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Abstract. The aim of ongoing studies is to build a simu-
lation model of the aeronautical VHF voice radio channel
based on an analysis of previous measurements. A linear fil-
ter model is used to characterize the relation between mea-
sured input and output signals of a voice radio channel. Six
well-established methods to estimate the channel impulse re-
sponse are compared in terms of their accuracy and noise ro-
bustness. Deconvolution, discrete Fourier transform (DFT),
least squares estimation and cross-correlation for different
kinds of input signals are used for the estimations. Least
squares estimation shows advantages over the other methods
and is the only method feasible for all regarded scenarios.
Particularly deconvolution fails to derive reliable estimates
in the presence of noise. Using longer sequences shows su-
perior performance for estimating noise, but the length is
always limited by the assumed time-invariance within a seg-
ment. Estimating more filter parameters is more accurate
only for a noiseless channel and always a tradeoff with the
desired model.
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1. INTRODUCTION

It is expected that analogue amplitude modulated radio will
be applied in air traffic control (ATC) well beyond 2020.
Current efforts in this field aim to embed inaudible digital
data into the classical voice transmission, in order to enhance
efficiency and flight safety [1]. In such communication sys-
tems the quality of the transmission channel has a strong in-
fluence.

This paper is related to an audio channel model using lin-
ear filters as system description. Different methods to es-
timate unknown impulse responses (IR), only knowing the
sent and received audio signals, are compared. The objective
is to prepare procedures to be applied in the analysis of the
TUG-EEC-Channels Database [2], which provides record-
ings of audio signals transmitted with an aeronautical voice
radio during measurement flights. The channel is consid-
ered to be time-invariant for short periods of time, where the

conditions are regarded as constant. The simplified linear
time-invariant (LTI) filter model (Figure 1) is characterized
by the filter’s impulse response h(n) or frequency response
H(ejω) respectively, the input signal x(n), the output signal
y(n) and additive white Gaussian noise (AWGN) sn(n).

FIG. 1: Filter model.

Section 2 provides a brief review of six different methods to
estimate impulse responses. In section 3 their accuracy is
compared.

2. ESTIMATION METHODS

The mathematical representation of linear digital filtering is
convolution (1). The aim of this work is to identify appro-
priate filter parameters h(n), given x(n) and
(1)

y(n) = sn(n)+x(n)∗h(n) = sn(n)+

∞∑

m=−∞

x(m)h(n−m).

2.1 Deconvolution

Deconvolution is the inversion of convolution or filtering re-
spectively. The algorithm used in the tests is based on filter-
ing an impulse function δ(n) by a filter which has y(n) as
numerator coefficient vector and x(n) as denominator coef-
ficient vector using a direct form II transposed implementa-
tion of the standard difference equation [3]. We assume that
the support of h(n) is limited to p = 0...P − 1. To estimate
the filter’s impulse response the procedure is equivalent to

(2) ĥ(p) =
1

x(0)

(
y(p) −

p∑

m=1

x(m)ĥ(p − m)

)
.

Thus, the first element of the input vector x must be non-zero
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for this method.

2.2 Spectral Division

The impulse response h(n) of a linear filter can be estimated
by an inverse discrete Fourier transformation (DFT) of the
frequency response H(k) [3], which results from a division
of the output spectrum by the input spectrum.

(3)
Time domain Frequency domain

y(n) = x(n) ∗ h(n) � � Y (k) = X(k)H(k)

Using this theorem, a cyclic convolution1 of x(n) and h(n)
is inherently assumed.

2.3 Power Spectral Densities
Another way to use the DFT is to calculate the power spec-
tral densities (PSD) based on correlation functions. A di-
vision in frequency domain again reveals the frequency re-
sponse [4]:
(4)

Time domain Frequency domain
Rxy(n) = Rxx(n) ∗ h(n) � � Gxy(k) = Gxx(k)H(k),

whereas Rxx is the auto-correlation of the input signal and
Rxy the cross-correlation between input and output. The cor-
responding PSD is Gxx and the cross-PSD is Gxy [3, 5].

2.4 Least Squares

The method of least squares selects estimates which min-
imize the sum of squared deviations between points gener-
ated by a function and corresponding points in the data [6, 7].
A matrix description is used to show the principle. Certain
assumptions for ĥ(p), x(n), y(n) and the Toeplitz structured
convolution matrix X apply [8]. The estimate is given by the
solution of the normal equation

(5) ĥ = (XT
X)−1

X
Ty.

The principle is implemented by two different windowing
methods [9]. The covariance method requires
(6)

Xcv =





x(P − 1) · · · x(1) x(0)
x(P ) · · · x(2) x(1)

...
. . .

...
...

x(N − 1) · · · x(N − P + 1) x(N − P )





and

(7) ycv =





y(P−1

2
)

y(1 + P−1

2
)

...
y(N − 1 − P−1

2
)



 .

Thus, N ≥ 2P − 1 samples are required to provide a mean-
ingful estimate for P filter parameters, whereas P is as-
sumed to be an odd number.

1Also circular or periodic convolution.

For the auto-correlation method the entire convolution ma-
trix
(8)

Xac =





x(0) 0 · · · 0
x(1) x(0) · · · 0

...
...

. . .
...

x(N − 1) x(N − 2) · · · x(N − P )
0 x(N − 1) · · · x(N − P + 1)
...

...
...

...
0 0 · · · x(N − 1)





is used. This implies that all values outside the observation
window (n < 0 and n > N − 1) are considered to be zero.
The same applies for the output

(9) yac =





...
0

y(0)
y(1)

...
y(N − 1)

0
...





,

symmetrically zero-padded to a vector of length N + P − 1.

2.5 Maximum Length Sequences

Maximum length sequences (MLS) are widely used as input
signals to obtain the impulse response of linear systems [10,
11, 12]. One of the fundamental properties of MLS is that
their auto-correlation is essentially an impulse δ(n). Hence,
applied to a linear system, the result of the cross-correlation
of input and output according to (4) is basically the impulse
response.

(10) ĥ(p) = δ(p) ∗ h(p) ≈ Rxx(p) ∗ h(p) = Rxy(p)

The approximation is only valid for long sequences. To
avoid the error induced with the assumption mentioned
above, the following correction applies, assuming less filter
parameters P than MLS-samples L [11]:

(11) ĥ(p) =
1

L + 1

(
Rxy(p) +

P−1∑

m=0

ĥ(m)

)
.

3. COMPARISON OF THE METHODS

The accuracy of the above methods to estimate impulse re-
sponses is compared. Either N=214 samples of an arbitrar-
ily selected audio signal2 or of a repeated maximum length

2The audio file used in the examples is a recorded sound of a bee (16
Bit, PCM, Mono, 22.05 kHz). Thus it is not a periodic signal but still shows
some repetitive structure.
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sequence3 are used as input signals for a predesigned test-
filter (lowpass, finite impulse response (FIR), order=60, cut-
off frequency fc=4.41kHz, sample frequency fs=22.05kHz).
Estimation results are observed with and without letting the
output y be affected by the noise sn (SNR=10dB), whereas

(12) SNR = 20 log10

(
(x ∗ h)RMS

sn, RMS

)
dB.

The index RMS indicates the root mean square value of the
corresponding signal.

Table 1 shows the notation for the estimation methods, which
are in the following compared.

Description Label Reference

Actual impulse response h predefined
test-filter

Deconvolution ĥDeconv 2.1 (2)
Spectral division ĥDFT 2.2 (3)

Power spectral densities ĥPSD 2.3 (4)
Least squares, ĥLS 2.4 (5)

covariance method
MLS ĥRxy 2.5 (10)

MLS with correction ĥRxy corr. 2.5 (11)

TAB. 1: Estimation methods.

3.1 Audio Signal without Noise

Applying the audio signal without noise corruption of the
output, all methods provide almost identical results, as
shown in Figure 2 (a). Figure 2 (b) shows the absolute error
between each estimate ĥ(p) and the reference h(p). Only an
error for the deconvolution method is visible, even though
within a range of 3 · 10−9 and therefore negligible. All other
methods give perfect estimation.

3.2 Audio Signal and Noise

In the presence of noise the deconvolution method fails to
estimate the filter’s impulse response. It is therefore omitted
in the related plots. The least squares method provides the
most accurate result (Figure 3).

3.3 MLS without Noise

For the MLS without noise in the output, Figure 4 (a) again
shows the original impulse response and the obtained esti-
mates. The uncorrected cross-correlation method reveals a
significant deviation from the other methods. The occurring
error approximately looks like the impulse response itself
(Figure 4 (b)), which can be explained by (11). All other
methods provide almost identical estimates.

3.4 MLS and Noise

The deconvolution method, the DFT method and the PSD
3Length L=63 samples.
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ĥ
(p

)∣ ∣ ∣

∣∣∣h− ĥDeconv
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FIG. 2: IR estimation without noise, audio input.

(a) IR estimation

0 10 20 30 40 50 60
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

sample index p

h
(p

),
ĥ
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FIG. 3: IR estimation with noise, audio input.
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(a) IR estimation
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FIG. 4: IR estimation without noise, MLS input.
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FIG. 5: IR estimation with noise, MLS input.

method do not provide reasonable estimates and are there-
fore omitted in the related Figure 5. The plots reveal that in
the presence of noise the least squares method performs even
better than using the MLS specific properties for the estima-
tion. The correction for the cross-correlation method shows
no significant improvement but in fact partially increases the
estimation error.

3.5 Comparison in Terms of Estimation Error

As before, the six different methods are compared for the
two different input signals. Estimations with the noise cor-
rupted output and those without noise influence are con-
trasted in Table 2. The error measure used is defined by

(13) ey(n) = ȳ(n) − ŷ(n) = x(n) ∗ h(n) − x(n) ∗ ĥ(n)

and the ratio

(14) Ey = 20 log10

(
ey, RMS

yRMS

)
dB.

Method Audio Audio MLS MLS
+ +

Noise Noise

Deconv -165 198 -195 171
DFT -307 -16 -68 231
PSD -249 -21 -179 8
LS -294 -34 -279 -34
Rxy n/a n/a -27 -9.7

Rxy corr. n/a n/a -307 -10

TAB. 2: Estimation error to output ratio Ey in dB.

4. ANALYSIS OF ESTIMATION
PARAMETERS

Additional influences on the estimations are discussed. The
same definitions as made in the last section regarding the
filter, the audio signal and the noise apply.

4.1 Signals of Different Lengths

In previous observations the complete sequence x and the
corresponding output sequence y obtained by convolution
were considered to demonstrate the methods. Now the in-
fluence of performing an estimation with sections of length
N cut from those signals is discussed. Figure 6 (a) shows
the accuracy of the estimation in terms of the error measure
as defined in (14). No noise sn is added, only the influence
of the signal length is evaluated. Estimations with the co-
variance method (6, 7) and the auto-correlation method (8,
9) are compared. The covariance method is plotted starting
with P samples. This means that the matrix (6) still contains
input values from outside of the observation window, which
are assumed to be zero. The actual condition is only met for
N ≥ 2P − 1.
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(a) Ey , noiseless channel
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(b) Ey , noise corrupted channel
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FIG. 6: Estimation error to output ratio Ey considering dif-
ferent signal lengths N and two windowing methods.

Figure 6 (b) shows the same error measure Ey for a noise
corrupted channel (SNR=10dB).

4.2 Noise Estimation

Observing an interval longer than the impulse response gives
an opportunity to estimate the noise sn through averaging.
The least squares estimation error is considered as noise es-
timate

(15) ŝn(n) = y(n) − ŷ(n).

Similar to (13, 14), the estimation error of the noise is de-
fined by

(16) es(n) = sn(n) − ŝn(n)

and the ratio

(17) Es = 20 log10

(
es, RMS

sn, RMS

)
dB.

The longer the sequence length N is chosen, the more ac-
curate the actual white noise sn is estimated by ŝn, as illus-
trated in Figure 7.
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FIG. 7: Noise estimation error ratio Es for different obser-
vation lengths N .

4.3 Influence of Filter Order

For a real-world-system the length of the impulse response
is not known. In order to observe the impact of the assumed
filter length P̂ (ĥ(p), p=0...P̂−1), more and less filter param-
eters than the predefined FIR filter of order P actually has,
are estimated. Figure 8 (a) shows the error measure (14) for
(P̂−1) = 2...2(P−1). No noise sn is added. The whole au-
dio sequence with 214 samples is applied to the least squares
estimation, using the covariance method.

Figure 8 (b) shows the same error measure Ey for a noise
corrupted channel (SNR=10dB).

(a) Ey , noiseless channel
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(b) Ey , noise corrupted channel
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FIG. 8: Estimation error to output ratio Ey depending on the
assumed filter order (P̂ − 1).
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5. DISCUSSION AND CONCLUSION

Six different approaches to estimate channel impulse re-
sponses are compared. Audio signals and MLS are applied
to an LTI system. Estimations with a clean and a noise cor-
rupted output signal are performed.

The deconvolution method fails to provide reasonable esti-
mates in the presence of noise. The implementation only
uses as many input and output samples as estimated filter
parameters. Thus, no noise averaging effect can be used by
applying longer sequences.

The least squares estimation outperforms all other methods.
It is the only approach effectively working for each test case
and provides accurate results in every regarded scenario.
Hence for the analysis of three further estimation parameters
(signal length, noise and filter order) only the least squares
method is used.

Longer sequences lead to more accurate results when es-
timating the AWGN that corrupts the system output. The
covariance method lags a bit behind the auto-correlation
method, due to limited data available as a result of the win-
dowing.

To estimate the impulse response in the absence of noise
with least squares, the covariance method should be used
once the length condition allows. However, it is not ben-
eficial to exceed this criterion by much. Furthermore, the
length of the segment is limited due to the assumed time-
invariance of the channel within the segment and is therefore
always a trade-off. With insufficient sample availability, the
auto-correlation method provides an alternative windowing,
which still allows an estimation although with less accuracy.

Estimating half of the actual filter parameters already pro-
vides an estimation error to signal ratio of less than -30dB. It
is not reasonable to choose a longer impulse response once
the outer parts of the response are indistinguishable from
the channel noise or once the number of parameters exceeds
the actual filter length. Estimating more parameters means
that also more noise influence is reproduced in the estimate.
Moreover a model depending on as few parameters as possi-
ble is desirable.

The linear model using FIR filters is one possible model cho-
sen and all investigations in this work are based on this par-
ticular approach. To verify the applicability of this model the
coherence function (18) can be used to investigate the linear
dependency between the input and output.

Appendix A - Coherence

The coherence function (18) is defined using power spectral
densities (compare section 2.3).

(18) γ2

xy =
|Gxy|

2

GxxGyy

The signals x and y have to contain significant power con-
cerning the frequency band in order to obtain a meaningful
coherence value.
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