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Introduction
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Micro Air Vehicles 
• Defined as small flying vehicles with

� Size: 150-230mm
� Weight: 50–100g
� Endurance: 20–60min

• Reasons for UAVs:
� D3 – ‘Dull, Dirty, or Dangerous’
� Cost – Initial cost & operating costs

• Reasons for MAVs:
� Existing UAVs limited by large size
� Niche exists for MAVs – e.g. indoor flight, low altitude, man-portable

Microgyro

Microsensors
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MAV Attributes 
• Essential:

� High Efficiency 
� Ability to carry at least one sensor
� High manoeuvrability at low speeds (~5 m/s)
� High autonomy 
� (Vertical flight & hover capability)

• Desirable:
� Low aural/visual signature 
� durability
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MAV Options 
Fixed wing:
� Simple, lightweight
� Efficiency – best at cruise
� Manoeuvrability – poor at low speeds
� Efficient hover – no

Black WidowWasp

Black Widow
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MAV Options 
Rotary wing:
� Manoeuvrability – good at low speeds
� Efficiency – poor
� Efficient hover – not at small scales
� Noisy
� Instability effects when close to walls
� Adverse Reynolds number effects at small scales

Epson µFR-II Pixelito (courtesy A. Van de Rostyne)
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MAV Options 
Lighter than air:
� Efficiency – lift efficiency good
� Efficient hover – yes
� Acoustic signature – good
� Manoeuvrability – poor
� Durability – poor
� Smallest lighter than air vehicle ~ 20” diameter

Plantraco Microblimp
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MAV Options 
Flapping wing:
� Efficiency – very good
� Manoeuvrability – very good, even at low speeds
� Efficient hover – yes
� Zero acoustic signature if flapping frequency below 20 Hz
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Why insect-like flapping? 
• Insects are more manoeuvrable
• Power requirement:

� Insect – 70 W/kg maximum
� Bird – 80 W/kg minimum
� Aeroplane – 150 W/kg

• Speeds:
� Insects ~ 7mph
� Birds ~ 15mph
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Flapping-Wing Problem
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Wing Kinematics – 1
• Flapping Motion

� sweeping
� heaving
� pitching

• Key Phases
� Translational

� downstroke
� upstroke
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Wing Kinematics – 1
• Flapping Motion

� sweeping
� heaving
� pitching

• Key Phases
� Translational

� downstroke
� upstroke

� Rotational
� stroke reversal
� high angle of attack
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Aerodynamics
• Key phenomena

� unsteady aerodynamics
� apparent mass
� Wagner effect
� returning wake

� leading-edge vortex
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Aerodynamic Model
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Aerodynamic Modelling – 1
• Quasi-3D Model

• 2-D blade elements with
� attached flow
� separated flow

� leading-edge vortex
� trailing-edge wake

• Convert to 3-D
� radial chords

+

centre of
rotation

Robofly wing
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Aerodynamic Modelling – 1
• Quasi-3D Model

• 2-D blade elements with
� attached flow
� separated flow

� leading-edge vortex
� trailing-edge wake

• Convert to 3-D
� radial chords
� cylindrical cross-planes
� integrate along wing span
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Aerodynamic Modelling – 2
• Model Summary

� 6 DOF kinematics
� circulation-based approach
� inviscid model with viscosity introduced indirectly
� numerical implementation by discrete vortex method
� validated against experimental data

Wing Geometry

Flow

Moment Data
Force and

Aerodynamic Model

Wing Kinematics Visualisation
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Validation of Model
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Parametric Study
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Wing Kinematics Parameters
• One parameter varied at a time

� flapping frequency
� stroke amplitude
� rotation lead/lag

• Simulation `constants’
� flapping frequency 2Hz
� simulation time 1.0s
� stroke amplitude 101.7°
� kinematics Dickinson
� wing shape Robofly
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Flapping Frequency
• Forces scale roughly with 

square of flapping frequency

• Increase in lift obtained 
without change in lift-to-torque 
ratio

• Limited by noise and hysteresis
issues
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Stroke Amplitude
• Forces increase with stroke amplitude

• Lift-to-torque ratio peaks and drops

• Two opposing effects in operation
� increased lift due to higher flapping 

velocities as stroke amplitude increases
� increased flow breakdown as larger 

stroke amplitudes are swept
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Rotation Lead
• Forces generally increase with 

advancing rotation

• Lift-to-torque ratio peaks and drops

• Two opposing effects in operation:
� advanced rotation means higher 

angles of attack reached while 
translational speeds are significant, 
giving higher quasi-steady lift

� larger pitch changes give rise to large 
starting vortices which impede lift
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Wing Shape Parameters
• 6 wing shapes

• One parameter varied at a time
� aspect ratio
� wing length
� wing area
� planform shape

• Simulation `constants’
� wing length 125mm
� mean chord 66.7mm
� wing area 4167mm²
� aspect ratio 7.5
� pitch-axis location ¼-chord
� wing offset 25mm
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Aspect Ratio
• Forces generally increase with aspect 

ratio

• Two main effects in operation
� large aspect ratios mean narrower 

wings, implying smaller wing chords 
travel greater distances

� flow is older in terms of ‘chord-lengths 
travelled’, hence more vortex 
breakdown and lower lift
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Wing Area
• Forces increase rapidly with wing area

• Lift-to-torque ratio plateaus, hence, 
not beneficial to increase wing area 
beyond certain value

• Practical constraints of wing loading 
against size wing area [mm2]
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Planform Shape
• Lift greater for more wing area 

outboard

• Lift-to-torque ratio decreases 
with increasing lift

• Practical considerations
� High lift
� High lift-to-torque ratio for low 

power
� Low wing-root bending 

moment
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Main Findings
• Favourable Wing Kinematics

� high flapping frequency
� large stroke amplitude
� advanced wing rotation

• Favourable Wing Shape
� high aspect ratio and wing length
� large wing area
� more outboard wing area

• Practical Considerations
� low acoustic signature
� hysteresis
� low wing-root bending moment
� small size and low wing loading
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Fixed-wing MAV Design
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Aim

• To design an MAV to be used as a flying test platform for 
future systems

• The MAV should be suitable for military surveillance use 
• The cost must be kept to a minimum
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Approach

• Use off-the-shelf components
• Minimise manufacturing costs
• Durable airframe
• Radio controlled
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Configuration and Airframe
• Square wing with vertical wingtip fins
• Fauvel 14% t/c reflex aerofoil
• Hot wire cut EPP foam
• Powered by an electric motor and 

860mAh lithium polymer 2 cell pack
• Elevon control surfaces
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Wind Tunnel Testing

• Tests run at 
80000≤Re≤180000

• Angle of attack varied from -3°
to 27°

• Force balance not designed for 
forces of this magnitude

• Re has no clearly significant 
effects on the aerofoil 
characteristics

• Min flight speed 11m/s based 
on wind tunnel tests (max 
α=27°)

Graph of CL Against CD for Re=180000
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Radio Control System

• Conventional radio control system
• Off-the-shelf components designed for indoor model aircraft
• Servos weigh 1.7g each, cost £32 (€48) each
• Receiver weighs 3.8g, cost £28 (€42)
• Speed controller weighs 1g, cost £12 (€18) 
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Camera System

• 0.365M Pixel colour CMOS video camera
• 2.4GHz transmitter and receiver
• 300m range
• Kit costs £130 (≈ €195)
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Speed 
Controller

Motor

Battery

Servos

Receiver

Wingtips

Cut outs

R/C System Integration
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Current Status
• First prototype built
• Radio control system fitted and 

tested
• Finalising balance and C of G 

location
• Developing launch system
• Overall cost of the MAV is 

£300 (€450)



Knowles EWADE 2005

Summary

• Cost minimised by use of off-the-shelf components and 
simple manufacturing methods

• Simplicity of the design enhances the durability
• Work continuing on balance, C of G location and launch 

system
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Conclusions
• MAVs are currently very popular subjects for design 

studies and research
• Flapping-wing MAVs offer unique capabilities

� FMAV design is particularly challenging
� Progress is being made through advanced research

• Fixed-wing MAVs offer limited capabilities
� Design is still challenging at the 150mm scale
� Care needs to be taken with wind tunnel testing at this scale

� Low Reynolds Number effects need elucidating
� Flow turbulence issues
� Force balance resolution issues

• Novel designs and/or materials needed for successful 
MAVs
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Questions?


