MANTA From conceptual design to flight test

C. Jouannet, P. Berry, P. Krus and D. Lundström

Linköping University

Education structure

3rd year

4th year

Student projects

THE TEAM 2005

Course Goal

- Cover several aspect of Aircraft design
 - Conceptual design
 - Preliminary design
 - Detail design
 - Manufacturing
 - Flight Simulation
 - Flight test
- Project related to related to current research at the university
- Team work and project management

Project Specification

- The mother ship shall have the following basic characteristics:
- Radio controlled
- Propulsion based on Wemotec HW750 fan and Plattenberg HP 370/30/A2S engine
- Designed to minimum weight
- To be housed within a maximum transport volume of: 1*1.7*0.8 m
- Endurance: 15min at 50% throttle
- Minimum rate of climb 3m/s
- Payload
 - Two small MAV:s of max 200g/each to be carry internally/partly submerged in the fuselage/wing
 - 400g extra payload in excess of the above
- Each MAV shall have the following basic characteristics:
 - Radio controlled
 - Payload of 11g (a camera)

Student's Goals

- Design 3 a/c
- Build them
- Successfully test fly
- (verify calculated performance and properties)
- Write a report

Timeline

19/01/2005 Start of the project

11/02/2005 Conceptual design presentation

11/03/2005 Complete drawing set for mold manufacturing

Building period

13/05/2005 First flight

10/06/2005 Final report

Tools 0.008 (g) [rad/s] 0.004 3-D Wing configuration

- Sizing Program in excel
- Matlab
 - Aerodynamics (Tornado from KTH)
 - Flight Mechanics
- Catia V5
- Flight Gear

Conceptual Design

Chosen concepts

Detail design

Detail design

Detail design

Flight simulation

Flight test

Conclusion

- Full aircraft design from start to flight
- This course binds up the other courses and allows the students to apply their knowldege on a real project
- Introduce the student to international team work and project management

Conclusion from the students

- You aply your knowledge
- You work in team
- You have deadlines
- You should achieve your goal
- You learn from the others
- You teach them
- You get support from your teachers

What's next?

- Include flight control system simulation
- Flight control implementation for flight simulation
- Instrumentation of future project to close the design loop
- International network, EUROMIND
- Collaboration with other institutes, crossboarder project.

What's next?

Research areas

- The use of water tunnel models in conceptual design and high angle of attack
- Coupling between conceptual design program and CATIA (under development)
- Micro UAV development (with Witas)
- Ornithopter development
- Design and development of affordable demonstrators

Affordable demonstrators

 Half-scale flying model of future Saab demonstrator built by Linköping University

