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Abstract
Loop-shaping design with H∞ controller synthesis has a

role of primary importance for the synthesis of robust multi-

variable controllers. However, a typical difficulty is that the

designer has to develop considerable expertise in this mat-

ter before obtaining good results. In fact, the choice of the

weight matrices, that are at the heart of the loop-shaping

design, is not an easy issue.

The aim of this work is to improve the well known H∞
loop-shaping approach, by simplifying the shaping proce-

dure and, at the same time, to render the controlled plant

less sensitive to model uncertainties. The main idea con-

sists in the definition of a scaling method aiming to min-

imizing the system condition number. This simplifies the

choice of the weighting matrices and increases the system

robustness.

The proposed procedure makes use of the 2-norm condi-

tion number and the relative gain array (RGA) as indicators

of the system controllability and of its sensitivity to model

uncertainties. This work is validated by simulations with

Matlab/Simulink using an aircraft linearized model.

1 Nomenclature

A = generic matrix

D = diagonal matrix (D = diag{D−1
I ,DO})

DI = input diagonal scaling matrix

DO = output diagonal scaling matrix

G = plant transfer function

GS = plant transfer function after shaping

H = matrix [see Eq. (6)]

K = feedback controller

K∞ = feedback H∞ controller

M = Mach number

V = flight velocity

W1 = overall pre-compensator

W2 = overall post-compensator

Wa = align matrix

Wg = pre-compensator for control of actuator usage

Wp = pre-compensator containing dynamic shaping

ai j = element (row i, column j) of matrix A
h = flight altitude

k = constant [see Eq. (10)]

∗PhD student, Email: r.panesi@ing.unipi.it
†Associate Professor, Email: g.mengali@ing.unipi.it

m = order of the generic plant

q = pitch angular velocity

t = time

Λ = Relative Gain Array (RGA)

α = incidence angle

γ = 2-norm condition number

γ� = optimum 2-norm condition number

δc = canard deflection

δe = elevon deflection

ε = tolerance of the minimization process

θ = pitch attitude angle

λi j = element (row i, column j) of RGA

σ = maximum singular value

σ = minimum singular value

ωd = design frequency

Subscripts
i1 = induced 1-norm

i∞ = induced∞-norm

sum = sum matrix norm

‖ · ‖m = 2 max{‖ · ‖i1, ‖ · ‖i∞}

Superscripts
† = pseudo-inverse

� = optimum scaling

2 Introduction
Among the existing methods for designing robust multi-

variable control systems via H∞ optimization, the loop-

shaping design is particularly attractive. It uses weighting

functions to shape the system open-loop transfer function

and the system robustness is maximized against coprime

factor uncertainties, instead of additive or multiplicative un-

certainties, thus improving the robustness properties of the

controlled plant. Other peculiarities of H∞ design method

can be found in Ref. [1].

The loop-shaping design has been developed in 1990 by

McFarlane and Glover,[2] and, subsequently, has been the

subject of considerable developments and applications in

the aerospace field. In essence, the methodology consists

in a two stage design process.[3, 4] First, a pre- and a post-

compensator W1 and W2 are designed and applied to the

open-loop plant to give the desired shape to the singular

values of the open-loop frequency response. The shaped

plant is then robustly stabilized with respect to coprime fac-

tor uncertainty through H∞ optimization, which provides
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the controller K∞. This second step does not require any

weight selection. If the robust stabilization is successful,

the shape of the singular values of the robustly stabilized

plant results to be similar to that of the open-loop shaped

plant. The commonly used set-up of the loop-shaping con-

troller is shown in Figure 1.

GW1

W2K

K (0)W2(0)
r yu

Fig. 1: Typical implementation for a loop-shaping con-

troller.

The classical and well known procedure for H∞ loop-

shaping design has been developed by Hyde.[5] It is a sys-

tematic step by step procedure, that we briefly summarize

for convenience:

1. Scale all inputs and outputs. In practice the common

approach is to make variables less than one in magni-

tude, by dividing them by their maximum expected or

allowed changes.

2. Rearrange the inputs so that the plant is as diagonal as

possible.

3. Select the elements of the diagonal pre- and post-

compensators so that the singular values of the shaped

plant GS = W2 G Wp reach the desired shape (typi-

cally high gains at low frequencies, a roll-off of about

20dB/decade in the bandwidth and higher slopes at

high frequencies). Wp contains the dynamic shaping,

while W2 has constant terms reflecting the relative im-

portance of the measures fed back to the controller

(usually W2 is the identity matrix).

4. Align the singular values at the desired bandwidth by

means of a diagonal align matrix Wa, of constant ele-

ments, cascaded with Wp . This step has to be carried

out only if the plant is not ill-conditioned (see below).

5. An additional diagonal gain matrix Wg can be added,

cascaded to Wa, to provide control over actuator us-

age. After this step the shaped plant will result GS =

W2 G W1, with W1 = Wp Wa Wg.

6. Perform a left-coprime factor stabilization on GS and

determine K∞. The resulting overall controller is K =
W1K∞W2.

7. Create the closed loop and check the system perfor-

mances in terms of time responses, actuator use and

robustness.

8. If necessary, alter W1 and W2 and re-run the stabiliza-

tion process.

The design procedure proposed in this paper modifies that

described above in both the scaling of the plant and the def-

inition of the weight functions. The main purpose is to sim-

plify the design of pre- and post-compensators and to re-

duce the sensitivity of the controlled plant to uncertainties.

The paper is organized as follows: the concepts of 2-norm

condition number and the relative gain array are first re-

called, together with an overview their useful properties.

Then the H∞ controller design procedure is described in de-

tail, and finally a case study is discussed.

3 Condition Number and Relative
Gain Array

Two measures widely used to quantify both the degree of

directionality and the level of interactions in MIMO sys-

tems are the condition number and the relative gain array

(RGA). A definition of both these measures, that are useful

to understand the proposed design procedure, is given be-

low along with their main properties. For a more detailed

discussion the reader is referred to Refs. [6, 7].

Condition Number: the condition number in 2-norm is

defined as the ratio between the maximum and the mini-

mum singular values of the plant, that is

γ(G) � σ(G)/σ(G) (1)

The condition number strongly depends on the scaling of

the inputs and outputs. This implies the definition of the

minimized condition number γ�:

γ�(G) � min
DI ,DO

γ(DO G DI) (2)

where DI and DO are input and output diagonal scaling ma-

trices. A matrix with large condition number is said to be

ill-conditioned. Moreover, a large condition number (typi-

cally larger than 10[7]) may indicate control problems[8] be-

cause:

1. It may be caused by a small value of σ(G), which is

usually undesirable.

2. It may imply a large value of γ�, meaning that the plant

has large RGA elements and, therefore, control prob-

lems (as described below).

3. It may indicate sensitivity to uncertainties. This is not

true in general, but the reverse holds.

4. The matrix required for the alignment of the singular

values of the plant at the desired bandwidth will have a

large condition number that can yield poor robustness.

Relative Gain Array (RGA): the RGA of a complex

non-singular square matrix is a square matrix defined as

Λ(G) = G × (G−1)T (3)

where × denotes element-by-element multiplication.

The RGA has many interesting properties, among which the

most important for our goals are:
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1. It is independent of input and output scaling.

2. The sum-norm of the RGA, ‖Λ‖sum defined below, is

very colse to γ�: this means that a plant with large

RGA-elements is always ill-conditioned.

3. Plants with large RGA-elements around the crossover

frequency are affected by high sensitivity to input un-

certainty.

4. Large RGA-elements indicate sensitivity to element-

by-element uncertainty.

The RGA-number is defined as follows:

RGA-number � ‖Λ(G) − I‖sum (4)

where ‖A‖sum =
∑

i, j |ai j| is the sum matrix norm. The

smaller the RGA-number is, the more diagonally dominant

the plant.

The RGA concept may be generalized to a non-square ma-

trix A by use of the pseudo-inverse A†, as shown in Ref. [6].

It must be noticed that, for both the condition number and

the RGA, their most important values are those close to the

crossover.

4 Design procedure
As stated previously, the purpose of the proposed procedure

is to simplify the transfer function shaping activity. At the

same time, this allows the synthesized controller K to re-

duce the plant sensitivity to uncertainties. This is done by

finding a pair of scaling matrices that minimize the condi-

tion number of the system over all the possible scalings.

The procedure is described in detail for the case of a square

2×2 plant, but with the aid of the succeeding remarks it can

be easily extended to square plants of higher order or even

to non-square plants.

1. The first step consists in the selection of a design fre-

quency ωd, typically at the desired crossover, and in

the evaluation of Λ(G(ωd)), that is the RGA of G at

that frequency.

2. For a 2 × 2 matrix, the minimized condition number is

given by[9]

γ�(G) = ‖Λ‖i1 +
√

‖Λ‖2i1 − 1 (5)

where ‖Λ‖i1 = max j(
∑

i |λi j|) is the induced 1-norm

of the RGA-matrix of G. Therefore, the designer can

easily determine the minimized condition number of

G(ωd).

3. Define

H �
[

0 G−1

G 0

]

(6)

Since it has been proven[10] that

√
γ�(G) = min

DI ,DO
σ(DHD−1) (7)

with D = diag{D−1
I ,DO}, the matter reduces to a min-

imization problem. In fact, by comparing 5 and 7 one

concludes that, once evaluated γ� with Eq. 5, it is

sufficient to determine the elements of the scaling ma-

trices DI and DO that simultaneously satisfy

(
√
γ�(G(ωd)) − σ(DH(ωd)D−1))2 ≤ ε2 (8)

with ε as small as required. The minimization prob-

lem stated in 8 can be solved using standard software.

If necessary, one can impose some constraints on the

function to be minimized, for example to ensure that

the actuators will not exceed their actual capabilities.

This causes the minimized or optimal condition num-

ber not to be recovered by the resulting scaling matri-

ces, however a sub-optimal solution compatible with

actuators requirements is found. The Matlab fmincon
algorithm allows one to find the minimum of a con-

strained nonlinear multi-variable function.

4. The scaled plant G� is now determined by

G� = DO G DI (9)

Because the optimization has been performed, by

choice, at the desired crossover frequency, the singular

values of G� are guaranteed to be as aligned as pos-

sible in the bandwidth region. This result is achieved

before the shaping activity and no further align ma-

trix is then required (unless the selected weights W1

and W2 contain terms that heavily modify the slopes

of the singular values, see below). Because G� will

be as well conditioned as possible, its robustness will

be improved. This is particularly useful if the origi-

nal G is ill-conditioned and presents control problems

(it is however required that G has a sufficiently small

minimized condition number).

5. It is now useful to reorder the rows and the columns in

G�, thus rearranging inputs and outputs, to make the

plant as diagonally dominant as possible. To do this, as

suggested in Ref. [6], the RGA-number is useful. This

procedure makes the design of the weighting functions

easier, because it often allows one to choose diagonal

pre- and post-compensators. If the smallest achievable

RGA-number is too large, non-diagonal weights can

however be determined through existing procedures,

as that discussed in Ref. [11].

This approach, rigorous for 2× 2 matrices, can be extended

to square plants of order m×m by simply substituting Eq. 5

with

‖Λ(G)‖m − 1

γ�(G)
≤ γ�(G) ≤ ‖Λ(G)‖sum + k(m) (10)

where k(m) is a constant (k(2) = 0, ‖Λ‖m =

2 max{‖Λ‖i1, ‖Λ‖i∞}, where ‖Λ‖i∞ = maxi(
∑

j |λi j|) is the

induced ∞-norm). The lower bound in 10 has been proved

in Ref. [12], while the second one has been conjectured for

m > 2:[12, 13] for example k(3) = 1 and k(4) = 2. The con-

cept of pseudo-inverse matrix, useful to determine the RGA
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and to evaluate H in Eq. 6, allows one to extend the proce-

dure to non-square plants.

The designer can now continue with the modeling of

the singular values, by selecting the elements of the pre-

compensator Wp that determine the dynamic shaping. Wp

will contain integral action to obtain high gains at low fre-

quencies, together with phase-advance to reduce the roll-off

rate to 20dB/decade in the crossover region and phase-lag,

if required, to increase the roll-off rate at high frequencies.

After that, a left-coprime factor stabilization on GS is per-

formed, K∞ is determined and the closed-loop is created.

Two important advantages arise from the procedure. First, it

can be completely automatized by using existing software:

the only work to be done by the designer is to choose an

adequate crossover frequency at step 1 and, if required af-

ter some trials, to tune the constraints to the function to be

minimized at step 3. Second, no align matrix Wa is required,

being the alignment of singular values at the bandwidth al-

ready performed by the scaling matrices. Nor Wg is neces-

sary, because the control against an excessive actuator us-

age is provided by the scaling matrices (recall that the con-

straints in the minimization process at step 3 are chosen in

such a way to take into account the actuators capabilities).

Moreover, unless it is required to prioritize some controlled

variables over others (this seldom happens), W2 can be set

as the identity matrix. Therefore, all the constant terms that

should be contained in the weighting matrices, result to be

already included in the scaling matrices. Such matrices can

be considered as parts of the pre- and post-compensators, or

W1 = DI Wp (11)

W2 = DO (12)

GS = DO G DI Wp (13)

Note that, as mentioned at step 4 of the procedure, it may

happens that the dynamic shaping of the singular values

lightly shifts their crossover frequency. In this case, the

procedure can be repeated after having selected a more ap-

propriate design frequency, otherwise singular values can

be simply moved by slightly modifying the terms of W2 or

by multiplying W1 by an adequate constant.

5 Case study
As a case study, we make use of a particular aircraft simula-

tion model, called ADMIRE (Aerodata Model in Research

Environment), and developed by the Swedish Defence Re-

search Agency. ADMIRE is a non-linear, six degree of

freedom simulation model of a rigid small fighter aircraft

with a delta-canard configuration. Available control effec-

tors are canards, leading edge flaps, elevons, rudder and

throttle setting. The software package, entirely realized in

Matlab/Simulink environment, contains routines suitable to

trim the non-linear model inside its flight envelope and to

obtain the corresponding linearized model. In this example

we consider a trim condition characterized by a Mach num-

ber M = 0.35 and a height h = 3000m. The plant is well

conditioned.

Our goal is to control both the flight velocity V and the pitch

attitude angle θ by use of canards and elevons as inputs. The

project requirements are given in terms of rise time: for both

the outputs it is required to reach 90% of the commanded

value in less than two seconds. At the same time it is desir-

able to obtain a good decoupling between the two channels.

The model is expressed in its state-space form and in the

control system design only the longitudinal states are con-

sidered (V, α, q, θ, h) along with the states of the actuators

(δc, δe).

The first task is the selection of an adequate bandwidth,

enough to meet the desired performance, but limited by the

speed of response of the actuators. The rise time require-

ment translates into a desired bandwidth of 4rad/s (to be

used as ωd) for both the loops.

A Matlab routine implementing the proposed design proce-

dure evaluates the minimized condition number at 4rad/s
(the result is γ�(ωd) = 1.39) and computes the input and

output scaling matrices that approximate it with a tolerance

ε = 10−6.

The minimization process at step 3 of the procedure is ob-

tained by taking into account suitable constraints for both

the inputs and the outputs. For the inputs, a maximum

allowed deflection of 25deg for both canards and elevons

has been imposed, while one unit of maximum admissible

cross-coupling has been imposed on the outputs.

Figure 2 shows the original condition number of plant G
(dotted line), the minimized condition number (dashed line)

and the scaled system G� condition number (solid line) as

a function of frequency. Figure 3 shows the singular values

Fig. 2: Comparison between γ(G), γ�(G) and γ(G�)

of both G (dashed line) and G� (solid line), before the dy-

namic weighting procedure. Note that the singular values

of G� are aligned in the crossover region.

The matrix Wp is chosen to obtain high gains at low fre-

quencies, along with a reduction of roll-off rates in the

crossover region and an increase of roll-off rates for higher
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Fig. 3: Singular values of G and G�

frequencies. The choice is

Wp =

[ s+0.5
s 0

0 s+1
s

]

(14)

Figure 4 shows a comparison between the singular values of

G� and that of GS , obtained after the dynamic shaping. Re-

call that Wa and Wg are not required and W2 is the identity

matrix.

Fig. 4: Singular values of G� and GS

A left-coprime factor stabilization on GS is performed and

K∞ is found using the Matlab function ncfsyn. The result-

ing K∞ is compatible with the singular values of the shaped

plant with a stability margin of 33%.

The closed-loop plant is verified by analyzing its response

to step commands. Figures 5 and 6 show the step responses

for commands applied respectively to V� and to θ�. The

requirements in terms of rise time are satisfied in both cases

and an adequate decoupling between the two channels is

obtained.

Fig. 5: Step response - command applied to V�

Fig. 6: Step response - command applied to θ�

The actuator deflections corresponding to step commands

of V� and θ� are shown in Figures 7 and 8.

6 Conclusions
The proposed procedure simplifies the controller synthesis

procedure by realizing an alignment of the singular values

of the plant at the desired bandwidth before the choice of the

weighting matrices. All the constant terms in such matrices

are determined before the shaping and no further alignment

is then required. This is particularly useful for plants char-

acterized by a large original condition number or that ex-

perience ill-conditioning after traditional scaling methods

(provided that they have a small minimized condition num-

ber). In fact, in this latter case the alignment of singular

values at the crossover can be very difficult, especially after

the shaping activity. Moreover, a condition number close

to the minimized one can be recovered, especially in the
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Fig. 7: Actuator deflections corresponding to a step com-

mand applied to V�
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Fig. 8: Actuator deflections corresponding to a step com-

mand applied to θ�

crossover region. This guarantees the plant to have a re-

duced sensitivity to model uncertainties.
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