

ROYAL INSTITUTE OF TECHNOLOGY

Matlab/Simulink Tools for Teaching Flight Control Conceptual Design:

An Integrated Approach

Hanyo Vera Anders Tomas Melin Arthur Rizzi The Royal Institute of Technology, Sweden.

Presentation Outline

- Computer Tools for Preliminary Aircraft Design
- QCARD Conceptual Design Tool
- Tornado Vortex Lattice Method
- CIFCAD Flight Simulator
- Case study: Student Project for Conceptual Design.
- Questions-Comments

Problems on Preliminary Aircraft Design

- The simplified methods used in the early phases of design do not give sufficient fidelity, which may result in mistakes which are costly to correct later in the design cycle.
- Some examples pertaining to the Flight Control System are:
 - **DC-9**: unexpected pitch-up and deep stall of T-tail lead to costly redesign
 - **DC-9-50 & MD-80**: inadequate directional stiffness at high angles of attack in sideslip; adoption of low-set nose strakes
 - **SAAB2000**: larger than expected wheel forces caused delay in certification; costly redesign of control system

Boeing 777: missed horizontal tail effectiveness led to larger than needed horizontal tail

Computer Tools for Preliminary Aircraft Design

- There is work going on into the development of Computer Tools to facilitate the preliminary aircraft design process:
 - QCARD
 - Tornado
 - SIFCAD Flight Simulator

QCARD: Quick Conceptual Aircraft Research & Development

QCARD in the Conceptual Design Process

Core Simulation Modules

SIFCAD

Conceptual Prediction Methods: Stability & Control

- This discipline has lacked any form of sophistication & depth at the conceptual level
 - fundamental issues: controllability & manoeuvrability
 - tail volume method was adequate in the past; today, critical scenarios need to be identified & addressed early on
- Introduction of the Mitchell Code during sizing
 - original ICL FORTRAN code now converted to MATLAB
 - estimates: aero derivatives, moments of inertia, eigenvalues of motion equations, forced response and limiting speeds
- Assessing the suitability of design candidates
 - avoidance of esoteric figures of merit for uninitiated
 - extensive use of Cooper-Harper scale correlated with merit function plots, i.e. ESDU, MIL-Spec, ICAO, SAE, etc.

ROYAL INSTITUTE OF TECHNOLOGY

Sub-space Coupling & Process Logic

Aerodynamic Coefficients: TORNADO

- Developed by Tomas Melin, KTH.
- Vortex-Lattice Method.
- Implemented in Matlab
- Allows the analysis of complex geometry wings (swept, tapper, dihedral, tails,...)
- Different Flying Condition (Angles of Attack and Sideslip Angles, Roll, Tip and Yaw velocities)
- For wing-configuration, good results with projection of body along x-z and x-y planes.

TORNADO: Basic Assumption-Potential Flow

- Inviscous
- Incompressible
- Irrotational
- Existence of Velocity potential

 $\nabla \times \nabla \phi = 0$ $\nabla^2 \phi = 0$

Tornado Implementation

Sample Output

CZ

CX

CC

P:

Q:

R:

0.2833

0

0

0

ilona,

Tornado Computation Results

Reference area: 74.6078 Reference chord: 2.8041

Reference span: 30.16

Net Wind Forces: (N)

Drag: 3859.3759

Side: 35533.5133

Lift: 291384.6908

0.2834

0.0037536

0.034559

3

0

Airspeed: 150

Density: 1.225

JID

CL

CD

CY

STATE:

alpha:

beta:

SIFCAD Flight Simulator

• OBJECTIVES:

- Flight Control System Design.
- Analysis of Handling Qualities.
- Assessment of Mission Profile.

SIFCAD: Characteristics

- Flight Simulator in Simulink Environment
- Based on commercially available Simulink Toolboxes
- Graphics provided by Microsoft Flight Simulator
- Highly Flexible and easily customable (Simulink format)
- Options: Fast-time or Real-time.

Library: acrosini File Ecit View Por	ib Mat Help		<u>×</u>
ŋ		+	
Actuators	Aerodynamics	Atmosphere	Earth
Equations of Molion	Complete Aircraft	ly l	Math
	Baseleis		j)
P nyt niten 200	Piopulsion	0682012	n ingen das la franca de la fran
m +ft Unit Conversion F	Flight Gear FDM	2	
	AeroSim Copyright (o) 2002 Ur	Blockset 1.04 Imanned Dynamics, I	LLC.

Simulink Toolboxes:

- Aerospace Blockset Mathworks
 - Aerodynamic
 - Engine,

OCH KONST

ROYAL INSTITUTE

OF TECHNOLOGY

- Earth and Atmosphere models.
- Virtual Reality Toolbox -Mathworks
 - Man-Machine interface i.e.
 Joysticks)
- AeroSim Blockset Unmanned Dynamics
 - Aerodynamic,
 - Engine,
 - Earth and Atmosphere models

Simulink Toolboxes:

- Flight Dynamic and Control Blocket
 - M.O. Rauw, Netherlands.
 - Aerodynamic,
 - Engine,

OCH KONS

- Earth and Atmosphere models
- Avionics.
- Port and Memory IO for Matlab and Simulink – Werner Zimmermann, FHT Esslingen
 - Real time execution in Matlab Environment.

Interface with Microsoft Flight Simulator

- Use of interface provided by AeroSim Blockset
- Possibility to send information to a Second Computer Running Microsoft Flight Simulator
- Information sent involves position, attitude and gauges information.

ROYAL INSTITUTE OF TECHNOLOGY

> The result is high quality graphic interface without the need of extensive programming.

Use of Simulator

- Simulator Running at Fast-Time:
 - Airplane Model development
 - FCS development and testing
 - Autpilot testing

OCH KONST

ROYAL INSTITUTE

OF TECHNOLOGY

- Mission profile Assesment
- Real Time Simulation:
 - Handling Qualities Assesment
 - Pilot-in-the-loop analysis
 - Research in Aircraft Operational Factors
 - Research in Human Factors.

Case Study: Horizon Project

- Conceptual Design Student Project in The Royal Institute of Technology in collaboration with Ecole Polytechnique of Montréal
- Objective:
 - Analysis of 70 PAX regional airliner
 - Unducted Fan
 - Able to achieve speeds close to Turbofan

Case Study: Horizon Project

- Procedure: Use of QCARD in the conceptual design process:
 - Estimation of Low Speed Aerodynamic Properties
 - Estimation of High Speed Aerodynamic Properties
 - Stability and Control Analysis
- Conclusion: The initial design has poor stability qualities. Need to improve the design to reach reasonable stability characteristics.

Geometric Modifications

- Wing:
 - Moved Forward
 - Increased Area
 - Reduced Aspect Ratio
- Horizontal Tail:
 - Lowered
 - Increased Area
 - Increaed Aspect Ratio
- Vertical Tail:
 - Reduced Area.

Results of the Modifications

Type of motion	Name	Period (s)		Time-to-half (s)		Cycles-to-half	
		Initial	Impro ved	Initial	Impr oved	Initial	Impro ved
Longitudinal	Phugoid	1.76e⁵	1.81e ⁶	94.98	95.9	5.4e ⁻⁴	5.3e ⁻⁴
	Short-period	4.35	2.92	0.82	0.58	0.19	0.20
Lateral	Dutch roll	5.11	5.40	12.94	6.84	2.52	1.26
	Spiral	128.4	117.5				
	Rolling convergence	0.86	0.89				

ROYAL INSTITUTE OF TECHNOLOGY

ROYAL INSTITUTE OF TECHNOLOGY

ROYAL INSTITUTE OF TECHNOLOGY

ROYAL INSTITUTE OF TECHNOLOGY

Possibilities of using SIFCAD in Horizon Project

- Higher understanding of criteria for stability.
- Analysis of airplane handling with Pilot-in-the-loop.
- Possibilities of considering relaxed stability in design.
- Design of Flight Control Systems.
- Mission Profile Analysis.
- Response to medium and heavy weather phenomen (i.e. Gusts, windshear, etc.)
- Explore operational profile (take-off, approach, landing)

ROYAL INSTITUTE OF TECHNOLOGY

SIFCAD Demo: Horizon Model

SIFCAD: Future Goals

- SIFCAD in Aeronautic Education
 - Teach to student effects of changes in Aerodynamic Coefficients in Airplane Handling
 - Effects of Center of Gravity in Aerodynamic Stability.
 - Suitable for teaching Concepts on Flight Control System Design
 - Suitable for practical examples in Avionics use and Limitations.

SIFCAD: Future Goals

ROYAL INSTITUTE OF TECHNOLOGY

- Full Integration with QCARD software:
 - Automatic Load of Aerodynamic, engine and mass properties onto the Simulator Model.
 - Requisite for integration on the Conceptual Design package.
- Use in research:
 - Airplane Design
 - Operations
 - Human Factor
 - Etc.

SIFCAD: Ongoing and Future Work.

- Improve the Aerodynamic Model
 - Possibility to manage non-linear aerodynamic phenomena.
- Develop a stable simulation platform with "best of commercial packages" plus native development.
- Improve Human-Machine interface:
 - Projectors
 - Glass-Cockpit
 - Improved Joysticks
 - Pedals

Questions – Comments?

