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OVERVIEW 

A system for integrated multi-disciplinary analysis and 
multi-objective optimisation of transonic aircraft wings is 
presented. The multi-disciplinary analysis focuses on the 
aerodynamics and structural mechanics disciplines, 
deploying computational fluid dynamics-based 
aerodynamics and finite element method-based structural 
mechanics tools for accurate, but computationally 
expensive simulations. These simulations are 
complemented with lower fidelity tools covering the other 
contributing disciplines, such as weight estimation and 
engine sizing. The multi-disciplinary analysis system is 
applied in a multi-objective optimisation study of aircraft 
range and fuel consumption. To allow for extensive multi-
disciplinary analysis evaluations in the optimisation 
iterations, meta-models are used for fast and sufficiently 
accurate approximation of the multi-disciplinary analysis 
results. The resulting Pareto optimal sets of wing designs 
provide the design points that have the most profitable 
combination of range and fuel consumption. It is shown 
that these results can be achieved with quite limited 
computational effort, but also that they do depend on the 
accuracy of the predictions by the meta-models, and that 
adequate control of this accuracy is crucial for achieving 
reliable results. 

1. INTRODUCTION 

Due to high oil prices and environmental concerns, fuel 
consumption is becoming a critical aspect, as well as a 
competitive attribute, of new civil aircraft. Hence aircraft 
design progressively incorporates fuel consumption as a 
key objective, already in the early design stages. Aircraft 
design requires an integrated multidisciplinary engineering 
process, which includes closely coupled analyses of all 
key phenomena that determine the aircraft performance. 
Besides the traditional performance aspects like range and 
speed, also fuel consumption is taken into account more 
prominently as design objective in this integrated 
multidisciplinary design process. 

This paper describes an investigation of aircraft range and 
fuel efficiency, which is performed in part in the context of 
the European project VIVACE [1]. Fuel efficiency here 
represents the distance flown per unit fuel per unit 
payload. The investigation concerns the optimisation of 
transonic aircraft wings in the preliminary design phase. 
The design analyses in this investigation make use of a 
multidisciplinary design analysis (MDA) system that 

evaluates the aircraft characteristics as a function of a set 
of design parameters [2]. The evaluations comprise, 
among others, wing structural sizing and optimisation 
using finite element method (FEM) analyses, and cruise lift 
over drag performance using computational fluid dynamics 
(CFD) analyses. The design parameters include geometric 
wing planform parameters such as span, chord, sweep, as 
well as “aircraft operational parameters” such as maximum 
take-off weight (MTOW) and cruise altitude. With the 
design parameters inputs, the wing MDA system predicts 
the corresponding aircraft characteristics in terms of, 
among others, weight breakdown information, maximum 
range and fuel consumption. In order to effectively handle 
these different (and possibly conflicting) design objectives, 
multi-objective Pareto front [3] optimisation algorithms are 
used in the presented aircraft wing design investigation. 
The multi-objective Pareto front results directly provide the 
design information on which further trade-off 
considerations of the different objectives for the wing 
design can be based. 

To limit the number of computationally expensive 
evaluations with the MDA system, the multi-objective 
optimisation iterations have been de-coupled from the 
MDA evaluations by making use of an advanced meta-
modelling (or response surface) approach [4]. The meta-
modelling approach allows for computationally efficient 
exploration of the aircraft characteristics in a pre-defined 
design domain. Different meta-modelling methods, such 
as polynomial regression, kriging models and neural 
networks, are used and their predictive accuracy is 
carefully checked and compared in order to achieve the 
best representation. Obviously, the results of the 
optimisation depend on the accuracy of the meta-models 
used, and therefore also require careful assessment and 
validation, as is shown in the present aircraft design 
optimisation study. 

2. MULTI-DISCIPLINARY DESIGN ANALYSES 

2.1. Introduction 

A generic multi-disciplinary analysis system and 
optimisation framework for design of aircraft wings has 
been developed at NLR during the last decade. In this 
system, the key disciplines for aeronautic design, 
aerodynamics and structural mechanics, take a central 
place. In addition, several other disciplines, like weight 
estimation and engine sizing, are included by means of 
models of various levels of fidelity. The main components 
of this MDA framework are the following: 
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1) A Geometry module providing the parametric external 
(aerodynamic) and internal (structural) shape of the 
configuration. 

2) A Weight and Balance module keeping a record of all 
items contributing to the mass and centre of gravity of 
the configuration. 

3) An Engine Sizing module sizing the propulsion system 
to meet the aircraft thrust requirements. 

4) A Structural Optimisation module sizing the structural 
element thicknesses to arrive at a minimum weight 
primary wing structure. 

5) An Aerodynamic Performance module predicting the 
aircraft lift over drag (L/D) performance. 

6) A Mission Analysis module collecting the results from 
all contributing analysis disciplines and providing the 
aircraft mission range. 

The exchange of the appropriate information among the 
different modules is achieved by reading/writing data 
from/to a central product database that contains the most 
relevant information of the aircraft being analysed [2]. The 
different modules are implemented as stand-alone 
executable programmes. The modules and the data 
exchange and interdependencies among the various 
disciplines will be described in more detail in the next 
sections. 

2.2. Geometry Generation 

The Geometry Generation module is used to generate the 
global geometry of the considered aircraft, in particular the 
external (for aerodynamic analyses) and internal (for 
structural analyses) geometries of the wings. This present 
investigation focuses on wing planform modifications. The 
wing planform is modelled as a parametric double 
trapezium (FIG 1). 

FIG 1. Global geometry of the aircraft configuration 
considered in the present study; fuselage and 
tail are fixed; wing geometry is parametrically 
defined by the 12 wing design parameters 
indicated; besides the external geometry, for 
the wings also the internal geometry is 
generated. 

The Geometry Generation module is fed by the 12 wing 
planform design parameters (TAB 1). The geometries of 
the wings and their position and orientation on the 
fuselage are derived from these design parameters. The 
wing airfoil shape is defined for each wing section and is 
based on coordinates read from a database, which are not 
varied in this study. During the geometry generation the 
surfaces of the individual aircraft components (wings, 
nacelles, fuselage, stabilizer, fin) are computed and 
connected together (FIG 2). 

FIG 2. Aircraft components geometries connected 
together. 

The external shape of the aircraft is computed to facilitate 
the CFD based aerodynamic computations. Currently, this 
retains the fuselage and wing components only. For this 
purpose, the intersection of the wing and fuselage is 
computed and the two are properly connected together, 
and the wing-tip is closed. The resulting aircraft wing/body 
geometry is delivered to the aerodynamics module as a 
number of surfaces (FIG 3). 

FIG 3. Aircraft external geometry defined as a set of 
surfaces that are provided to the CFD 
analyses. (The wing geometry shown here was 
generated with a low value of the outer wing 
sweep angle design parameter.) 

The wing structural topology is also generated, which is 
used in the FEM analysis for structural sizing. The 
considered structural elements comprise spars, ribs, 
covers and stringers. The wing structural layout comprises 
multiple ribs, oriented in flight direction at 50 cm equi-
distant rib spacing intervals, and two spars. The wing 
covers are supported by the spars and ribs. The spar and 
rib layout take the engine attachment points and the 
leading-/trailing-edge movables into account. FIG 4 shows 
an example of the aircraft internal wing structural 
geometry. 

The structural topology is ”rubberized” and follows 
changes in wing planform as defined by the global wing 
design parameters. E.g., the number of ribs included 
depends on the wing span. The wing panels are stiffened 
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using hat-type stringers supporting the upper-wing covers 
and Z-type stringers supporting the lower-wing covers. A 
number of physical stringers are lumped together in the 
analysis and are represented using a single bar type of 
element (green lines in FIG 4). The structural elements are 
represented by a set of structured surfaces and are 
delivered to the Structural Optimisation module for 
element thickness sizing. 

FIG 4. Aircraft internal wing structural geometry. 
Indications are given of where the external 
loads on the wing from the engines, landing 
gear and fuselage are located. 

Fuel is stored in the fuselage and centre-wing, inner-wing 
and outer-wing tanks. The geometry generation module 
computes the total fuel volume capacity of the 
configuration. 

The engine nacelles are scaled according to the aircraft 
thrust requirements, obtained from the Engine Sizing 
module, and are properly positioned relative to the 
configuration. 

2.3. Weight and balance 

The Weight and Balance module is responsible for 
keeping a record of all items contributing to the mass and 
centre of gravity location of the aircraft. The contributing 
items are classified as follows. 

1) Structural Items, like spars, ribs, stringers, skin panels 
etc. Wing weight is mainly determined by the wing 
planform, which depends on the wing design 
parameters. The actual wing structural weight also 
depends on the structural sizing, which is computed
by the Structural Optimisation module described 
below. The structural weight of the fuselage and tail 
planes is assumed to remain fixed, irrespective of any 
wing planform changes. 

2) Non-structural items, like systems, cabin furnishing, 
operator items, etc., i.e. items not belonging to the 
primary aircraft structure. For the wing, a fixed weight 
for leading- and trailing edge devices of 3000 kg is 
assumed. The weight of the wing tank sealing is 
modelled as 0.4% of the total wing tank fuel capacity. 
Fuselage and empennage are fixed during the design 

process, having total weights of 40000 kg and 3000 
kg, respectively. The weight of the landing gear is 
modelled as 4.5% of the aircraft MTOW.  

3) Propulsion System. The mass of the propulsion 
system varies as a function of the design parameters. 
This is due to the variable aircraft thrust requirement. 
The thrust requirement is linked to the wing 
aerodynamic characteristics and aircraft MTOW. 
Hence, propulsion system weight is modelled as a 
ratio of the required take-off thrust (0.03 [kg/N]), and 
is calculated by the Engine Sizing module described 
below. 

4) Payload. A payload of 35000 kg, representative for 
250 passengers, is represented by a fixed mass. 

5) Fuel stored in the wing tanks. Total weight available 
for fuel is computed as the difference between 
MTOW, and the aircraft’s empty operating weight plus 
the payload. However, also the capacity of the fuel 
tanks, as obtained from the geometry module, is 
taken into account. In case this fuel capacity is lower 
than the above mentioned weight available for fuel, 
then the available fuel weight is set equal to the fuel 
capacity and the aircraft take-off weight is reduced 
accordingly. 

The Weight and Balance module also assembles the 
individual mass components into load cases. For each 
load case, a full set of information comprising mass, centre 
of gravity, flight condition etc. is generated and written to 
the central database. It should be noted that the total mass 
is different in the different load cases due to consumption 
of fuel. From this information the driving scenarios are 
derived for the subsequent disciplinary analyses for the 
engine sizing, wing structural mass minimization and 
aerodynamic cruise performance. 

2.4. Engine sizing 

A standard “rubberized engine” model is used to calculate 
the size of the engine. As a worst case, the required thrust 
during the take-off condition is evaluated, assuming a one-
engine-out failure condition and a standard limited runway 
length. The engines are sized accordingly. 

2.5. Structural Optimisation 

The Structural Optimisation module is responsible for 
sizing the thicknesses of the wing primary structural 
components: spars, ribs, skins. For this purpose, FEM 
analyses are well-suited and computationally efficient, 
provided that the number of elements is limited. The 
driving scenario for sizing of the structural components is 
currently limited to a single representative load case, i.e.: a 
+2.5g pull-up manoeuvre at MTOW, low-altitude/low-
speed. The aircraft loading is configured such that the 
wing structure experiences maximum bending moments,
i.e. maximum payload and maximum fuel in wing tanks. 
The Geometry Generation module delivers both the layout 
of the internal structural elements as well as the 
configuration external-shape for loads computations. The 
aerodynamic loading is based on a quasi three 
dimensional flow solution for the considered load case, 
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where the flow solver is run for the prescribed manoeuvre 
lift coefficient. The aerodynamic surface pressures are 
translated into elementary force vectors on the 
aerodynamic wing surface grid. These force vectors are 
then mapped, using spline interpolation techniques, to the 
structural grid points on the aerodynamics/structures 
interface. In addition, the non-structural mass items (i.e. 
landing gear, engines, LE-/TE-movables, servo systems, 
etc.) and fuel masses are identified and connected as 
discrete mass items to the nearest structural grid points. 
These discrete mass items contribute to the inertial 
loading of the structure during the considered load case. 
The result is a load card representing point mass items 
and external surface pressure loads. 

The wing structural layout, as provided by the geometry 
module, is read into a special purpose algorithm. This 
algorithm meshes the covers, spars and ribs using 
quadrilateral elements (NASTRAN [5]: CQUAD4) and 
meshes the stringers using bar elements (NASTRAN: 
CBAR), combines  groups of structural elements into 
design areas, connects non-structural mass items to the 
mesh, reads in the external (aerodynamic) loads and
returns a bulk data deck file for the structural analysis. The 
structural analysis makes use of the FEM solver 
implemented in MSC-NASTRAN SOL101. The von Mises 
stresses in the (isotropic aluminium) element corner points 
are used to drive a local-level optimisation loop, which 
sizes all the elements’ thicknesses. The structural
optimisation objective is minimal weight of the structural 
components under the constraints that the maximum von 
Mises stress is below 200 MPa and element thicknesses 
are greater than 2 mm. The element thicknesses of the 
covers, spars and ribs are grouped into approximately 120 
design areas, for each of which one thickness value is 
prescribed. The optimisation is performed using 
NASTRAN’s native gradient based SOL200 optimiser, and 
requires about 5 to 15 iterations. The outcome of the 
NASTRAN-based optimisation process is the thicknesses 
for each of the design areas of the primary aircraft 
structure (FIG 5). Other details of this module are also 
given in [6]. 

FIG 5. Illustration of the von Mises stress [MPa] 
distribution in the upper-wing covers and in the 
spars and ribs. 

2.6. Aerodynamic Performance 

Information concerning the aircraft aerodynamic behaviour 
is required for several load cases considered in the multi-
disciplinary analysis. The Engine Sizing module requires 
inputs on take-off thrust requirements, which depends on 
aerodynamic drag of the aircraft. The Mission Analysis 
module would require aerodynamic lift over drag (L/D) 
performance information at several points of the mission 
profile. CFD based methods can accurately provide this 
information, but it would become computationally very 
expensive to compute multiple entries in the Mach-CL 
plane using CFD technology. As a compromise, CFD 
technology, based on an efficient solver of the full-potential 
equations in interaction with a boundary-layer solver for 
wing-body configurations, is used for the cruise condition 
only. Computationally inexpensive methods are used to 
complement this information for the other flight phases. 

2.7. Mission Analysis 

The Mission Analysis module combines mass, 
aerodynamic and engine data to evaluate the range 
performance of the aircraft. Mission range constitutes an 
important global-level design objective or constraint. 
Mission range is computed according to the Breguet range 
equation [7]. 

3. AIRCRAFT DESIGN OPTIMISATION 

The MDA system described above is used in an aircraft 
wing design optimisation study. Aircraft designs are 
pursued that have optimal performance for both range and 
fuel efficiency. As a starting point, a reference aircraft 
design is defined for which sensible values for the design 
parameters are based on estimates and expertise for the 
considered design targets. For the design optimisation 
study, there are many possible inputs, i.e. design 
parameters, to the wing MDA system. For example, the 
wing geometry can be defined by the following 
parameters: 

# Wing Planform 
18.0000  -- Wing LE-Root x-coordinate [m] 
00.0000  -- Wing LE-Root y-coordinate [m] 
-1.2500  -- Wing LE-Root z-coordinate [m] 
12.0000  -- Wing Root Chord           [m] 
33.0000  -- Wing-Inner LE-Sweep       [deg] 
03.0000  -- Wing-Inner LE-Dihedral    [deg] 
00.3000  -- Wing Crank Span Fraction 
07.0000  -- Wing Crank Chord          [m] 
33.0000  -- Wing-Outer LE-Sweep       [deg] 
04.0000  -- Wing-Outer LE-Dihedral    [deg] 
30.0000  -- Wing Semispan             [m] 
02.5000  -- Wing Tip Chord            [m] 

# Wing Sections 
03.0000  -- Number of Wing Definition Sections 
00.0000  -- Wing Section 01 Span Fraction 
00.1400  -- Wing Section 01 t/c 
04.5000  -- Wing Section 01 Twist          [deg] 
00.3000  -- Wing Section 02 Span Fraction 
00.0900  -- Wing Section 02 t/c 
01.0000  -- Wing Section 02 Twist          [deg] 
01.0000  -- Wing Section 03 Span Fraction 
00.0900  -- Wing Section 03 t/c 

-1.5000  -- Wing Section 03 Twist

TAB 1. Wing geometry parameters; values given here for 
the reference aircraft. 
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In addition, also several aircraft level operational and 
weight breakdown parameters can be specified, for 
example: 

# Flight Conditions 
        0.8000  -- Start-of-Cruise Mach Number 
      330.0000  -- Start-of-Cruise Flight Level 
        1.0000  -- Start-of-Cruise Loadfactor 
        0.5000  -- Manoeuvre Mach Number 
       15.0000  -- Manoeuvre Flight Level 
        2.5000  -- Manoeuvre Loadfactor 
# Aircraft Weight Breakdown 
    35000.0000  -- Payload Weight [kg] 
       30.0000  -- Payload CG X-Coordinate [m] 
   230000.0000  -- Maximum Take-Off Weight [kg] 
   180000.0000  -- Maximum Landing Weight [kg] 

TAB 2. Aircraft operational and weight breakdown 
parameters; values given here for the reference 
aircraft. 

Furthermore, many settings for fuselage, fin, stabilizers, 
control surfaces, tanks, engines etc., are included, but are 
not varied in the present wing design study.  

From the many results from the MDA simulations, different 
variables can be selected as relevant objective or 
constraint functions in aircraft design optimisation studies. 
For example the Breguet Range, Time at Landing on 
Scheduled Destination or Cruise Engine Specific Fuel 
Consumption are directly available from the MDA 
simulations. In the present wing design optimisation study 
we look for optimal overall range and fuel efficiency, and 
hence we take into account the Breguet range and the 
total fuel consumption for the calculation of the design 
objectives.Some more detail on these aspects of the wing 
MDA simulation system is given in [2][6]. 

To limit the scope of the present wing design optimisation 
study, four of the most relevant design parameters of the 
ones mentioned above have been selected as 
independent design variables: wing semi-span, outer wing 
leading-edge sweep angle, wing chords, and aircraft 
MTOW. The three wing chords (at root, crank and tip) are 
reduced to a single parameter, the wing chord scale factor, 
which linearly scales all three chords equally. All other 
design parameters of the MDA system are equal to their 
values for the reference aircraft and remain unchanged in 
this study. The geometric design variables determine the 
aircraft’s wing planform geometry, and through that affect 
the aircraft’s aerodynamic and structural mechanic 
behaviour. The MTOW determines the aircraft global 
sizing and fuel capacity. MTOW sets the value for the total 
aircraft weight, which is built up from a number of fixed 
weights (fuselage, fin, stabilizer weights, etc.; Wfixed), 
several dependent weights (wing structural weight, engine 
weight, landing gear weights, etc. Wdep), the payload 
(Wpayload, fixed to 35000 kg, corresponding to 250 
passengers), and the take-off fuel weight (WfTO). The 
dependent weights depend, via the manoeuvre wing 
structural loading, the required engine take-off thrust, the 
maximum landing weight, etc., on the design parameters 
span (sp), sweep (sw), chord (ch) and MTOW (WMTO). Hence 
there exists a non-linear relation between the take-off fuel 
weight and the design parameters span-sweep-chord-
MTOW according to: 

(1) deppayloadfixedMTOfTO WWWWW −−−= , 

(2) ),,,( MTOhwpdep WcssfW = . 

The amount of take-off fuel is one of the key determinants 
in Breguet’s range equation that is applied for the range 
computation in the mission analysis of the wing MDO 
simulation system. This range computation assumes an 
actual fuel consumption of 96% of the take-off fuel weight.  

In fact, in this study we apply a small correction to the 
normal Breguet range (RB), yielding the corrected Breguet 
range (RBcorr), which takes into account the “virtual Lost 
Ranges” (Rlost) related to extra fuel consumption during 
take-off, climb, etc. 

(3) 
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where cfs is the engine’s specific fuel consumption, vcruise is 
the cruise speed, and LoD-cruise.is lift-over-drag in cruise. To 
be more specific, the computed Breguet range is based on 
the actual distance travelled, assuming the actual amount 
of fuel consumed (Wfc) as follows: 

(5) freservefdiversionfholdfTOfc WWWWW −−−= , 

where the reserve fuel (Wfreserve = 0.04*(WfTO - Wfhold - 
Wfdiversion)) represents the amount of fuel that should in any 
case remain in the tanks after landing, and Hold fuel (Wfhold 

= 5000 kg) and Diversion fuel (Wfdiversion = 5000 kg) represent 
the amounts of fuel needed for the emergence cases of 
Hold and Diversion operations. 

Hence the aircraft fuel efficiency ηf can be evaluated as a 
combination of range and actual fuel consumption, and is 
calculated by: 

(6) 
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pax
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f

n

W
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=η , 

and is expressed in [km/(l/person)]. These values can be 
easily compared to other fuel efficiency numbers as for 
example published for cars (ηf ~ 14 for single person 
driving a middle class car). 

The resulting multi-objective optimisation problem for 
aircraft range and fuel efficiency can be formulated as 
follows: 

(7) ),(
),,,(

max
fBcorr

MTOhwp

R
Wcss

η . 

4. META-MODELLING 

In order to evaluate the aircraft design objectives (i.e. 
range and fuel efficiency) in the considered design 
domain, a series of simulations is executed in a limited 
number of design points using the wing MDA system. 
These design points are generated in several subsequent 
sets of samples (fractional factorial design-of-experiments 
[8]) of the four dimensional design space (i.e., parameter 
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space of the design parameters: wing semi-span, outer 
wing sweep angle, wing chord and aircraft MTOW). The 
semi-span is varied between 29 m and 32 m. The outer 
wing sweep angle is varied between 21 deg and 39 deg. 
The wing chords at 3 stations (wing root, crank and tip) are 
equally changed by one single chord scale factor, which is 
varied between 1.000 and 1.075. MTOW is varied between 
150000 and 280000 kg. In total 99 design points are
evaluated, yielding the values of range and fuel efficiency 
in these design points. As a quick preliminary design 
assessment, these range and fuel efficiency values are 
ordered according to a basic Pareto ranking procedure [3] 
in order to obtain a first indication of the interesting design 
regions. The results of range, fuel efficiency and Pareto 
rank (indicated by color coding) for these 99 design points 
are given in FIG 6 below. 

The resulting data set with the values of the design 
parameters and of the range and fuel efficiency objectives 
in these 99 design points is then used to create the meta- 
models. The meta-models shall approximate as good as 
possible the objectives in each point of the parameter 
space. Polynomial functions of different orders (polyn), 
several kriging models (kriging-xy), neural networks (ann) 
and radial basis functions (rbf) fits are applied [4], 
compared, and the best fit functions are determined. 
These best fit functions are found through various cross-
validation assessments on the data set, such that these 
functions’ predictions of the design objectives (range, fuel 
efficiency) have the smallest residuals. The tests that are 
performed for this purpose evaluate the root mean 
squared (RMS) values of the residuals (or in other words, 

root mean squared errors, RMSE) in some of the most 
interesting data points, i.e. those data points having the 
best (lowest) Pareto rank values for the considered 
objectives (i.e., the dark blue points in FIG 6). The first 
cross-validation assessment uses the 9 rank-one data 
points as validation points, i.e., the fits with each method 
are made on the remaining 90 points, and the RMS of the 
residuals (predicted value – actual value in data set) in the 
9 validation points are calculated. This assessment
indicates that the kriging-linear-Exponential (kle) [9] fit 
function provides the best fit for range. Fuel-efficiency is 
best represented by the third order polynomial (poly3) fit 
function. (99/9-column in TAB 3 and TAB 4 below). These 
assessments represent the accuracy of the fits in only a 
local region around the rank-one data points. In order to 
obtain a more global accuracy assessment we include 

some more validation points by adding the 11 Pareto rank-
two data points to the cross-validation set (99/20-column 
in TAB 3 and TAB 4 below). Because this cross-validation 
set is rather large (20 out of 99 points), the validation fits 
are made on relatively small data sets (79 points), and 
thus will differ significantly from the “full” fits made on the 
complete data set (99 points). Therefore we also evaluate 
the RMS-residual from a leave-1-out experiment of this 
validation set (99/1/20-column in TAB 3 and TAB 4 below). 
Finally, as a more global accuracy assessment, we also 
performed a full leave-1-out experiment on the data set 
(99/1/99-column in TAB 3 and TAB 4 below). As an 
additional indication of the relative accuracy of the fits, we 
also include the Mean Absolute Percentage Error (MAPE) 
of the global leave-1-out residuals (99/1/99/%-column in 
TAB 3 and TAB 4 below). 

FIG 6. Results of range, fuel efficiency and Pareto rank (indicated by colour coding) for the 99 design points. 
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For the different cross validation assessments we find 
reasonably consistent accuracies for most fit functions (in 
TAB 3 and TAB 4 below). The best RMSE or MAPE value
found in each assessment is marked by the green shaded 
cells. 

Based on the results of each of the assessments 
performed, it is concluded that the best fit for range is 
found by the kriging-linear-Exponential (kle) fit function. 
The radial basis function (rbf) also provides good results 
for the leave-1-out experiments (columns 99/1/20 and 
99/1/99), but very poor fit quality according to the 99/20 
experiments, and is therefore not selected as best fit. 

  RMSE   MAPE 

fit function 99/9 99/20 99/1/20 99/1/99 99/1/99/%

poly0 1824.8 1450.2 1464.0 993.2 18.5785

poly1 789.0 720.6 541.0 401.6 6.7994

poly2 739.3 509.2 460.8 234.1 3.7504

poly3 708.2 484.7 489.4 223.2 2.5825

poly4 757.5 720.8 521.5 237.7 2.6824

kriging-cG 1386.0 1155.3 886.3 400.3 4.2159

kriging-cE 1297.2 730.4 913.8 414.1 4.2473

kriging-cC 1025.6 722.3 814.8 367.0 3.8202

kriging-lG 608.7 519.3 301.7 138.6 1.7258

kriging-lE 567.6 418.8 465.5 210.1 2.2546

kriging-lC 600.9 440.5 411.0 186.8 2.2124

ann 1175.3 1053.7 957.3 859.6 12.8121

rbf 784.1 5130.0 205.0 99.7 1.1252

TAB 3. For the range data: Accuracies of the different fit 
functions (identified in left column) for the different 
cross-validation tests (identified in first row by 
data set size and number of validation points). 
Values given are the root-mean-squares of the 
residuals (or prediction errors) in the validation 
points. 

For fuel efficiency, it can be concluded that the best fit is 
achieved by the third order polynomial (poly3) fit function. 

  RMSE   MAPE 

fit function 99/9 99/20 99/1/20 99/1/99 99/1/99/%

poly0 4.648 4.182 3.909 3.259 8.464

poly1 1.984 1.499 1.368 0.995 2.368

poly2 0.722 0.544 0.258 0.264 0.637

poly3 0.269 0.401 0.223 0.143 0.313

poly4 0.766 2.908 0.488 0.256 0.480

kriging-cG 1.746 1.422 0.830 0.421 0.658

kriging-cE 2.435 1.289 0.947 0.431 0.389

kriging-cC 2.103 2.251 1.198 0.576 0.780

kriging-lG 1.590 1.358 0.939 0.443 0.484

kriging-lE 1.692 1.378 1.187 0.539 0.414

kriging-lC 1.778 1.404 1.305 0.607 0.634

ann 1.886 1.393 0.672 1.179 3.760

rbf 6.990 66.977 4.740 2.140 1.121

TAB 4. For the fuel-efficiency data: Accuracies of the 
different fit functions (identified in left column) for 
the different cross-validation tests (identified in 
first row by data set size and number of validation 
points). Values given are the root-mean-squares 
of the residuals (or prediction errors) in the 

validation points. 

5. AIRCRAFT OPTIMISATION RESULTS 

A Pareto front optimisation of the aircraft’s range and fuel 
efficiency is performed using a multi-objective genetic 
algorithm (based on epsilon-NSGA-II as described in [10]), 
where the best fits for range (kle) and for fuel efficiency 
(poly3) are used as objective functions. In this optimisation 
a population size of 99 individuals is used, where the 99 
design points from the data set are used as the initial 
generation. The bounds of the search domain for the 
optimisation are set to the minimum and maximum values 
of the design parameters of the 99 design points. About 
100 generations are evaluated by the genetic algorithm. 
The total number of meta-model objective function 
evaluations in this optimisation is then about 10.000, and 
takes about 20 seconds computational time on a standard 
PC (P-4, 2.8 GHz). If we compare this computation time 
with the computational time that would be needed to 
perform the 10.000 evaluations with the MDA system, 
which would be about 5000 hours, the significant gain in 
computation time is obvious. Note, however, that the MDA 
evaluations of the 99 design points did require some 50 
hours of computational time.The resulting Pareto front 
solution (red diamonds in FIG 7) provides a set of clearly 
improved designs, as compared to the initial set of designs 
in the data set (black dots). 

The fuel efficiency values in the Pareto points, as 
predicted by the poly3 meta-model, appear to be quite 
high (up to about 75) compared to the data set (fuel 
efficiency between 23 and 38). Although the poly3 fit 
clearly resulted as the best fit from the accuracy 
assessments (TAB 4), it is also well known that polynomial 
models may become less reliable, in particular in case of 
higher polynomial orders and in case of extrapolation 
outside the “cloud of data points” [11]. Therefore the 
values for fuel efficiency in the Pareto points as predicted 
by the poly3 meta-model are now checked by the 
predictions of these values with a variety of other fits. For 
this purpose we use one of the best kriging fits (kle; see 
TAB 4), and the ann and rbf fits. The predictions for fuel 
efficiency in the Pareto points by these fits are rather 
consistent (blue, green and magenta circles in FIG 7), and 
significantly lower than the poly3 predictions (red 
diamonds in FIG 7). We therefore conclude that the poly3 
fit for fuel efficiency is not as accurate as expected, in 
particular near the bounds of the design space (i.e., semi 
span around 32 m, sweep around 21 deg, chord ratio 
around 1.075 and MTOW around 150000). In order to 
achieve a more reliable set of Pareto points, we rerun the 
optimisation several times now using for fuel efficiency 
subsequently the three fits kle, ann and rbf. The Pareto 
front results are shown in FIG 8. 

The Pareto fronts found with these fits are close together, 
and much closer to the 99 points of the data set, and 
therefore probably more accurate approximations of the 
MDA results for fuel efficiency. This illustrates that the 
result of the optimisation does depend on the quality of the 
fits used in the objective functions, and therefore requires 
careful treatment, and if possible verification, of these 
results.  
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FIG 7. The 99 design points (black), the kle-poly3 Pareto front results (red) and the kle, ann, rbf predictions 
(blue, green, magenta) of these results in the objective space (left) and in parameter space (right). 

FIG 8. The 99 design points (black) and the kle-poly3 (red), kle-kle (blue), kle-ann (green) and kle-rbf (magenta) 
Pareto fronts in the objective space (left) and in the 4 parameter sub-spaces (right). 
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It should be noted that the location of the Pareto points in 
the parameter space (FIG 8, right panels) is not very 
different from the previous Pareto set found with the poly3 
prediction of fuel efficiency (FIG 7, right panels).  

On the basis of the Pareto optimum design points that are 
found we select two suitable candidate optimum design 
points, which are evaluated with the accurate MDA 
system: one design point is expected to provide primarily a 
high range, and the other design point is expected to 
provide primarily high fuel efficiency (TAB 5). The range 
and fuel efficiency values for these two design points as 
predicted by the fits indeed are as expected, as shown in 
TAB 5 (only results of the kle fits are included here). 

parameters meta model(kle) MDO analysis 
span sweep chord MTOW range FuEff. range FuEff. 
32.5 26.0 1.08 285000 7790.5 28.1 7593.5 28.0
32.0 21.0 1.075 200000 5510.8 38.1 4730.6 36.7

TAB 5. MDO analysis result and meta-model prediction 
for the two candidate optimal design points. 

Also the MDA system yields the expected high values for 
range and fuel efficiency, respectively, in the two 
candidate optimum design points (TAB 5). However, the 
difference between these values and the meta-models 
predictions are rather large, in particular for the second 
point (differences of 780.2 nm and 1.4 km/(l/pax), 
respectively, for range and fuel efficiency predicted by the 

kle meta-models; TAB 5 and FIG 9). Nevertheless, the 
Pareto points that are found with the meta-models do 
indicate the interesting design regions. After all, the two 
selected candidate optimum design points appear both to 
provide improved designs compared to the original data 
set (99 points), as these points are both additional Pareto 
optimal (rank 1) points (FIG 9). 

From the graphs showing the design parameter values for 
the Pareto optimal design points (FIG 9, right panels) it is 
clear that an increasing range requires an increasing 
MTOW. Obviously, the increasing amount of fuel that is 
available with higher MTOW values allows to achieve 
higher ranges. For most Pareto optimal design points, the 
wing span and chord are found to be as high as possible. 
This can be expected according to aerodynamic efficiency 
considerations. The sweep angle appears to be between 
21 and 25 degrees for the Pareto optimal design points 
which is probably related to the fixed cruise Mach value of 
0.8 that is used in this design study. 

6. CONCLUSIONS 

An advanced integrated multidisciplinary design analysis 
system has been deployed in a multi-objective design 
optimisation study of aircraft range and fuel efficiency. 

FIG 9. The 99 design points (black) and the Pareto front results with the kle, ann and rbf fits (blue, green, 
magenta diamonds) in the range vs. fuel efficiency objective space (left) and in the 4 parameter sub-
spaces (right). Also the results for the two optimum design points are included (squares). 

2039



Wing semi-span, sweep angle, chord and MTOW are used 
as the independent variables in this optimisation. 

In order to efficiently search through the design space, 
appropriate meta-models of the considered design 
objectives are created. The creation of these meta-models 
requires a proper set of data that represents the design 
objectives in the considered design space. This data set is 
generated by a series of 99 evaluations of the aircraft 
range and fuel efficiency with the MDA system, which take 
in total about 50 hours of computation time on a standard 
PC. With this data set, several meta-models are created 
for both range and fuel efficiency, and by extensive cross-
validation assessments the most accurate meta-models 
are identified. The computation time for the complete 
process of meta-model creation and cross-validation 
assessments is in the order of 1 hour on a standard PC. 
Once the meta-models are created, their evaluation takes 
only a small fraction of a second computation time. 
Compared to the approximately half hour computation time 
for a single evaluation with the MDA system, the time 
gained with the use of the meta-models is obvious, in 
particular in the case of the multi-objective optimisation 
design study, which requires many thousands of 
evaluations of the objective functions. 

The computational time gained by the use of the meta-
models comes at the cost of their possible limitation in 
accuracy. As is shown for the third order polynomial fit for 
fuel efficiency, the predictions of this meta-model
appeared to strongly overestimate fuel efficiency values 
for the Pareto optimal design points. Although this effect 
known for (high order) polynomial fits of sparsely sampled 
data sets, such predictions should be carefully considered 
and validated if possible. Because of the availability of the 
variety of meta-models for fuel efficiency, this effect could 
be easily discovered and mitigated by making use of these 
other meta-models for fuel efficiency in the optimisation. 
From the resulting Pareto optimal design points, two 
candidate optimal design points were selected, and the 
meta-model predictions in these points showed a 
reasonable correspondence with the results of the MDA. 
For the kriging-linear-exponential meta-models, relative 
prediction errors of about 10% and 5% were found for 
range and fuel efficiency, respectively  Moreover, the two 
selected candidate optimum design points appeared to be 
both additional Pareto optimal (rank 1) points when added 
to the original data set of 99 design points. 

The key benefit of the multi-objective design optimisation 
approach applied in this study is that the multi-objective 
Pareto front results directly provide the design information 
on which further design trade off considerations can be 
based. 

The resulting Pareto front provides a clear overview of the 
most interesting aircraft design points. The maximum 
achievable range found is about 7550 nm, and the 
maximum achievable fuel efficiency is about 38 km/l/pax. 
Obviously, for the Pareto optimal aircraft designs with 
increasing range values the fuel-efficiency drops, in 
particular for ranges higher than about 6500 nm. This 
clearly illustrates the trade-off decision that shall be made 
by the designer: decide either for an aircraft design 
allowing for a high range, or allowing for a high fuel 
efficiency. The advantage of the Pareto front for this trade-

off decision is, obviously, that each of these designs is 
non-dominated, i.e. not worse than any other design point. 
Therefore, if for example it is decided that the desired 
range is 7000 nm, then directly the design for this range 
with the best fuel efficiency can be selected. 

This process illustrates the possibilities offered by the 
multi-objective Pareto approach to efficiently investigate 
the considered design space, and selected optimum 
design points according to certain performance 
requirements. It leads the designer directly to the design 
areas of most interest for the considered design 
objectives. 
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