems in a more precisely way. 
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