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OVERVIEW

The aeroelastic analysis system has been developed 

using the coupled techniques of computational fluid 

dynamics (CFD) and computational structural dynamics 

(CSD) in the present study. The analysis system is applied 

to the several aircraft models with structural and 

aerodynamic nonlinearities. The restoring force vector is 

considered in the equation of motion to perform the 

aeroelastic analysis with concentrated structural 

nonlinearity such as freeplay. The effects of control 

surface freeplay on the aeroelastic characteristics are 

investigated. For the aircraft model with high-aspect-ratio 

wing, the aeroelastic analysis is performed using the 

structural analysis based on large deflection beam theory. 

On the other hand, the transonic small disturbance (TSD) 

code is used for the nonlinear aerodynamic analysis in the 

transonic region. The nonlinear aeroelastic analysis using 

the TSD theory is performed for the full aircraft model 

including the body, main wings, horizontal tails, vertical fin, 

launchers and several control surfaces. 

1. INTRODUCTION 

The aircrafts always have aeroelastic problems in flight 

due to the aerodynamic forces. Aeroelasticity is the term 

concerned with the interacting phenomena between the 

elastic motions of structures and the resulting 

aerodynamic forces. In aeroelastic phenomena, there are 

many categories according to the physical features; flutter, 

divergence, gust responses, buffeting, limit cycle 

oscillations (LCO), etc. Even though all of these should be 

considered for aircraft design, flutter is the most 

dangerous problem because it can result in total structural 

failure in just a few seconds. Modern aircrafts are usually 

designed to cover a wide flight envelope, and they 

experience severe change in flow characteristics while 

they are passing through the transonic flow region. The 

flutter instability is usually aggravated in the transonic and 

low supersonic regions and it is closely related with the 

unstable movement of shock waves. Moreover, the fatigue 

induced by LCO of the air vehicles can reduce the 

operating range. LCO may occur due to the structural 

nonlinearity or the interaction between structures and 

nonlinear aerodynamic forces due to shock oscillation and 

flow separation in the transonic region. Thus, accurate 

prediction of aeroelastic characteristics such as flutter and 

LCO, is very important in the design state of aircraft, and 

the analysis using linear theories has limits for the 

accurate prediction of the aeroelastic phenomena. 

To perform the aeroelastic analysis in a transonic flow, 

CFD technique must be used to consider the moving 

shock. In particular, to analyze the nonlinearity in the flow 

field such as viscous effects, the Navier-Stokes equation 

with the turbulent model should be used to the aeroelastic 

analysis. However, it is difficult to use this theory for 3-

dimensional wings with a control surface [1]. The arbitrary 

elastic motion with flap rotation gives the mesh and 

guaranteeing numerical instability problems. Moreover, 

when an aeroelastic analysis for the local motion of the 

control surface is conducted in the transonic flow region, 

heavy computation time is generally required to determine 

the aeroelastic boundary. Owing to the aforementioned 

problems, an aeroelastic analysis using the TSD code can 

have a strong computational advantage in various 

parametric studies. The TSD equation is widely 

recognized as one of the most efficient theories among the 

conventional CFD-based approaches. In addition, the TSD 

code does not require an additional grid re-meshing 

process since it uses the changes of the wing airfoil slopes 

at each wall grid point to simulate arbitrary wing surface 

motions [2]. 

In the structural point of view, structural nonlinearity is 

classified into distributed and concentrated one. The 

distributed nonlinearity is spread out over the entire 

structure such as the material and geometrical 

nonlinearities while the concentrated nonlinearity is placed 

in the specific location. The freeplay, friction and 

hysteresis are included in concentrated nonlinearity. 

Especially, freeplay is inevitable in control surfaces 

because of normal wear of components and 

manufacturing mismatches. Nonlinear aeroelastic 

analyses of a wing with concentrated nonlinearities have 

been investigated by several researchers [3-7]. Aeroelastic 

analyses for a geometrical structural nonlinearity have 

been studied by using the rotor blade of helicopter since 

1970s. Generally, a blade is modeled by a beam to 

consider a large deformation. Aeroelastic analyses for a 

fixed-wing model have been performed for the high-

altitude, long-endurance (HALE) aircraft with long-span 

wing [8-11]. 

In the present study, the aeroelastic characteristics are 

investigated for several wing models with control surface 

freeplay and high-aspect-ratio, and the aeroelastic 

analysis considering the transonic aerodynamic 

nonlinearity is performed for the full aircraft model which 

has the body, main wings, horizontal tails, vertical fin, 

launchers and several control surfaces. 
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2. THEORITICAL BACKGROUND 

2.1. Nonlinear Aerodynamic Equation 

Although the Navier-Stokes equations are the most 

accurate, many flow features depend on a precise 

evaluation of the viscous and turbulent terms. If the 

thickness of a wing section is small and there is no 

boundary layer separation, the viscosity has a small effect 

on the flow fields. If the viscous terms are removed from 

Navier-Stokes equations, the equation becomes an Euler 

equation. Furthermore, if the flow around the aircraft wing 

is irrotational and the perturbation is small, the TSD 

(Transonic Small Disturbance) theory can be applied. The 

TSD equation written in a conservative form is given by 

(1) 0 31 2 0
f ff f

t x y z

where, 

2 2
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2 3
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1 ,  
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The above equations are given in a physical coordinate 

system, (x, y, z, t). is the disturbance velocity potential. 

The coefficients A, B, and E are defined as  

(2)
2 2 2,  2 ,  1A M B M E M

Several choices are available for the definitions of F, G

and H depending on how the TSD equation is derived. The 

coefficients are given as 

(3)

2 2

2
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1 ,  3 , 

2 2
1
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where M is the free stream Mach number and  is the ratio 

of specific heats. 

The TSD equation is solved using a time-accurate AF 

(Approximate Factorization) method. The AF algorithm 

consists of a Newton linearization procedure coupled with 

an internal iteration technique. The solution process 

involves two steps. Firstly, a time linearization step is 

performed to determine an estimate of the potential field. 

Secondly, internal iterations are performed to minimize 

linearization and factorization errors [12]. 

2.2. Aeroelastic Equation of Motion 

The aeroelastic equation of motion can be formulated by 

Hamilton principle for elastic models and is written in 

matrix form as follows: 

(4)
g g g gM q t C q t K q t F t

where {q(t)}
T
=[q(t)1, q(t)2, …, q(t)n] is the generalized 

displacement vector and [Mg], [Cg], and [Kg] express the 

generalized mass, damping, and stiffness matrices 

respectively. {Fg(t)} represents the generalized 

aerodynamic forces as follows: 

(5)
2 21

g 2 , , , r i pi S
F t U c h x y C x y t dS

where subscript ‘i’ indicates the influence mode and S
*
 is 

the non-dimensional plane area of wing. 1/2 U
2
cr

2
 is 

multiplied to make the dimensional force term because the 

inside of the integral is non-dimensional. In equations (4) 

and (5), symbol ‘t’ represents physical time, hence one 

must pay attention to the transition from non-dimensional 

time in the unsteady aerodynamics into physical time in 

the structural dynamics. The solution of equation (5) is 

obtained from the 2  2 Gauss numerical integration 

method. The structural damping ratio is generally assumed 

to be 0.005 - 0.02. 

Ordinary differential equations such as equation (4) can be 

reduced to the state vector forms for efficient numerical 

calculations and can be written as 

(6) x t A x t B y t

where, 
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A fifth-order Runge-Kutta method is used to solve the 

equation of motion. 

s-s

K

f

The equation of motion of an aeroelastic system with 

structural nonlinearities can be written as 

(7) , ,M u C u R u F t u u

where [M], [C], {u}, and {F} are mass matrix, damping 

matrix, displacement and external aerodynamic force 

vector, respectively. {R(u)} is the restoring force vector 

including structural nonlinearities. {R(u)} is expressed as 

(8) R u K u f

where [K] is the linear stiffness matrix, {f( )} is the 

restoring force vector due to structural nonlinear factors 

and is given as 

(9)

:

0 :

:

K s s

f s s

K s s

FIG 1. The resorting force due to structural nonlinearity. 

1638



where K , , and s are linear stiffness, flap angle and 

freeplay angle in FIG.1, respectively. 

Usually, the aeroelastic analysis is conducted by using a 

modal approach with limited number of low frequency 

modes to reduce the computational time. In general, the 

normal mode approach cannot be used directly due to 

stiffness variation for air vehicle wings with freeplay. To 

overcome this difficulty, the fictitious mass (FM) method is 

applied [13]. It is discussed the application procedure of 

the FM method to a wing with freeplay in Ref.7. After the 

modal matrix, [ b], is obtained from the fictitious mass 

model, the displacement vector can be expressed as 

(10)
bu t q t

where {q} is the generalized displacement vector. 

Transformation of equation (7) into the modal coordinate 

system gives the following equation 

(11)
g g ggM q t C q t R u F t

where {Rg} is the generalized restoring vector defined as 

[ b]
T
[K] [ b]{q} - [ b]{f( )}. The theoretical background 

and verification are discussed in Ref.7. 

To analyze a high-aspect-ratio wing structure using the 

large deflection beam theory, following assumptions are 

introduced: there is no deformation on the cross sectional 

plane. Hence, one-dimensional model is available along 

the beam axis. The beam can have initial curvature and 

twist. Initial curvature, however, is small like a practical 

wing. The strain level remains small even if a large 

deflection occurs. Then, the wing can be modeled as a 

cantilever beam. 

Consider the naturally curved and twisted beam as 

depicted in FIG.2. Assuming that initial curvatures are 

small and shearing strains are much smaller than unity in 

the Green-Lagrangian strain components, strain-

displacement relations are represented as those in Ref.14. 

The geometrical nonlinearities are described by coordinate 

transformation matrices using the Euler angles in the 

present large deflection beam theory. 

(12)
1 1

1 1 1

e t ( )e T( )i

T( ) t ( )t ( )
i e i i

e g

x x

x x x

where the triad ii is fixed in a reference frame that rotates 

at a constant angular velocity with respect to the inertia 

frame; the triad ei is attached to a reference line along the 

axis of the undeformed beam; and the triad ei  is 

attached to a reference line along the axis of the deformed 

beam. The transformation matrices te, tg, and T are 

functions of the curvilinear axial coordinate x1.

To calculate the strain in the curvilinear coordinate, Green-

Lagrange strain tensor is introduced. By the assumption of 

small initial curvature of the beam, high order terms in 

Green-Lagrange strain can be neglected. Thus, 

engineering strains are obtained as follows: 

(13)

11 11 3 2 2 3 1 22 2,2 33 3,3

12 12 3 1 1,2 2 23 2,3 3,2

13 13 2 1 1,3 3

ˆ ,   ,   

ˆ2 ,   ,  

ˆ2

i i i

e x x

e x

e x

K k

where x1, x2, and x3 are curvilinear coordinates. w1, w2,

and w3 are the general warping displacements of an 

arbitrary point on the cross section. The force strains, (ê11,

2ê12, 2ê13) and moment strains, ( 1, 2, 3) components 

are given in Ref.15. Herein, ( )  means the derivative with 

respect to x1 and ( )i means the derivatives with respect to 

xi, i = 2, 3. Through a quasi-linear approximation, the 

three-dimensional kinematics is divided two-dimensional 

cross-sectional analysis and the one-dimensional global 

analysis. 

The equation of motion can be obtained using the 

Hamilton’s principle as follows: 

(14)
1

2 1

0
mt

i i it
i

U T W dt

where Ui, Ti, and Wi are the variation of stain energy, 

the variation of kinetic energy, and the virtual work done by 

external forces. The nonlinear finite element equation of 

motion can be obtained in the matrix form, 

(15) 0AM q q P q P q

where M(q) and P(q) are the mass and the internal elastic 

force vector. PA(q) is external forces by aerodynamic 

forces. Newton-Raphson method combined with the line 

search method to improve convergence and reliability is 

applied.

3. VERIFICATION OF AEROELASTIC ANALYSIS 
SYSTEM

X

Y

0 0.5 1
0

0.5

1

The present aeroelastic analysis system using the TSD 

equation is verified with the flight test data of the F-16 wing 

model, which are obtained from Ref.16. The appendix in 

the reference presents three mode shape data (wing 

bending, torsion and forward wing torsion modes). Figure 

3 shows the TSD grid for the aerodynamic analysis. Each 

FIG 2. Geometry and coordinate systems before and 

after deformation.  

FIG 3. Aerodynamic grid for the F-16 main wing model. 
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aerodynamic grid of x and y direction is clustered on the 

near leading and trailing edge as well as the hinge part. 

The wing model has a shape of a NACA 64A204 airfoil. To 

derive the mode spline, the wing part should be divided 

into three parts; the wing, the control surface and the 

launcher. After obtaining the mode spline, the divided 

parts are re-united in the aerodynamic coordinate. Figure 

4 shows the splined mode shapes into the aerodynamic 

grid. From the first mode to the third mode, each mode 

shape is wing bending, torsion, and forward wing torion, 

respectively. 

(a) Wing bending 

(b) Torsion 

(c) Forward wing torsion 

Flutter

analysis 

Mode
Wing 

bending
Torsion 

Forward 

wing 

torsion

Freq. (Hz) 9.191 9.964 10.246 

DLM
[16]

Vf (KCAS) 745.2 . 442.4 

Ff (Hz) 9.37 . 10.17 

Flight 

test
[16]

Vf (KCAS) 585 . . 

Ff (Hz) 9.5 . . 

Present

Vf (KCAS) 628.2 . . 

Ff (Hz) 9.29 . . 

TAB 1. Comparisons of flutter velocity and frequency 

between experiment and analyses. 

The present aeroelastic analysis code using the TSD 

equation gives the accurate flutter velocity and frequency 

and the results are compared with the DLM results and the 

flight test data. The analysis and experimental results for 

the flutter velocity and frequency are arranged in TAB.1. 

The flutter speeds are expressed by the knots calibrated 

airspeed. The present aeroelastic result using the TSD 

equation shows the closer flutter speed to flight test than 

the DLM analysis result on the wing-bending mode [17]. 

4. RESULTS AND DISCUSSION 

4.1. Aeroelastic Analysis of Wing Model with 
Control Surface Freeplay 

The numerical nonlinear aeroelastic characteristics are 

investigated for the wing with control surface freeplay. The 

wing has a root chord length of 0.6396 m, a span length of 

0.6226 m. The hinge axis is located at 82 % chord section 

and 0.3571 m long as shown in FIG.5. For the wing 

section, 4 % biconvex airfoil is used. 

0.
62

26
 m

0.
37

51
 m

31
.9

 o

Hinge line
at x/C = 0.82

0.6396 m

Figure 6 shows the Limit Cycle Oscillations (LCO) 

amplitude ratio at the flow velocity of M = 0.70 and 0.95. 

Linear flutter speed means the flutter boundary of the 

linear structural model with zero freeplay angle. The 

freeplay angle, s of 0.125° and angle of attack of 0° are 

used for all cases. The initial disturbance is given by flap 

angle, 0 = 0.25°, defined as the angular displacement 

about the hinge axis with the rigid body rotation of the 

wing. The L is the flap angle at the hinge axis. From V = 

80 to 180 m/s, the LCO amplitude ratio is about one. It 

means that aeroelastic responses of flap angle are 

bounded to freeplay angle. As airflow velocity increases, 

the LCO amplitudes increase. At the airflow velocity of 

around 230 m/s, unstable response is initiated. At M = 

0.95, the LCO amplitude is slightly increased. Around the 

linear flutter velocity, the LCO amplitude is diverged. 

Figure 7 shows the phase plot at the end of the wing and 

flap trailing edge. In present study, phase plot is illustrated 

after the transient response. The square and circle 

symbols stand for the maximum flap and wing 

displacement, respectively. The phase differences can be 

referred to phase plot. Figure 7 demonstrate the phase 

plot at M = 0.7. At V = 160 m/s the displacement of the 

wing is larger than that of flap. Also, the vibrations of the 

wing and flap are in the same phase motion. At V = 200 

m/s, on the other hand, the entirely different phenomena 

happen comparing to V = 160 m/s. Such a dynamic 

response is similar to the onset of flutter. 

FIG 4. Aerodynamic grid for the F-16 main wing model. 

FIG 5. Geometrical configuration of the wing with control 

surface.  
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(b) M = 0.95 

(a) V = 160 m/s 

(b) V = 200 m/s 

Figure 8 shows comparisons of the LCO amplitudes for s = 

0.125° and 0.5°. Initial flap angle is 1.0° at all cases in the 

subsonic flow region, and the initiation velocities of the 

LCO are not changed. At the freeplay angle of 0.5°, the 

LCO amplitude is always larger than that of 0.125°. The 

flutter boundary of s = 0.5° is reduced about 10 % 

comparing with that of s = 0.125°. At M = 0.95 and s = 0.5° 

chaotic responses are observed at low velocity. For a 

higher freeplay angle, the LCO amplitude is higher. 
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4.2. Aeroelatic Analysis of High-Aspect-Ratio 
Wing Model 

L

CSB

C

The nonlinear static aeroelastic analysis for a high-aspect-

ratio wing is performed. The TSD theory for the 

aerodynamic analysis and the large deflection beam 

theory considering a geometrical nonlinearity for the 

structural analysis are applied for the aeroelastic analysis. 

The high-aspect ratio wing model has a root chord 

length(C) of 0.0508 m, a span length(L) of 0.4508 m and a 

aspect-ratio of about 9. Figure 9 shows the configuration 

of the analysis model. More detailed information of the 

wing configuration is discussed in Ref.10.  

FIG 6. Velocity vs. the LCO amplitude ratio. 

FIG 7. Aeroelastic response and phase plots at wing and 

flap tips at M = 0.7. 

FIG 8. Comparisons of the LCO amplitude with freeplay 

angle changes.  

FIG 9. The high-aspect-ration wing model. 
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(c) Twist angle 

Figure 10 shows the comparisons of static deflections 

between present results and experimental data which are 

obtained from Ref.10. For investigating the static flap-wise 

and chord-wise bending deflections and twist at tip vs. 0

under gravity effect only, three pitch angles, 0 = 0°, 45°, 

90°, are selected. Herein, flap-wise bending refers to 

bending perpendicular to the wing chord and chord-wise 

bending has the parallel direction with the wing plane. 

When pitch angle is equal to zero, the flap deflections are 

dominant. As pitch angle increases, flap deflection 

decreases. From the comparisons between the present 

and experimental results, the nonlinearity effects of the 

large deflection are well described by the present 

analyses. The aerodynamic grids contain 80  78  40 

node points in x, y, and z directions, respectively. Although 

the experimental model has a tip store, its aerodynamic 

effect is negligible. Thus, the tip store is ignored in the 

aerodynamic analysis. When the angle of attack is 2.2°, 

the flap deflection and twist angle at the tip are shown in 

FIG.11. In the higher velocity range, the experimental data 

fluctuation augments due to greater aerodynamic 

interference. Both the tip deflection and twist angle 

increase by the aerodynamic forces as the change of flow 

velocity. 
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4.3. Aeroelastic Analysis of Full Aircraft Model 

One of the advantages of the TSD equation in the 

aeroelastic analysis is that it alone can be applied to a 

realistic aircraft model considering all wings and control 

surfaces. The application using the Euler and Navier-

Stokes aeroelastic programs would be impractical because 

of the impracticable computing time and mesh treatments 

on joint parts between control surface and the remaining 

parts. The TSD code is widely recognized as one of the 

most efficient and robust tools among conventional CFD-

based computational aeroelasticity.  

The present aeroelastic program using TSD theory is 

applied to the T-50 supersonic aircraft model. The T-50 is 

a supersonic advanced jet trainer developed by KAI 

FIG 10. Static displacement of the wing tip under gravity 

loading.  

FIG 11. Static aeroelastic analysis results at 0 = 2.2°. 
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(Korea Aerospace Industries, Ltd.). The aircraft model 

includes the body, main wings, horizontal tails, vertical fin, 

launchers and several control surfaces.  

Figure 12 shows the aeroelastic grid system of the full 

aircraft model. The airfoils of the main wings are NACA 64 

series. Each of the horizontal and vertical tails has a 

biconvex airfoil. 

(a) M = 0.90, 0 = 0.05° 

(b) M = 1.10, 0 = -0.03° 

Steady aerodynamic pressure was computed by the TSD 

equation. Figure 13 shows the steady pressure contours at 

M = 0.90 and 1.10. Each angle of attack is 0.05° and -

0.03°, respectively. At M = 0.90, the normal shock waves 

are on the main wings, horizontal and vertical tails. Steady 

pressure comparisons between the analytic results and 

experimental data are presented in FIG.14 for five span 

stations of the main wing at M = 0.80 and 0 = 0°. The 

present results generally agree well with the experimental 

data [18]. Figure 15 shows steady pressure comparisons 

for the three stations of the vertical fin. The analytic results 

generally agree well with the experimental data. At M = 

0.95 and 0 = 0°, there is a moderately strong shock wave 

on the vertical fin surface. 

Aeroelastic solutions are obtained by solving the 

aeroelastic equation of motion and can be represented by 

the superposition of mode shapes. The mode shapes and 

natural frequencies of the aircraft model have been 

obtained via free vibration analysis, using MSC 

/NASTRAN
TM

, and 28 elastic modes are applied to the 

aeroelastic analysis. 
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Generally, multi-disciplinary problems, including 

aeroelastic analysis, require a data transfer stage between 

mismatched grid systems such as the structural grid and 

the aerodynamic grid because those points have been 

subject to different engineering considerations. For 

example, the aerodynamic load is usually subjected to the 

external surface, whereas the load-carrying components 

are placed inside the wing or fuselage. This gives rise to 

the necessity of data transfer between the two different 

systems. In the present aeroelastic analysis, the 

displacements of the structural grid are interpolated to the 

aerodynamic grid by the Infinite Plate Spline (IPS) method. 

Figure 16 shows the interpolated mode shapes of several 

FIG 12. Aerodynamic grid of the full aircraft model. 

FIG 13. Steady pressure contours at M = 0.90 and 1.10. 

FIG 14. Comparisons of steady pressure coefficient on the 

main wing surface at M = 0.80 and 0 = 0.0°.  

FIG 15. Comparisons of steady pressure coefficient on the 

vertical tail surface at M = 0.95 and 0 = 0.0°.  
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symmetric and anti-symmetric modes. If there is a 

discontinuity, such as flap, then the wing structure is 

divided into parts: the control surface and the remaining 

part of the wing. Therefore, each part must be transferred 

independently and then superposed. 

(a) Symmetric mode shapes 

(b) Anti-symmetric mode shapes 
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(a) Modal response below the flutter speed 
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(b) Modal response above the flutter speed 

In the time-domain approach, the aeroelastic instabilities 

can be predicted by simulating whether the response is 

decaying or diverging. Figure 17 shows aeroelastic 

responses above and below the flutter speed in the modal 

coordinate. A flutter boundary exists between the two 

dynamic pressures corresponding to these responses. It is 

sometimes difficult to obtain a neutral response which 

indicates flutter boundary. Hence, the aeroelastic analysis 

should be repeated several times or else an additional 

signal processing technique will be required to estimate 

the flutter point. In this study, damping ratio and frequency 

are calculated using the Moving Block Method (MBM), and 

the flutter boundaries are predicted by an interpolation of 

damping ratios. 

5. CONCLUSIONS 

In this study, the aeroelastic analyses for several models 

considering aerodynamic nonlinearity as well as 

concentrated and distributed structural nonlinearities are 

performed. In the aerodynamic analysis, the transonic 

small disturbance (TSD) equation is used for efficient 

computing time and easy treatment of control surfaces. 

For the aeroelastic analysis of wing model with 

concentrated structural nonlinearity such as control 

surface freeplay, the limit cycle oscillations (LCO) 

characteristics are investigated by comparing the LCO 

amplitude ratio and displacement of flap and wing as the 

change of air flow velocity and freeplay angle. To consider 

the control surface freeplay, the restoring force vector and 

the fictitious mass method are applied to the aeroelastic 

analysis system. Also, the aeroelastic analysis for 

distributed structural nonlinearity is performed. The 

geometrical nonlinear structural results are obtained from 

the large deflection beam theory for the high-aspect-ratio 

wing model. For the high-aspect-ratio wing model, the 

present structural analysis system and the aeroelastic 

analysis system are validated. Also, the TSD code is used 

for the nonlinear aeroelastic analysis of the full aircraft 

model in the transonic region. The model includes the 

body, main wings, horizontal tails, vertical fin, launchers 

and several control surfaces. The aeroelastic analysis 

results were quite accurate and the developed flutter 

analysis system based on the TSD theory is well suited for 

practical applications of the complex aircraft models. 
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