
DEFORMATION FIELDS ESTIMATION USING FIBER BRAGG GRATINGS 

 Stephan Rapp 

Institute of Lightweight Structures, TU Muenchen, 

Boltzmannstr. 15 85747 Garching 

A possible approach to meet the increasing performance 
requirements of aerospace structures is the design of smart 
structures, which may provide different integrated 
functions. In applications like large, high precision and 
space reflectors or high aspect ratio airplane wings, were 
aeroelastic effects play a big role, the structures shape 
itself is of interest. The knowledge of static and dynamic 
deformations of these structures would provide the 
possibility to increase their performance by appropriate 
countermeasures. During operation, however, the 
monitoring of deformations of such large areas is often 
difficult. A solution is the here presented estimation of 
deformation fields using in plane strain data. The use of 
fibre Bragg grating (FBG) strain sensors for this 
application offers an integrated sensor network including 
a lot of measurement points within only a few channels. 
Besides deformations, temperatures could be another
point of interest. For example temperature fields on 
airplane wings during supersonic flight. This kind of 
problem could be handled using similar methods and 
sensor networks. This paper discusses the deformation 
field estimation of a dynamically excited plate using a 
transformation matrix based on a modal approach. To 
reduce systematic estimation errors due to aliasing, a 
parameter study was performed and the sensor locations 
were optimized. In an experiment a cantilever plate was 
equipped with 16 FBG sensors in an optimized 
configuration to verify the estimation and optimization 
methods. 

1. INTRODUCTION 
The performance requirements of modern aerospace 
structures are increasing continuingly. Thereby the 
condition monitoring of structures plays a key role. One of 
the items of interest is the shape of the structure itself. 
Examples can be large, high precision and space reflectors 
or airplane wings and control surfaces. Especially high 
aspect ratio wings, were aeroelastic effects play a big role, 
might be a possible application for the monitoring of 
deformations. Or think about the future of morphing 
structures, where large, global deformations will occur 
and have to be controlled. But in a lot of applications the 
direct measurement of dynamic deformations of large 
areas is very difficult, especially during operation. Thus 
one has to think about alternatives of monitoring shapes of 
extended structures. Possible properties which could be 
measured and related to deformations can be, amongst 

others, accelerations or strains. Both physical values have 
their advantages. Accelerations are very sensitive signals in 
dynamic applications and they offer direct information about 
loads, furthermore they offer the possibility of monitoring 
rigid body motions. Their drawback is the disability of 
measuring static deformations. Strains on the other hand offer 
the possibility of measuring dynamic deformation effects as 
well as static ones, but rigid body motions can’t be recorded. 
However it seems to be easier to record the rigid body 
motions (6 degrees of freedom) with an additional sensing 
system than monitoring the static deformation field
separately. Thus the usage of strains for this application 
seems to be advantageous. A look on the sensor level will 
approve this suggestion. If we assume, that the equipped 
structures are basically lightweight structures and a lot of 
measurement points are necessary we should think about a 
lightweight sensor and harnessing too. Thus both, 
accelerometers and origin strain gages show disadvantages. If 
going one step further and think about the integration of 
sensors into composite or even in membrane structures, these 
sensors have a lot of disadvantages. But there is a sensor type, 
the fibre optic sensor (FOS), which satisfies all these 
requirements. The FOS is lightweight itself, offers the 
possibility to multiplex up to 60 sensors within one fibre and 
is, due to its small dimensions (diameter < 250µm), feasible 
to integrate into composites. The FOS can be used as a strain 
sensor as well as a temperature sensor. Since the monitoring 
of temperature fields on large aerospace structures might be 
of interest too, think of the thermal loads on airplane wings 
during supersonic flight, the use of FOS for the monitoring 
network is very interesting. 
With this background the use of strain data as a basis for 
deformation monitoring seems to be defensible. But beside 
this elementary question about the measured physical value a 
lot of other questions have to be answered if the desired 
monitoring task ought to be handled satisfactory. An obvious 
question is the one about the estimation approach. How to 
relate strains to deformations? Furthermore the sensor amount 
and their locations have to be designated. Beside these 
questions about the estimation technique it might be 
interesting how the loading conditions influence the 
estimation quality.  
In the following these questions, which are a choice amongst 
others, will be discussed. Before the theoretical background 
for these questions will be given, the fibre Bragg grating 
sensor will be introduced.  
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2. THEORETICAL BACKGROUND 

2.1. Fibre Bragg Gratings 
As mentioned in the introduction the use of fibre optic 
sensors (FOS) for distributed strain sensing offers a lot of 
advantages. Especially the fibre Bragg grating (FBG) 
sensor, which is one type of FOS, fits very well to this 
kind of application. The working principle of the FBG is 
based on a periodic change of the refractive index in the 
optical fibre, such that a special wavelength, the Bragg 

wavelength Bλ , is reflected at this grating. The Bragg 

wavelength is defined as,  

 (1) 02 nB ⋅Λ⋅=λ
where Λ  is the period of imperfections and n0 the 
refractive index of the core. Using a high intensity UV-
laser, the grating can be written into the optical fibre using 
a template called phase mask. If different phase masks are 

used, gratings with different Bragg wavelength Bλ  can be 

written. Thus it is possible to write different unique 
gratings into one fibre. This enables the multiplexing of a 
lot of sensors within a single fibre. Using the different 
wavelengths it is possible to relate the reflected sensor 
signal to a designated location. This wavelength-division 
multiplexing technique offers the possibility of extensive 
sensor networks on large areas using only a few sensor 
fibres.  
If strain, mechanical or thermal, is applied to the fibre the 
gratings differ from each other and the reflected 
wavelength is changed (see FIG 1).  

FIG. 1 FBG strain sensor working principle 

The wavelength shift can be derived using the following 
equation. 
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Thereby λ∆  is the wavelength shift, peff the photo-elastic 

coefficient, ε∆  the change of mechanical strain, Tα  the 

coefficient of thermal expansion, 
dT

dn
 the photo-thermal 

coefficient and T∆  the change of temperature. Since in 
laboratory conditions the temperature changes marginally 
and the performed experiments were within only a few 

minutes of duration the effect of changing temperatures could 
be neglected. Thus equation (2) simplifies to 
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2.2. Deformation Fields Estimation 
In the subsection before we saw that the use of FBG sensors 
offers a lot of advantages if they are used for a (integrated) 
sensor network in lightweight structures. The output of this 
sensor network is mechanical or thermal strain at discrete 
locations. To get information about the required deformation 
field of a structure, one has to estimate the field using discrete 
strain data. This is a challenging task, since there are two 
problems to deal with. The one is the interpolation of a field 
and the other is the relating of deformations and strains. The 
task becomes even more complex if the field has to be 
estimated dynamically and without any time delay. If that 
isn’t required, the use of calibration1 or transfer functions2 is 
possible. Thereby strains and deformations are measured and 
related to each other before the field is estimated afterwards.   
For the dynamic deformation fields estimation another 
approach is followed here. As we know it is possible to 
approximate a dynamic deformation field using shape 
functions, called mode shapes and corresponding weighting 
factors, called modal coordinates q. Since in most technical 
applications only the first few mode shapes are of interest, 
think of the first bending of an airplane wing, its first torsion 
mode and the combination leading to flutter. In these first 
modes the amplitudes are high and a lot of structural mass is 
involved, what leads to high loads. The deformation effects of 
higher modes can be neglected. This effect is used for the 
modal reduction. That means that only a few mode shapes are 
used to approximate the structures behaviour. The same 
approach can be used to express dynamic strain fields. The 
linear combination of mode shapes can be expressed in a 
matrix notation showed in equations (4) and (5).  

 (4) [ ] 11 }{}{ nxNxnNx qw ⋅Φ=   

 (5) [ ] 11 }{}{ nxMxnMx q⋅Ψ=ε
Thereby {w} is the displacement vector, N is the number of 
discrete displacements, ][Φ  is the matrix of deformation 

mode shapes, n is the number of used mode shapes to 
approximate the real deformation, {q} is the vector including 
the corresponding weighting factors, called modal 
coordinates. }{ε  is the vector of M discrete strain values, 

][Ψ  is a matrix including the strain mode shapes.  

As one can see, the modal coordinates q, are the same for the 
deformation and strain equation. Using some mathematical 
calculations it is possible to relate the deformations to the 
strains.  

 (6) 1
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The Strain-Deformation-Transformation Matrix (SDT) 
connects a vector of M strain values with a vector of N 
deformation values, thus it is possible to estimate a 
deformation field using only a few discrete strains. Since in 
equation (6) it is assumed that the strain field consists of a 
finite number of mode shapes n, the estimated deformation 
vector }ˆ{w  will differ from {w}, if real strains }{ε
consisting of an infinite number of mode shapes is used in the 
deformation estimation process. 
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 (7) }{}]{[}ˆ{ wSDTw ≠= ε
This circumstance induces a systematic estimation error, 
which can be explained as aliasing. Shares of the strain 
signal of higher order frequencies might be interpreted 
wrongly. This effect is much the worse, since higher order 
strain mode shapes can’t be neglected as it is the case for 
higher order displacement mode shapes. Since the 
frequency goes down to the strain shapes amplitude with 
squares, the higher order strain mode shapes have still 
high shares.  
To minimize this effect the number of sensors and 
especially their location has to be adequate. But if one 
assumes an unknown excitation, the decision for sensor 
locations is difficult. In this case it would be advantageous 
to find a general parameter, depending on the sensor 
locations, which promises good estimation results. 

2.3. Condition Number (CN) 
One such general parameter might be the condition 
number (CN) of the transformation matrix as Chen-Jung 
Li et. al.3 showed. The condition number of a matrix 
indicates its conditioning. It is an indicator for the 
information conservation during matrix operations. The 
smaller the condition number, the better the conditioning 
of the matrix. The minimum value of the CN is 1. The 
mathematical definition of the condition number is the 
ratio of the largest to the smallest singular value of a 
matrix. It can be calculated by the product of the matrix 
norm and the norm of the inverse (eq. 8 and eq. 9).  

 (8) 1][][ −⋅= SDTSDTCN

 (9) TSDTSDTtrSDT ][]([][ ⋅=

Thereby ][SDT  is the matrix norm and tr is the trace of 

the matrix. Equation (9) indicates one definition of the 
matrix norm. Since the SDT, thus the CN, is depending on 
the sensor locations and, as we will see, is an indicator for 
good estimation quality, it was used as the objective 
function for the sensor placement optimization. Thereby 
an optimization algorithm provided by Matlab used the 
implemented function ‘cond’ to calculate the condition 
number.  

2.4. Coordinate Transformation 
Since in this study a two dimensional plate was 
investigated and the in plane movement was assumed to 
be much smaller than the out of plane deformations, the 
deformation field consisted of a scalar value, the out of 
plane deformation, at each discrete point. Thus the 
deformation field can be described using a vector (see eq. 
4). For the strain it is different. Even in a two dimensional 
case there are three components of strain at one point, 
normal strain in x and y direction and shear. If the 
introduced approach with the strain-deformation matrix 
SDT shall be used, we have to use a strain mode shape 
matrix ][Ψ  with a single degree of freedom at every 

location. For that a coordinate transformation equation 
(10)4 was used, which transforms strain from the x- and y-
direction and shear into strain in an arbitrary direction x’ 
(see FIG. 2).  
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FIG. 2 Coordinate transformation 

To perform the transformation the following equation was 
used. 
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The same transformation approach was applied to the mode 
shape matrices of the different components. 
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Thus the calculated matrix ][Ψ could be used in equation (6). 

3. SIMULATION 
Using different simulation tools, parameters like the condition 
number, the number of sensors and the excitation frequency 
were investigated. Therefore the following simulation model 
was used.  

3.1. Simulation model and process 
A cantilever plate with the dimensions of 900 x 600 mm and a 
thickness of 8 mm (see FIG. 3) was discretized with 30 x 20 
shell elements in a FEM model.  

60
0m

m
 

900mm 

thickness=8mm 

y 

x 

F(t) 

FIG. 3 Simulation model 

The excitation (F(t)) location was defined with respect to the 
experimental set up to x = 330 mm and y = 180 mm. The 
location in x direction was chosen to avoid the application of 
forces in a nodal line of the first three eigenmodes, which can 
be seen in FIG. 4. The corresponding natural frequencies are 

Hz83,61 =ω , Hz48,122 =ω  and Hz18,283 =ω . 

FIG. 4 Displacement mode shapes 
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The first step in the simulation was the determination of 
the displacement and strain mode shapes using a FEM 
model. After that, these mode shapes were exported to a 
matlab script, which was used to perform a state space 
simulation of the excited plate. The output of this 
simulation were the approximated time depending, real 
deformation and strain fields according to the applied 
excitation. Beside that the mode shapes were used in 
combination with the used measurement locations to 
determine the SDT. Using the approximated strain data at 
the assumed measurement points and the SDT the 
deformation field could be estimated. At the end the 
estimated field could be compared with the approximated 
real field and evaluated by calculating the RMS5.  
The flow chart in figure 5 shall illustrate the simulation 
process.  

FEM model

State Space 
Simulation

Strain 
Field

Deformation
Field

Measurement
Points
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Estimated 
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Strain 
mode shapes

Displacement 
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Estimation Quality
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FEM model

State Space 
Simulation

Strain 
Field

Deformation
Field

Measurement
Points

[SDT]

Estimated 
deformation field

Strain 
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Displacement 
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Estimation Quality

excitation

Measured
strain

FIG. 5 Simulation flow chart 

3.2. Parameter study 
In the introduction it was mentioned, that a lot of 
parameters have to be considered and investigated to 
accomplish the aspired deformation field estimation task. 
Here the results of the investigations of a sample of 
parameters are presented. These parameters are:  

• Condition number (CN) 
• Sensor amount 
• Excitation frequency 

As mentioned before, in the literature it can be found that, 
the condition number of a transformation matrix is an 
indicator for good estimation results3. Furthermore in 
general the condition number is used to evaluate mapping 
functions. To verify the use of the condition number as a 
general indicator, the estimation results of several 
configurations were correlated to the corresponding 
condition numbers. Therefore ten sensor configurations, 
with eight randomly distributed sensors each, were used in 
the simulation and the resulting estimation error was 
plotted against the condition number. Thereby the 
excitation was a sinusoidal signal with a frequency of 
10Hz. The correlation between the estimation results and 
the condition numbers are summarized in FIG. 6. 

10
0

10
2

10
4

10
0

10
1

10
2

10
3

Condition number

R
M

S
 [%

]

FIG. 6 RMS regarding the condition number 

As one can see, the dispersion of the values is quite high. This 
can be explained with the influence of two effects. The 
optimum of the condition number regarding the estimation 
error is very smooth3, such that changes within the same 
magnitude hardly change the estimation results. That’s why 
other effects, like the strain level at the measurement points, 
play bigger roles. To improve the optimization process 
another objective function, including the condition number 
and the strain level might be used. This parameter, called 
effectiveness, was investigated by Uwe Stöbener et. al6. The 
other reason might be the highly convex function of the 
condition number. Since a gradient searching algorithm was 
used to find the optimum, the starting value was a decisive 
parameter. That’s why there couldn’t be a guarantee to find 
the absolute optimum, despite a lot of starting values were 
used. The use of genetic algorithms might improve the 
optimization process. Nevertheless, the trend is obvious, if 
the condition number changes with magnitudes, the 
estimation error changes with magnitudes too.  
Beside the ten random distributions the value for the 
condition number minimized sensor distribution is showed, 
marked with a circle. One can see that the estimation quality 
is much better than that of the other configurations, thus the 
use of the condition number as a general indicator for high 
estimation quality was verified. With the use of condition 
number minimized sensor locations, the question about the 
sensor alignment is dispensable. Although the sensor location 
itself shows the higher effect on the estimation quality5 it is 
not a general approach. Depending on the structure and 
especially the load case, one would locate them at other 
positions. Thus a general conclusion about the sensor location 
is very difficult.  
Another parameter, which influences the estimation quality 
significantly, is the sensor amount. The presumption that an 
increasing number of sensors would increase the estimation 
quality was investigated and the results are presented here. 
For the investigation, condition number minimized sensor 
distributions were chosen. The relationship between the 
number of sensors and the estimation error, evaluated using 
the RMS, is illustrated with the diagram in figure 9. The 
results reference a sinusoidal excitation with a frequency of 
10 Hz.  The presumed improvement of the estimation with an 
increasing number of sensors was confirmed with these 
results. 
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FIG. 7 Estimation error regarding sensor amount 

The investigations of the condition number and the sensor 
amount were performed using an excitation frequency of 
10 Hz. This note is important, since the estimation result 
depends strongly on the loading conditions. One can 
distinguish two different kinds of dynamic loads, 
harmonic and random excitations. Here the influence of 
different harmonic, sinusoidal signals was investigated. 
Using 16 sensors in a condition number optimized 
configuration the system was simulated using six different 
excitation frequencies. The resulting estimation errors are 
summarized in figure 8. 
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FIG. 8 Estimation error regarding excitation 
frequency 

The curve shows two characteristic properties.  
• Increasing estimation error with increasing 

excitation frequency even for resonance 
excitations 

• Higher estimation errors for off resonance 
excitations compared to the errors for resonance 
excitations 

The first effect might be explained with the influence of 
residual modes. The higher the excitation frequency, the 
nearer the residual modes are, thus their influence might 
increase. A possible explanation of the second property is 
the more complex deformation of the plate including 
shares of different mode shapes if it is excited with a 
frequency between two eigenfrequencies.  
At the end of this section a figure shall illustrate the 
deformation estimation and give an idea of the 
quantitative value of the RMS. Figure 9 shows a real and 
estimated deformation field for a 10 Hz excitation,
determined using 16 sensors in an optimized distribution. 
With an estimation error of RMS = 3.54%, the two 
surfaces cover each other quite well.  
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FIG. 9 Deformation Field: 10 Hz, RMS = 3.54%

4. EXPERIMENT 

4.1. Set up 
The performed parameter studies presented in the section 
before showed, that a certain amount of sensors is necessary, 
with respect to the expected excitation, to achieve a 
satisfactory estimation quality. Furthermore the determination 
of the sensor distribution using the condition number of the 
transformation matrix as an objective function in an 
optimization algorithm proofed to be successful. Thus an 
experimental plate was equipped with 16 fibre Bragg grating 
strain sensors in a condition number minimized configuration. 
The number of sensors was limited to 16 due to the 
experimental device. To reduce the optimization variables 
from 48 to 16, the orientations of the sensors were fixed into 
x and y direction at each location, thus only x and y 
coordinates for 8 locations had to be determined. The 
optimized sensor locations, marked with a +, can be seen in 
the figure below. 

+ 
+ 
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+ 

+ 
+ 

+ 

+ 
Jig 

I II 

III 
IV 

+ 

Excitation 
location 

FBG locations 

Nodal lines of  
mode 2 and 3 

Laser reference 
point 

FIG. 10 Sensor set up 

Beside the 8 sensor crosses including two rectangular strain 
sensors each, the excitation location and the locations of the 
reference sensors I, II, III and IV can be seen. These locations 
were determined regarding the following criteria.  

• Avoiding the location at nodal lines 
• Asymmetric alignment to increase the amount of 

information 
• Separated distribution to increase the amount of 

information 
• Placed at locations with high deflections to remain in 

the resolution range of the reference sensing system 
The used reference measurement system consisted of four 
laser sensors, their controller units and a computer for the 
data processing. The excitation was applied by a modal 
shaker. The shaker was connected to the plate by a slight rod. 
This rod was used to avoid transversal forces or even 
moments, thus only out of plane forces were applied to the 
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plate. A function generator provided the sinusoidal signal. 
The signal was amplified and forwarded to the shaker. 
The attitude of the four reference sensors and the modal 
shaker with respect to the cantilever plate can be seen in 
figure 11. 

Laser 

sensors 

Modal 

shaker 

FIG. 11 Reference sensors and shaker 

The cantilever plate, consisting of acrylic, was mounted 
on the experimental table using a steel jig. To enable the 
measurement of strain in x and y direction at the same 
location, 8 FBG strain sensors were mounted at the top 
side of the plate and 8 sensors at the same location at the 
bottom side. Thereby 4 sensors were multiplexed within 
one fibre by using the wavelength division multiplexing 
technique. That means that every sensor in one sensor 
fibre has had a unique Bragg wavelength. Thus 4 
measurement channels were used to collect the strain data 
of 16 measurement points. The equipped plate with the 8 
FBG crosses, marked with circles, can be seen in figure 
12. 

FIG. 12 Equipped plate 

The fibre optic interrogation unit consisted of the sensor 
fibres, a broadband light source, the spectrometer and the 
data processing computer. The spectrometer worked using 
a fibre Fabry-Perot filter.   

4.2. Experimental Results 
Using the measured strains, the deformation field could be 
estimated. Comparing the deformation values of the reference 
measurement system to the estimated deformations at the 
corresponding locations, the estimation error (RMS) could be 
calculated. Since the deformation and strain data couldn’t be 
collected time synchronously, the time axis of deformation 
and strain measurements were adjusted. Thereby the time axis 
of the deformations was moved until the deformation 
response of one reference point covered one characteristic 
strain curve. Thus no phase shift effects could be considered 
in the error calculation. The determined estimation errors are 
summarized in table 1.  

TAB. 1 Experimental results 
Excitation frequency 

[Hz] 
RMS [%] 

3 0.56 

7.14 0.44 

10 1.31 

12.84 0.46 

20 1.12 

31.08 2.20 

One can see that the RMS values are very small. That shows 
the potential of this kind of estimation approach. However 
one has to say, that only four points were used to calculate the 
estimation error, furthermore the phase shift effects were 
excluded. Nevertheless the estimation quality was 
satisfactory. This can be illustrated with figure 13 and 14. 
Figure 13 shows the time response at reference point I for a 
10 Hz excitation. Thereby the dashed line represents the 
measured deformation signal and the full line the estimated 
deformation at this node. Figure 14 shows the estimated 
deformation field for a certain time step.  
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FIG. 13 Time response for 10 Hz excitaiton at point I 
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FIG. 14 Estimated shape for 10 Hz excitation 

The figure includes the for measured reference points, 
which are covered well by the deformation field.   

4.3. Correlation 
Despite the quantitative values for the estimation errors of 
the simulation and the experiment can’t be compared
since in the experiment only four points were considered 
in the error calculation and the phase shift effects were 
excluded, it can be said that there is a quite good 
qualitative correlation. In table 1 it can be seen, that the 
errors in off resonance cases is much higher than in 
resonance cases. An exception is the result for the third 
resonance frequency excitation. This extraordinary high 
error can be explained with the limited sampling 
frequency of the interrogation unit, which used a buffer 
for the data transfer to the computer. Thus the measured 
strain signals for this frequency were very rough what 
resulted in unrepresentative estimation results for higher 
frequencies. 

5. CONCLUSION 
The simulation showed that the estimation approach using 
the mode shapes as shape functions works very well. If 
enough mode shapes, or sensors, respectively, were used, 
the estimation results were satisfactory. Especially if the 
global deformation of the structure is of interest, for 
example the global deflection of an airplane wing, this 
approach seems to be very good. If local effects, like the 
discrete load application with the modal shaker, play a 
role, the method shows disadvantages, since the shape 
functions can’t map local effects.  
The approach, using the condition number as the objective 
function for the sensor alignment optimization, was
successful too. This approach is a very general one and 
has probably to be improved by some requirements or 
additional objectives to include structure dependent 
properties.  
In the simulation it was figured out that the loading 
condition has a big influence on the estimation results. 
Although, unfortunately phase shift effects couldn’t be 
considered in the experiment, the experimental results 
verified the simulation and showed especially the strong 
dependence of excitation and estimation quality.  

6. OUTLOOK 
To improve the estimation method different approaches 
can be followed. At first static deformation solutions can 
be included in the shape function basis to include the 
possibility of mapping local effects. Furthermore the 
optimization can be improved by using another objective 
function like the effectiveness introduced by Uwe 
Stöbener6, or by inserting restrictions, for example 

minimum strain values. Using genetic algorithms would 
increase the probability of finding the global minimum.  
To make the deformation estimation even more general it will 
be necessary to include additional sensors, for example 
accelerometers, to enable the detection of rigid body motions.  
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