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ABSTRACT 

This work is part of the research developed at the 

Department of Aerospace Engineering of the University 

of Pisa, concerning the definition of models and methods 

for the air data integration in the Flight Control System 

Fly-by-Wire of the aircraft  Aermacchi M346.  

The air data system, through dedicated computational 

procedures, determinates flight parameters (static 

pressure, Mach number, angles of attack and sideslip) 

from measurements of local pressure and local flow 

angles, provided by a proper set of probes, installed on 

the aircraft fuselage.  

This work illustrates a procedure for the computation of 

the angles of attack and sideslip, based on Back 

Propagation neural networks. Such an approach is 

demonstrated to be an interesting alternative to the 

algorithms based on polynomial calibration functions. 

An optimization process on neural parameters (neurons 

number, iterations number, training algorithms, …) has 

been carried out in order to define a neural architecture 

able to assure an adequate level of performance, 

according to the requirements of the modern Flight 

Control System. The used aerodynamic database has 

been carried out from the wind tunnel tests performed on 

a scaled model of the Alenia Aermacchi M346. In 

addition, a performance analysis has been developed 

both in full-operative condition and in presence of one or 

more probes in failure. 

1. INTRODUCTION 

The application of the artificial intelligence techniques to 

elaborate the air data parameters is described in this 

work. Previous works [1] have had the function of 

evaluating the feasibility of the neural approach to the 

static pressure and Mach number computation as an 

alternative to the classical approach [2]. 

The present work describes a study on elaboration 

algorithm constituted by several neural networks, able to 

substitute calibration polynomial functions in the angles 

of attack and sideslip reconstruction. The networks have 

been only used in the computational process of the 

aerodynamic angles while the algorithms able to manage 

the redundancies and identify the possible failures are the 

same used in [3].  

Artificial Neural Networks (ANNs) are brain-style 

computational models, able to simulate the behaviour of 

a real system, composed of processing elements called 

nodes, with each node having several input branches but 

only one output branch as showed in FIG. 1. An ANN is 

usually composed of many nonlinear computational 

elements. They operate in parallel to simulate the 

function of a human brain. Hence, an ANN is 

characterized by the topology, activation function and 

learning rules. The topology is the architecture of how 

neurons are connected, the activation function is the 

characteristics of each neuron and the learning rule is the 

strategy for learning. 

FIG. 1: Single processing element 

In particular, each input connection to a node has a 

weight associated. The input values are multiplied by the 

associated weights and summed together with a node 

bias value.  

An activation function then acts on the summed value 

producing the output value for the node.  

An artificial network is constituted of several layers of 

nodes where the first layer typically has as many nodes 

as input variables.  

Despite not necessary, the same transfer function is 

applied to the neurons that belong to the same layer. 

Various transfer functions are available, as showed in 

FIG. 2.  

The FIG. 3 shows the organization of a neural network in 

two layers. This architecture is called Multi-Layer 

Perceptron (MLP) and it is the most used one, [4]. The 

number of hidden or output layers is application 

dependent.  

The neuron’s behaviour depends on its transfer function 

and on the balanced connections through which 

information are transferred. Neurons are very often fully 

interconnected with each other. 
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FIG. 2: Examples of transfer functions 

In literature, it is possible to find methodologies called 

pruning or surgerying, [4] that can be used to cut some 

connections in order to improve performance, decreasing 

computational cost.  

FIG. 3: Example of a Multi-Layer Perceptron, MLP 

An ANN learns by adjusting the values of its weights 

through a training process. The training process consists 

of giving the neural network sample input-output data 

pairs and letting the neural network algorithm adjust the 

weights until it can produce the correct output for each 

input. This procedure is called supervised learning.  

Back Propagation is one method of self-correction. 

During this process, input is applied to the first layer of a 

neural network and propagated through until an output is 

generated at the last layer of the neural network. The 

output obtained through forward propagation is then 

compared with the desired output to generate an error 

signal. The error is then distributed back to the nodes of 

the previous layer according to their contribution to the 

error. This process is repeated for all the layers, updating  

the weights. The neural network is iteratively trained 

with several input-output vector sets until it has all the 

training data encoded into it. It is important to note that 

the trained networks will perform only as well as the 

training data allows. For this reason, care should be taken 

in selecting the set of training vectors.  

For an unsupervised learning rule, the training set 

consists of input training vectors only. The training 

process ends when comparable input vectors activate the 

same output (cluster). 

It is possible to find several training algorithms 

characterized by different steps and research directions. 

In this paper the Levenberg-Marquardt supervised 

training algorithm, normally applied in the modern 

engineering, has been used. 

2. ANGLES OF ATTACK AND SIDESLIP 
RECONSTRUCTION 

The air data system studied in this paper is composed by 

four self-aligning air data probes named Integrated Multi 

Function Probe of Avionics Specialties, Inc. installed on 

the fuselage of the Alenia Aermacchi M346.  

Each probe provides three outputs: the local flow angle i

measured by a rotary transducer (where subscript i

=1,…,4 refers to the probe number); the frontal pressure 

Pfront i (“like total” pressure) provided by the frontal slot 

aligned with the local flow direction and the slot pressure 

Pslot i (“like static” pressure). The latter is obtained as the 
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average of the pressures measured by the two slots at 90° 

from the local flow direction.  

The networks relevant to the estimation of angle of attack 

and sideslip have two hidden layers of neurons and an 

output layer of a single neuron or of two neurons. 

The neural networks have been trained on data set 

(training set) by means of the Bayesian Regularization 

and Early Stopping methods. The neural networks are 

excellent tools for interpolating a given set of data, if the 

training process uses subset points which properly 

represent the entire operating domain. Therefore, it is 

very important that training subset include an opportune 

number of points belonging to the border of the flight 

envelope. 

The input signals are very important for the application 

of the neural networks to the estimation of the angles of 

attack and sideslip. Considering the mathematical model 

developed in [2], the following dependencies can be 

assumed: 

(1) 

(2) 

(3) 

where Cpfront i e Cpslot i are the frontal and slot pressure 

coefficients of the i–th probe. 

In the hypothesis the Mach number is known,(provided 

by an independent computation) and for assigned angular 

rate  and aircraft configuration Config, by eq. (1) 

referred to angles measured by two generic probes (i-th 

and j-th probe) is possible to estimate the angles of attack 

and sideslip by means of the determination of the inverse 

function: 

(4) 

(5) 

In this paper, we refer to a condition of rectilinear motion 

and fixed aircraft configuration named Cruise (with 

aerodynamic control surfaces frozen, landing gear 

retracted, absence of external stores and not taking into 

account the airflow through the engine). 

For this reason we neglect the  and Config parameters 

and the eq. (4) and (5) allow the calculation of one 

estimate of the angles of attack and sideslip, known the 

Mach number M . This latter depends highly on the 

pressure ratios Pfront / Pslot of the each probe. For this 

reason the Mach number information can be provide by 

the pressure ratios Pfront / Pslot obtained by the probe 

measurements. In addition, it is worth noting that such 

pressure ratios are not much sensitive to the angles of 

attack and sideslip varying. 

The six possible couples ( i, j) allow six different 

couples ( ij, ij) to be estimated, consequently it is 

possible to obtain six neural networks for estimation 

and six for  estimation. 

Three configurations of neural networks, with different 

input signals, have been considered. To identify the 

generic neural network, the wording “NN” is followed by 

the subscript word, related to the input signal, and apex 

word, related to the output signals. For example, 

subscript “L1L2M ” points out that neural network 

inputs are 1, 2 and the Mach number M , while apex 

“AoA,AoS” points out that neural network outputs are 

the angles of attack and sideslip. 

The considered architecture are: 

Six neural networks 
AoA

LiLjMNN  and six neural 

networks 
AoS

LiLjMNN  at single output and six 

neural networks 
AoSAoA

LiLjMNN ,
 at double output. 

Such networks have the angle measurements of 

two generic probes ( i, J) and the asymptotic 

Mach number M  (evaluated by an independent 

computation process) as input signals; 

Six neural networks 
AoA

LiLjPiPjNN  and six neural 

networks 
AoS

LiLjPiPjNN  at single output and six 

neural networks 
AoSAoA

LiLjPiPjNN ,
 at double output.

Such networks have the angle measurements of 

two generic probes ( i, J) and the pressure 

ratios Pfronti / Psloti and Pfrontj / Pslotj concerning to 

the generic couple of probes (i, j);

 Six neural networks 
AoA

LiLjPvotNN  and six neural 

networks 
AoS

LiLjPvotNN  at single output and six 

neural networks 
AoSAoA

LiLjPvotNN ,
 at double output. 

Such networks have the angle measurements of 

two generic probes ( i, J) and the voted 

pressure ratio (Pfront / Pslot)vot obtained  from the 

four pressure ratios Pfront i / Pslot i.

The neural network predicted values have been processed 

by the voting algorithms described in [3] which provide a 

consolidated single value for   and . The voted values 

are necessary to the other computational units and 

functions of the Flight Control System. 

The networks relevant to the third typology have as input 

the pressure ratio (Pfront / Pslot)vot which changes 

depending on the number of the pressure failures.  

full-operative condition: (Pfront / Pslot)vot is the 

average of the two middle values between the 

four ordered (Pfront / Pslot) i values; 

one pressure failure: (Pfront / Pslot)vot is the 

middle of the three remaining ordered values; 
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two pressure failures: (Pfront / Pslot)vot is the 

average of the remaining estimates relevant to 

the probes not in failure. 

For example, the voted pressure ratio is plotted in FIG. 4 

as a function of both  and  for various Mach number 

values. 

All the developed networks have three layers of neurons 

(FIG. 5), two hidden layer of 20 neurons each with a 

sigmoid activation function and an output layer (single 

neuron for the networks at single output and two neurons 

for the networks at double output).  

FIG. 4: Voted pressure ratio vs ,  and Mach 

FIG. 5: Neural architectures with single and double output 

3. NETWORK TRAINING PROCESS WITH WIND 
TUNNEL DATABASE 

The neural networks illustrated in the previous section 

have been trained by using the wind tunnel database 

relevant to the new jet trainer Alenia Aermacchi M346. 

Such data points coincide with those used to tune the 

coefficients of the polynomial functions [2].  

Training, validation and test data set have been 

determined by the random extraction of points from the 

data set. 

The neural networks are excellent tools for the 

interpolation of a given set of data but not for its 

extrapolation. Therefore, it is necessary to use in the 

training process subset points which properly represent 

the entire operating domain.  

input

I hidden layer

10 neurons

output layer

2 neurons

II hidden layer

10 neurons

input

I hidden layer
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The used technique [5] for searching of the training 

points consists in dividing all the data set into equal 

three-dimensional bins ( , , M ). The random 

extraction from the bins of the 3400 points has given the 

best results. The original database must also be used to 

provide a complementary test set (and validation set) to 

measure the network ability in the generalization of 

different data from those of the training set. No border 

point is contained in the validation set even if it is 

constructed like the training one. The testing set includes 

all that points not belonged to the previous training and 

validation set. The 3400 random points, uniformly 

distributed into the domain of interest, have been divided 

in the following subset: 900 points for training set, 500 

points for validation set and 2000 point for test set.  

The examined data points refers to different asymptotic 

flow conditions characterized by the following Mach 

number, angle of attack and sideslip ranges: 0.2 < M  < 

0.8, -15 < < 30 deg, and -20 < < 20 deg. 

FIG. 6, graphing the Mach number as a function of the 

angles of attack and sideslip , shows the training, 

validation and test points.  

Both the Early Stopping and the Bayesian Regularization 

(training and validation into unique data set) algorithms 

have been used for the training process. Comparing the 

two algorithms, the Bayesian Regularization training 

process has been found to work better because it has 

guaranteed an overall lower level of error than the Early 

Stopping method. 

FIG. 6: Training, validation and testing data points 

4. NETWORK’S BEHAVIOUR IN FAILURE 
CONDITION 

Once the neural networks performance has been verified 

in full operative condition, a robustness analysis of 

networks performance was carried out when local angles 

or pressure failures occur.  

Notice that, for all the considered neural networks, the 

effect of a local angle failure is to disable those networks 

which have it as input signal.  

From the above, it is obvious that, if two angle 

measurements fail, only one couple of angles ( i, J) is 

available. Consequently, one neural network can be used 

and only one couple of the angles of attack and sideslip 

can be predicted. However, in this case it is not possible 

to accept such solutions because they cannot be 

monitored.  

The details of correlation between local angles failures 

and available neural networks are specified in TAB. 1. 

Notice that all types of neural networks configurations 

are similarly affected by the local angles failures, while 

545



the same cannot be said for the pressure failures. The 

neural networks ( AoA

LiLjPiPjNN , AoS

LiLjPiPjNN , ecc.) which have as 

input the pressure ratio Pfront / Pslot of the generic couple 

of probes are inhibited when a pressure failure occurs. 

One pressure failure disables six neural networks with a 

single output (three for and three for ) and three 

networks with double output. In the presence of double 

pressure failure, only two networks with single output 

(one for and one for ) and only one network with 

double output is available.

AoA

LiLjMNN

AoS

LiLjMNN

AoSAoA

LiLjMNN ,
AoA

LiLjPiPjNN

AoS

LiLjPiPjNN

AoSAoA

LiLjPiPjNN ,
AoA

LiLjPvotNN

AoS

LiLjPvotNN

AoSAoA

LiLjPvotNN ,

No failure 12 (6+6) 6 12 (6+6) 6 12 (6+6) 6 

One angle failure 6 (3+3) 3 6 (3+3) 3 6 (3+3) 3 

Two angle failures 2 (1+1) 1 2 (1+1) 1 2 (1+1) 1 

TAB. 1: Number of available neural networks correlated to local angles in failure 

Concerning the neural network using as input the voted 

pressure ratio (Pfront / Pslot)vot, note that no neural network 

is disabled when a failure pressure occurs. However the 

pressure failure influences the neural network estimate 

values of the angles of attack and sideslip. In fact as 

noted earlier, (Pfront / Pslot)vot value changes depending on 

the number of the pressure ratios that are available. 

The neural networks have been trained in full operative 

condition (all four pressure available), so when pressure 

failures occur, (Pfront / Pslot)vot value changes and 

degraded accuracy outputs have to be expected.  

A lower accuracy also characterizes the neural networks 

AoA

LiLjMNN , AoS

LiLjMNN and AoSAoA

LiLjMNN , when the pressure 

measurement failures occur. In fact, such event causes an 

higher error on the Mach estimate provided by an 

independent computation algorithm (i.e. polynomial 

functions or neural networks) depending from pressure 

measurements (see [1], [2]) 

5. RESULTS 

All the neural networks, trained on the wind tunnel 

database, with the methodology described in the previous 

paragraphs, have given good results. Notice that the 

errors of the neural networks relevant to the estimation of 

the angle of attack and sideslip are on the order of 10
-2

deg for the average absolute errors (standard deviation 

has the same order) and are on the order of 10
-1

 deg for 

the maximum absolute error. These performances are 

achieved on both full operative system condition and 

when one or more failures occur. For these reasons, it 

can be observed that the choice of the input correlated to 

the pressure measurements (asymptotic Mach number, 

pressure ratios Pfront / Pslot of generic couples of probes or 

voted pressure ratio) does not significantly affect the 

prediction accuracy on estimation of angle of attack and 

sideslip.

The neural networks which have as input the voted 

pressure ratio (Pfront / Pslot)vot are to be preferred because 

they are not affected by other source errors coming from 

different estimation algorithms (estimation of Mach 

number) and no network is disabled in failure condition. 

By comparing the different neural networks developed, 

the analysis of accuracy points out that the architecture 

with a double output has the advantage that allows 

analogous performance respect to the single output 

architecture, at lower number of coefficients to be stored.  

FIG. 7 shows a comparison between the angles of attack 

and sideslip provided by neural networks AoSAoA

LiLjPvotNN , and 

the nominal values referred to a full operative condition, 

to one and two pressure failures. Notice that the 

estimates refer to voted values provided by voting 

algorithms illustrated in [3], which provide a 

consolidated value for angle of attack and angle of 

sideslip on the basis of the six neural networks. Every 

point in the figure represents the average of the estimates 

obtained by the neural networks for the following Mach 

number values: 0.2, 0.3, 0.4, 0.5 ,0.7 and 0.8.

Failures
number 

Network 
configurations
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FIG. 7: Predicted and nominal values of angles of attack and sideslip in several operative conditions 

CONCLUSION 

The feasibility of the neural approach has been evaluated 

for the computation of the angles of attack and sideslip, 

as alternative to the classic algorithms. Such an approach 

is demonstrated to be an interesting alternative to the 

algorithms based on polynomial calibration functions [1] 

for the computation of the Mach number and static 

pressure. 

Several neural architectures have been considered, 

characterized by a different input and output number. All 

the neural networks have been trained on the wind tunnel 

database performed on the model of the Alenia 

Aermacchi M346. Such database has also been used to 

tune the polynomial calibration functions [2]. Each 

architecture has showed a good performance both in full-

operative condition and in presence of one or more 

probes in failure. 

A peculiar feature of the neural networks to be 

considered is that they show dramatic advantages in 

terms of time to be spent to tune the system in the 

presence of the new data (coming either from flight tests 

or from modifications of the aircraft configuration). 

Concerning the manoeuvres with high angles of attack, 

the asymptotic parameters are connected to the local 

measurements through complex functions. The use of a 

classic approach can result complex because it would 

need a high number of polynomial functions which can 

to be difficult to manage. In the case of neural networks, 

the only increase of neurons number is sufficient as often 

as not, without to reconfigure the neural architecture. 
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