HELIPLAT®: High Altitude Very-long Endurance Solar Powered Platform for Earth Observation and Surveillance. CAPECON: SHAMPO Solar HALE-UAV

Prof. Ing. Giulio ROMEO, Giacomo Frulla Ing. Enrico CESTINO, Fabio BORELLO Politecnico di Torino (Turin Polytechnic University), Dept. of Aerospace Eng. giulio.romeo@polito.it

DIASP

7th EUROPEAN WORKSHOP ON AIRCRAFT DESIGN EDUCATION (EWADE 2005)

Laurea Specialistica in Ing Aerospaziale (MSc in Aerospace Eng.)

Corso: PROGETTO DI AEROMOBILI (Course: AIRCRAFT DESIGN) Credits: 10 - Total hours: 115 (L. 80 + E. 35)

Prof. Ing. Giulio ROMEO, Giacomo FRULLA Ing. Enrico CESTINO, Fabio BORELLO

POLITECNICO TORINO, Dept. of Aerospace Engineering email: giulio.romeo@polito.it

Theories and/or empirical methods concerning a single design aspect

Use of commercial software and/or self-developed software to solve specific problems

Preliminary aircraft design by integration of the previously developed tools

BOEING - Current Market Outlook 2003-2022

4,300: smaller regional jets.
5,440: intermediate-size airplanes.
13,645: single-aisle airplanes.
890: 747-size or larger airplanes.

AIRBUS Global Market Forecast 2003-2022

ly 16,500 new aircraft will be rered

20-year deliveries

Mainline single-aisle aircraft like the Airbus A318, A319, A320 and A321	10,184		
Small twin-aisle aircraft like the Airbus A330-200	1,782		
Intermediate twin-aisle aircraft like the Airbus A330-300 and A340	2,962		
Very large and economical aircraft like the Airbus A380	1,535		
Total aircraft	16,463		

business worth \$1.6 trillion

G. ROMEO – Aircraft Design, Politecnico Torino, DIASP, giulio.romeo@polito.it

2004-05: Design of Regional Aircraft

Weight Estimation

By adopting empirical methods, commonly found in literature (Torenbeek, Jenkinson, Stanford Univ., Howe, Raymer, etc...) and statistical data, students develop a software to evaluate total aircraft mass and masses of each of the sub-systems (structure, propulsion group, crew, equipments...)

Overall Aircraft Weight Breakdown

(Avro RJ100)

Weight Estimation

Aerodynamic Analysis

Airfoil > Wing > Aircraft

The panel code *XFOIL* has been used to study airfoil performances in subsonic flows...

... and to draw Cl- α and polar curves

Aerodynamic Analysis

$Airfoil \rightarrow Wing \rightarrow Aircraft$

XFOIL results and Prandtl lifting line theory are implemented in a software developed by students in order to study wing aerodynamic behaviour

Aerodynamic Analysis

Parasite drags due to aircraft components are evaluated through empirical methods, allowing aircraft polar to be plotted

G. ROMEO – Aircraft Design, Politecnico Torino, DIASP, giulio.romeo@polito.it

CATIA 3D DRAWING

G. ROMEO – Aircraft Design, Politecnico Torino, DIASP, giulio.romeo@polito.it

Structural Analysis

Structural Analysis

A CATIA V5 model is built to outline a 3D external & internal configuration and to define geometries for MSC PATRAN...

Structural Analysis

... and a more accurate analysis is achieved through FEM (MSC NASTRAN)

MSC.Patran 12.0.044 13-Jan-05 10:32:32 Deform:Default, Static Subcase, Displacements, Translational, (NON-LAYERED)

Flight Mechanics / Dynamics

Main flight qualities as well as static and dynamic stability are evaluated.

 $\frac{dCm_{CG}}{d\alpha} < 0$ $Cm_{CG} = 0 \text{ for } \alpha = 0$

G. ROMEO – Aircraft Design, Politecnico Torino, DIASP, giulio.romeo@polito.it

Flight Mechanics / Dynamics

Aeroelastic Analysis

Static aeroelastic problems :

- Divergence Speed
 - Aileron Reversal

ίz

Elastic straight wing with displaced aileron.

Both FEM approach & Influence Coefficients approach are used

Cantilever wing under unit torque load.

Aeroelastic Analysis

Dynamic Aeroelastic problem: •Flutter

Typical Section Approach

Theodorsen Aerodynamic Theory

G. ROMEO – Aircraft Design, Politecnico Torino, DIASP, giulio.romeo@polito.it

Cost Analysis

G. ROMEO – Aircraft Design, Politecnico Torino, DIASP, giulio.romeo@polito.it

Airframe Structure Design

Aircraft Structural Integrity

Design Philosophies:

- "safe life"
- "fail safe
- "damage tolerance"

7.4.1.9. Fatigue-arack-propagation data for 0.090-inch-thick 7075-T6

Design of Advanced Composite Structure

Buckling & Post-buckling of CFRP Panels Under Combined Loads

Design of Advanced Composite Structure

Non-linear Analysis of CFRP Wing Box Under Bending or Torsion

A.S.I. (1995-2000) EC-5FP (2000-2003)

NETwork of HELIplat UAVs

1st European Project of Stratospheric Aircraft

High Altitude (15-20km) Very-long Endurance Solar Powered Autonomous Stratospheric aircraft (VESPAS) flying for long period of time (4-6 months) by solar-power & fuel cells system. Easily recovered for maintenance.
Pseudo satellites, with advantage of being much cheaper, closeness to the ground (more detailed land vision) & more flexible

than a real satellite.

POLITECNICO TORINO, DIASP, giulio.romeo@polito.it

UAV: Unmanned Air Vehicles

e 4.6.1 – Landsat Image of Fire from Helicopter Crash

POLITECNICO TORINO, DIASP, giulio.romeo@polito.it

LANDSAT <u>- Orbit</u>: 705Km Spatial Resolution: 15-60m Repeat Cycle: 14 days Design Life: 5 years

> BIRD <u>- Orbit</u>: 570 Km Spatial Resolution: 370 m Repeat Cycle: 24 HOURS Design Life: 5 years

Integration SATELLITE + UAV = Higher Resolution + Continuous Data

Homeland Security – Airborne or Ground Sensors

Borders Patrol, actually, is made by piloted airplanes or helicopters (several personal) or from military ships, increasing the cost tremendously.

High costs are sustained by Italian Coast Guard for their ATR-42 airplane equipped for border surveillance; with 4 crew minimum, the cost of aircraft is around € 4.500 /hour of fly.

Cost of helicopter equipped for border surveillance is also very high.

In Spain, the cost from Morocco (about 50-60 km) are controlled with a radar system (SIVE) at a cost of 145 M \in . Similar very expensive system are being installed along all the Italian coast (more than 2000 km long!!!!).

At which cost?

POLITECNICO TORINO, DIASP, giulio.romeo@polito.it

NASA Solar-powered UAV (AeroVironment)

Regenerative Fuel Cell Energy Storage System Summary

Day Cycle Sun energy converted to electricity by Solar Cells

Half of electricity goes to Motor to propel plane

Other Half of electricity goes to Electrolyzer to convert water into Hydrogen and Oxygen fuel

Night Cycle Oxygen and Hydrogen combine in Fuel Cell to produce electricity to propel plane

Water from Oxygen and Hydrogen stored until next day

uel cell energy storage system enables continuos flight through night

<u>Helios Fuel Cells Specific:</u> <u>5 kW – 10.8 kg (462W/kg)</u> Gas Consumption: Ox: 1400I/hr, Hyd:2800 I/hr Total volume: 5 litres

NASA Solar-powered UAV

NASA Dryden Flight Research Center Photo Collection http://www.dfrc.nasa.gov/gallery/photo/index.html NASA Photo: ED01-0209-6 Date: July 14, 2001 Photo by: Nick Galante/PMRF The Helios Prototype flying wing is shown near the Hawaiian islands of Nilhau and Lehua during its first test flight on solar power from the U.S. Navy's Pacific Missile Range Facility.

HELIOS (AeroVironment): Span 76m; Altitude: 29.5 km TOGW: 7.3kN Payload weight: 1kN Payload power: 1kW. Endurance:4-6 months

Helios Solar UAV should had fly at 20km altitude using renewable energy, for day/night operations, aiming at a flight of several days in summer 2003.

POLITECNICO TORINO, DIASP, giulio.romeo@polito.it

Helios Solar-powered UAV

HELIOS PROTOTYPE: In-flight mishap June 26 2003 "the NASA Mishap Investigation indicates the Helios Prototype appeared to have experienced undamped pitch oscillations that led to a partial breakup of the aircraft in mid-air while flying at about 3,000 feet altitude. According to the interim status report, the board believes the undamped pitch oscillations may be related to the complex interactions between the aerodynamic, structural, stability and control and propulsion systems on a flexible aircraft."

POLITECNICO TORINO, DIASP, giulio.romeo@polito.it

HELIPLAT® Solar-powered UAV

- 1995: ASI (Italian Space Agency), design of Solar-powered HAVE-UAV
- Jan 2000: EC (V FP- IST action): project HELINET (HELIplat NETwork) (Network of stratospheric platforms for traffic monitoring, environmental surveillance and broadband services.-Coordinator: Politecnico di Torino);
 - 1st European project in the field of stratospheric platform.
 - The main objectives of the HELIPLAT project, are:
- Design of HAVE-UAV flying for very long period of time (4-6 months) by a solar-powered & fuel cells system; feasibility of near term aerodynamic HAVE concept, high efficiency & affidability of solar cells, fuel cells and electric motors).
- Design all advanced composite wing (75 m long), and structures and to verify the production cost for each platform.
- Manufacture a scale-sized technological demonstrator (24m wing span) and to perform static tests on it up to the ultimate load.
- Assess the safety and regulatory aspects of the platform.

HELIPLAT® (HELIos PLATform)

Multi-disciplinary optimisation program:

- 1) Solar radiation change over year
- 2) Altitude; 3) Wind speed;
- 4) Mass and efficiency of solar cells
- 5) Mass and efficiency of fuel cells
- 6) Aerodynamic performances;
- 7) Structural mass.

• A twin boom configuration would reduce the wing bending moment.

• A tubular spar for wing, tails or booms would allow a very light structure; indeed, it has to fulfil all the JAR requirements.

® Trademark of Dept. of Aerospace Eng Politecnico di Torino

HELIPLAT® (HELIOS PLATform)

WT=750kg; WpI=130kg; Preq=6.5kW; PpI=1.5kW; Vc=71km/h; Solar cell effic. 21%; Fuel cell effic. 60%

Sw=176.5m2; b=73m; ARw=30.2; S ht=28m2; b=17.5m;

WIND SPEED STATISTICAL DATA

Elaboration from Italian Air Force Record Data

- mean

-95%

- 99%

[m/s]

m/s]

60

60

- mean+dev

POLITECNICO TORINO, DIASP, giulio.romeo@polito.it

SOLAR CELLS

- Maximum available Solar cell efficiency: 85%.
- To-date obtained solar cells efficiency: 36%.
- High efficiency (15-17%) thin (2-300 microns) single-crystal silicon cells are today available at low price (about $800 \notin m^2$).
- Higher efficiencies (up to 25%) very thin (50 microns) single-crystal silicon or GaAs cells are also available, at higher price (about 30 $k \in /m^2$).

Technologies – fuel cells

Based on dedicated electrolyses & fuel cells (solid polymer type) Energy Density: 400-600 Wh/kg; Present day efficiency: 55% Production cost: 3-4 hundred thousands Euro.

FASTec/NASA E-Plane

Scaled Global Observer

Technologies – fuel cells

DEPT. ENERGETICS

Technologies – fuel cells

ENFICA–FC: ENvironmentally Friendly Inter City Aircraft powered by Fuel Cells.–6FP-3rd call-proposal under evaluation

1) A feasibility study will be carried out to define preliminarily transport aircraft propulsion systems that can be provided by fuel cell technologies,

2) A two-seat electric-motor-driven airplane powered by fuel cells will be developed and validate by flight-test, by converting a high efficiency existing aircraft.

POLITECNICO DI TORINO (Coordinator) – IAI - INTELLIGENT ENERGY- BRNO UNIVERSITY OF TECHNOLOGY– EVEKTOR - JIHLAVAN AIRPLANES- ENIGMATEC- AIR PRODUCTS-UNIVERSITE' LIBRE DE BRUXELLES – INFOCOSMOS.

L-610 40-seat commuter

EV-97 VLA HARMONY

JIHLAVAN KP-2U

Technologies - electrical engines

- Direct-drive DCbrushless motors
- permanent magnets brushless motors
- 1.5kW nominal, 3kW peak
- 96% efficiency

HELIPLAT® Aerodynamic Design

$$P = W \cdot \left(C_{\rm D}^{~} / C_{\rm L}^{-1.5} \right) \cdot \sqrt{\left(2/\rho \right) \cdot \left(W/S \right)}$$

New high aerodynamic performances airfoils for low Reynolds numbers have been developed to reduce the power required for the flight.

HELIPLAT® Aerodynamic Design

HELIPLAT® Aerodynamic Design

HELIPLAT® Preliminary layout

BRUSHLESS ELECTRIC MOTOR

FUEL CELL STACK

FLIGHT MECHANICS

Response to Elevator Step 1.7002 1.7 1.6998 1.6996 E 1.6994 1.6992 1.699 1.6988 1.6986 1.6984 0.5 10000 8000 6000 4000 -0.5 2000 -1 0 Y [m] X [m]

Response to Rudder Step

Spiral divergence is strongly affected by Clr, roll torque due to yaw rate. In long-span airplanes which fly slowly the inboard wing is flying very slow compared to the outboard wing when turning and this velocity difference, due to yaw rate, causes the lift across the wing to vary, and the aircraft rolls into the turn

COST MODEL

Total Life Cycle Cost

Total Life Cycle Cost

Operating cost per year	€	28°743°960	W of LCC	
Years of operation		20		
Development	€	3054012	0%	
Acquisition	€	101°329°438	13%	
Initial Support	€	19°505°888	3%	
Operating	€	574°879°201	77%	
Infrastructure (7.50% of sub total)	€	52°407 <i>°</i> 640	7%	
TOTAL LCC	€	751°176°180		
TOTAL LCC / FLIGHT HOUR [€/FH]	€	713		

Total Operating Cost per Year

Project Name: HALE Solar - 2

ITEM	NOTES	E	DESCRIPTION	Flight line workers	GCS workers	Supervisor	TOTAL VORK	LOCAL EXPENSE	LUCAL SUB CONTR- ACTOR	TOTAL OPERATING COST		
1	Labor	Flight line ((pre flight - 1 shifts/day)	€ 23 ° 424	€ 140*544	€ 29°280	1 193'248			I 193 ⁻ 248		
2	Labor	Flight line ((flight - 3 shifts/day)	€ 702720	£ ########	€ 878°400	1 5'797'440			1 5'797'440		
3	Labor	Flight line ((post flight - 1 shifts/day)	€ 234	€ 1º405	€ 293	I 1'932			1 1 932		
4	Food	Food & sle	eping expense					€ 102°147		102-147		
5	Car	Car rent						€ 16°119		I 16-119		
6	Generators	Rent of Ge	nerators						€ 64ª475	1 64:475		
7	Generators	Fuel for Ge	nerators						€ 40°297	1 40'297		
8	Engineering	Engineerin	g support						€ 384°000	1 384-000		
9	Communication	Communic	ation support						€ 120°000	l 120.000		
10	Propulsion	Propulsion	system inspection	€ 78 ° 080			1 78:080	€ 231 800		1 309.880		
11	Propulsion	Propulsion	system replacement	€ 14 757			14:757	<i>ŧ #######</i> #		4"283"781		
12	Spares for UAV	Other spare	es-5% of UAV value					<i><i>ŧ######</i></i>		3:372:811		
13	Spares for GCS	Other spare	es-5% of GCS value					€ 70 ° 000		1 70.000		
14	Spares for GDT	Other spare	es-5% of GDT value					€ 60°000		l 60.000		
15	Inspection labor	Included in	i items 1-3									
16	Insurance	Insurance o	of ground equipment (2.0					€ 52°000		1 52:000		
17	Insurance	Insurance o	of UAVs (14.1%)					<i><i>*#######</i></i>		1 13:875:830		
18	Fuel	Fuel & Add	litives					0		0		
	TOTAL	OPERATI	NG COST PER YEAR	€ 819 ° 215	<i>\$ #########</i>	€ 907 973	6:085:458	<i><i>*</i> * * * * * * * * * *</i>	€ 608771	1 28'743'960		
	NOTES	C	Description	Maintenanc e hours	Maintenanc e hours ł							
1	Labor	Flight line ((pre flight - 1 shifts/day)	586 h	r 0.01							
2	Labor	Flight line ((flight - 3 shifts/day)	17 * 568 hi	r 0.33		To company	To compare to DB values				
3	Labor	Flight line ((post flight - 1 shifts/day)	6 h	r 0.00		pres	is here:				
10	Propulsion	Propulsion	system inspection	1 ° 952 hi	r 0.04		Maintena	nce Hour(s)				
11	Propulsion	Propulsion	system replacement	369 hi	r 0.01		per Flight Hour DB					
	TOTAL Maintenance Hours per Year				r 0.39	<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	per e ligi					
Pular Providing Assumptions (Charles Index												

Assumptions

POLITECNICO TORINO, DIASP, giulio.romeo@polito.it

Scaled Prototype Manufacturing

CASA Space-EADS (E)

1) Single CFRP elements: wing tubular spars and ribs, horizontal and vertical tail tubular spars and ribs, booms. 2) Metal fittings.

POLITO-DIASP (I):

1) Assemble different parts of the aircraft (wing, horizontal and vertical tails, booms).

2) Assemble the whole aircraft.

3) Perform static tests up to the design loads

4) Find the correlation with the numerical analysis.

HELIPLAT® Sealed Prototype Design

NASTRAN FEM Analysis

Scaled Prototype Manufacturing

ARCHEMIDE/ POLITO

Scaled Prototype Manufacturing

Scaled Prototype Testing

800 600 400

200

-400

-600

-800

-15000

-10000

5000

Y [mm]

10000

15

microeps 0 -200

Shear/Bending Static Failure Test n=7.5g

Torsion Static Test

- EADS
- ONERA
- DLR
- NLR
- AGUSTA
- AIROBOTICS
- Eurocopter
- IAI
- CIRA
- UNINA UNIBO
- WARSAW UNIV
- POLITECNICO TORINO (WP Leader Design New Configuration)

POLITECNICO TORINO, DIASP, giulio.romeo@polito.it

Civil UAV APplications & Economic Effectivity of Potential CONfiguration Solutions

Project No GRD1-2001-40162

Promoting Competitive and Sustainable Growth Key Action 4.2.5

HALE UAVs

Design of 3 HALE UAVs WP Leader: Prof. G. Romeo

POLITO

SHAMPO (Solar Hale Aircraft Multi-Payload & Operation)

Aeroelastic Consideration

- A preliminary linear mode analysis has been performed on the model.
- There are defined some coupled modes, and the torsional modes are pushed up to higher frequencies.
- Higher critical velocities are expected.
- The V-g plot for the linear case is reported. No critical speed is detected up to 100m/s (at 17000m). The normative requirement is fulfilled.

Preliminary Reliability

80 Predator: 28 crashed - 7 Global Hawk: 3 lost. Mishap per 100,000 h: Predator: 32; Hunter: 16 • AV-8 Harriers: 10.5 - F-16s: 3.5 - General aviation: 1

• Regional/commuter: 0.1 - Larger airliners: 0.01.

Flight Safety - The Lessons Learned

The intention is to attain the objectives set below: • MTBL: 100 000 hours Mean Time Between Loss • MTBUCL: 1000 000 h MTB Uncontrolled Landing • MTBCF: 1000 hours MTB Critical Failure

Preliminary Reliability

- The platform has to have a very long endurance flight (4-5.000h)
- It is supposed to fly continuously without failure
- the loss of a platform must not cause damage to the service.
- Catastrophic failure conditions must be extremely improbable, i.e.:
- The probability that a failure condition would occur maybe assessed on the order of 10⁻⁹ or less.
- "The safety standard that should be maintained is one in which UAVs are operated as safely as manned aircraft, insofar as they should not present or create a hazard to persons or properties in the air or on the ground greater than that created by manned aircraft conducting similar operations" (FAA Advisory Circular 8/5/96).
- A MTBF=40000h for each motor and a MTBF=100000h for each propeller is assumed for the reliability analysis obtaining a 0.991.

• To perform a conceptual design for the best suited platform concept answering the needs of future telecom markets.

airobotics

Sept. 2002.

Fraunhofer institut

UniS

Booz | Allen | Hamilton

Integrierte Schaltungen

POLITECNICO TORINO, DIASP, giulio.romeo@polito.it

STRATOS

Stratospheric Platforms: A definition study for an ESA system

FLIGHT MODEL

SUPER DIMONA

b = 5.8 m - W = 20kg

FLIGHT MODEL

CONCLUSION

- •Possible realisation of HAVE-UAV at least for low latitude sites in Europe and for 4-6 months.
- Forest Fire Early detection and Border Patrol monitoring would be possible at much cheaper cost and higher resolution than actual systems, and it would be obtained continuously.
- Airfoils with high Lift coeff. and small Drag coeff. and at low Reynolds numbers should be obtained.
- The aerodynamic performances of HELIPLAT are being implemented by VSAERO software, obtaining high efficiency.
- Showed feasibility of very light CFRP structural elements.
- Good correspondence between experimental analytical and FEM analysis is verified and expected.
- Showed feasibility of brushless electric motors and fuel cell systems.
- Preliminary flight tests of few critical items were carried out successively.

Thanks a lot for your kind attention

Politecnico di Torino, DIASP, is partner of EC – ESA funding projects:

