An International Collaborative Teaching Approach to Aircraft Design Education

7th EWADE, Toulouse, 2005

IMPROVEMENT

Dr Askin T. Isikveren Dept of Aerospace Engineering University of Bristol Senior Lecturer in Engineering Design Prof. Arthur Rizzi

Dept of Aeronautical & Vehicle Engr Royal Inst. of Technology (KTH) *Professor of Aeronautics*

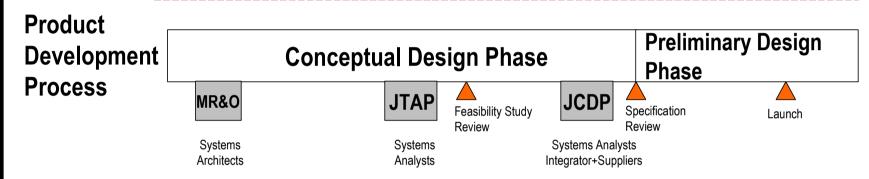
Education Using IPDT-Integrator-Supplier Analogy

Design Education Process

Industry RFP	Present REP	Prime University Initial Technical Assessment Collaborating Uni. Initial Technical Assessment	Prime ITA Hand-off	Prime Uni. Refinement Collaborating Uni. Refinement
-----------------	----------------	--	-----------------------	--

Product Development		Conceptual Des	sign Phase		Preliminary Design Phase		
Process	MR&O	JTAP	Feasibility Study Review	JCDP	Specification Review	Launch	
	Systems Architects	Systems Analysts		Systems Analy Integrator+Supp			

- Contemporary product development is done collaboratively, the mechanism is the Integrated Product Development Team (IPDT)
 - \rightarrow Comprises professionals from the aircraft integrator & suppliers
 - ightarrow Use this approach as an exemplar for aircraft design education
- Marketing Requirements & Objectives (MR&O)
 - \rightarrow In industry, it is a set of design specifications
 - \rightarrow Issued as a Request for Proposal (RFP) to the universities

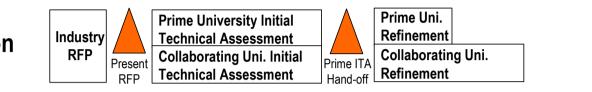


Education Using IPDT-Integrator-Supplier Analogy

Design Education Process

on Industry RFP Presen RFP	Prime University Initial Technical Assessment Collaborating Uni. Initial Technical Assessment	Prime ITA Hand-off	Prime Uni. Refinement Collaborating Uni. Refinement	
----------------------------------	--	-----------------------	--	--

- Joint Technical Assessment Phase (**JTAP**)
 - → In industry, involves pooling together a select group of specialists & conceptual designers for a more detailed assessment
 - Collaborative protocol amongst universities begins to gain momentum – hand-off of Prime University Initial Technical Assessment (ITA) to Collaborating University
 - \rightarrow Collaborating University can assume the role as "specialist" here



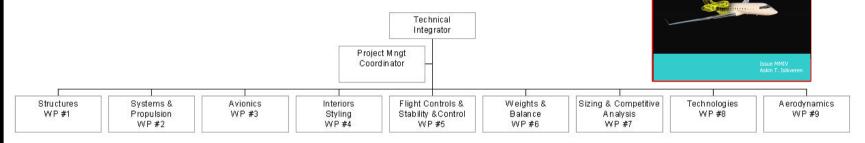
Education Using IPDT-Integrator-Supplier Analogy

Design Education Process

Product Development	C	onceptual Des	ign Phase) 	Prelimin Phase	ary Design
Process [_]	MR&O	JTAP	Feasibility Study Review	JCDP	Specification Review	Launch
	Systems Architects	Systems Analysts	I	Systems Analy Integrator+Supp		

- Joint Conceptual Definition Phase (JCDP)
 - → In industry, this phase involves potential suppliers & risk-sharing partners, along with the aircraft manufacturer's system integrators they further develop the basic system architecture & functionality
 - Nearing the milestone of closing out the collaborative aircraft design education
 - → Once completed, lessons learned are cycled back to universities

Joint Venture in Aircraft Design Education


- Using the presented model, this joint venture for education has the following participants
 - → Bombardier Aerospace (BA) in Canada, designated as "Industry"
 - Ecole Polytechnique de Montreal (EPdM) in Canada, designated as "Prime University"
 - The Royal Institute of Technology (KTH) in Sweden, designated as "Collaborating University"
- Multi-disciplinary design tasks for each educational partner strategically chosen according to their respective competency
 - \rightarrow EPdM for virtual product integration and systems integration
 - → CATIA V5 for geometry construction
 - └→ Close ties to Bombardier Aerospace, Chair in drag prediction & icing
 - KTH for specialised knowledge & internationally recognised numerical tools for aerodynamic design & refined S&C sizing
 - └→ TORNADO & MSES
 - └→ Close ties with SAAB & FOI on CFD dev/application, MIT on tools

EPdM AE4950 Aircraft Design Course

25 students organized into disciplinary groups to serve as "specialists" for a team project

- Allows opportunity to gain a greater insight into a specific technical discipline and comprehend the complex interactions
- → Foster skills on how to interact in a goal oriented technical team
- Experience some of the challenges of managing the design of a high-value product
- Effective communication ensures project governance
 - Appointing a project management coordinator is key to success
 - Achieved via structured & frequent technical group meetings
 - Requirement for final review to senior academic staff & industry professionals fosters a high calibre of presentation skills

Industrial Transport Aircraft Design A Compendium of Principles, Practices and Technique

KTH 4E1222 Project Course in Aerospace

Objective

- Introduce students to industrial conceptual aircraft design through project work, to learn skills in the use of modern analysis & design tools
- Central focus is to solve a real-world problems proposed by industrial clients in the form of a team-project assignment
- Deployment "gates" are used for purposes of governance, succession requires each to be approved by the supervisor
 - S1. Project definition, data collection and literature survey: What is known? New things needed?
 - → S2. Defining a detailed specification of work and writing the contract of project deliverables
 - → S3. Carrying out the contract. This includes computational analysis, sizing, optimisation, etc.
 - → S4. Testing/checking of results: Project requirements fulfilled? Deliverables in hand?

Y2004 RFP: Small Transport Aircraft Family

- RFP: Personal/micro-exec/air-taxi with another future offering aimed at the executive entry-level/very-light
 - → Adaptable baseline
 - └→ Personal recreational, for enthusiasts, sporty interior
 - └→ Micro-executive dedicated business travel, productivity machine
 - → Air-taxi airports with infrequent/non-existent airline service
 - → Baseline aircraft specs
 - → First-time owners
 - → 400-600 hours utilisation
 - ➡ To mitigate risk, optimal mix of contemporary technology required
 - → Boston-Denver city pair
 - └→ Superior performance
 - → Very high reliability, low acquisition price & low operating cost

New Personal/Micro	-exec/Air-taxi Aircraft
Design PAX accommodation	Min. 5 (including pilot)
Cabin volume	At least 200 cu.ft
Weight per PAX	220 lb
Total baggage volume	At least 90 cu.ft (50 cu.ft pressurised)
Cabin requirements	Must accommodate lavatory and/or cabin
	galley/stowage
Design Range, IFR, 100 nm alt.	1550 nm @ M0.75
Normal cruise	At least M0.65
Maximum cruise	At least M0.75
Takeoff field length, ISA, s.l.	< 3000 ft
Takeoff field length, ISA+20°C, 5000 ft	< 5500 ft
Approach speed	< 100 KCAS
Initial cruise altitude	At least 37000 ft
Service ceiling	At least 41000 ft
Operational requirements	Accommodate 1+1 flight crew
	Certified for single pilot operations
	RVSM compliant

→ Family strategy to enter executive aircraft market segment

Y2004: EPdM "Blue Dolphin"

- Entry-into-service in 2Q09

 Image: service in end of the service in the service in
- Certification for single pilot operations

University of

- Cabin Specifics
 - → Standard layout 1 pilot + 5 PAX with lavatory
 - Special panoramic windows 762 x 406 mm, used as Type III emergency exits

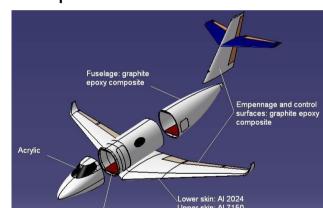
erospace

- Avionics
 - → Standard equipment tailored to assist novice pilots
- Flight Control System
 - Manual Primary FCS, Secondary FCS mechanically signalled with electro-mechanical actuation
 - → No yaw-damper for dispatch reliability & low cost

Dolphin

Structural Integration & Manufacturing Technology

→ Fuselage


- → Three sections: nose, cabin & aft
- \rightarrow Minimal bulkheads, 51 mm skin

- Layer of visco-elastic material in order to improve the acoustic & thermal insulation
- Manufacturing Technology
 - → Fuselage filament winding
 - → Not considered a high risk item due to industry familiarity
 - → Simple and cheaper production
 - Nose, Empennage & Winglets Structural Reaction Injection Moulding
 - → Much faster than the Resin Transfer Moulding process
 - ⊢ High productivity & flexible enough for many shapes
 - → Wings & Flaps Integrally machined
 - → Suitable for high volume production, reduces bill-of-material

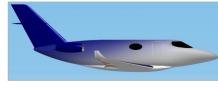
WUniversity of

→ 10% lighter: lower fastener count & better load distribution

Keel beam: Al 7150

Competitors & Further Product Development

Competitive Edge

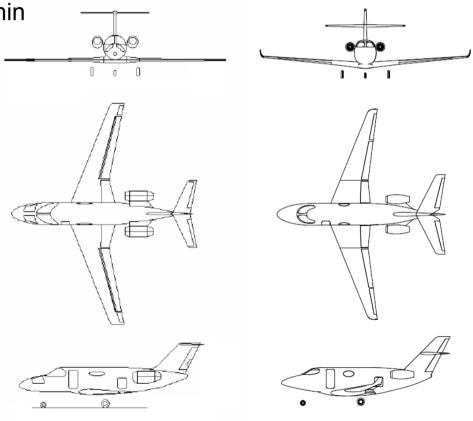


- → Flies faster, travels a longer range, good field operations
- → Better than average cabin & baggage dimensions

Aircrafts for competitive analysis	AeroX Blue Dolphin	Éclipse 500	Cessna Mustang	Safire Jet	Avocet ProJet
General caracteristics					
Published price (\$)	2 000 000	950 000	2 295 000	1 395 000	2 000 000
Engine manufacturer	Williams International	Pratt & Whitney Canada	a Pratt & Whitney Canada'	Williams International	Pratt & Whitney Canad
Engine model	FJ44-1A	PW610F	PW615F	FJ33-4	PW615F
Number of engines	2	2	2	2	2
Thrust per engine (lb)	1900 lb	770 lb	1350 lb	1500 lb	1350 lb
Weights and loading					
Max T-O weight (lb)	10600	4700	N/A	6250	7160
Performances					
IFR range (nautical miles)	1900	1395	1300	1050	1200
Max Cruise Speed (Mach nb)	0.75	0.65	0.59	0.66	0.66
Long range cruise speed (Mach nb)	0.65	0.57	N/A	0.52	0.63
Takeoff distance (ft), sea level, ISA	2305	2155	3120	2500	3000
Max. altitude (ft)	41000	41000	41000	41000	41000
Cabin caracteristics					
Volume (cu. fl.)	285	191	250	235	259
Press. baggage volume (cu. fl.)	50	26	0	14	20
Unpress. baggage volume (cu. ft.)	0	0	45	0	28

 \rightarrow Family concept: micro-exec \rightarrow very light executive transport

→ Minor derivative with fuse plugs fwd & aft of centre cabin

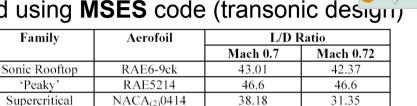


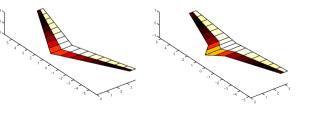
Y2004: KTH "II Papero" (Competitor Proposal)

Essentially a competitor proposal to the Blue Dolphin

- Cross-section, interior layout, avionics, systems & equipment retained from Blue Dolphin
- Freedom available in selecting an alternative morphology solution
 - → Adoption of T-tail
 - ➡ Roll control with spoiler augmented by small ailerons
- Work focused on examining novel aerodynamic solutions as well as refining aerodynamic attributes

II Papero


Blue Dolphin



Investigation of Aerodynamic Improvements

- Aerofoil selection and optimisation
 - Three candidates considered using MSES code (transonic design)
 - L→ Sonic Roof-top
 - So-called Peaky
 - Super-critical
 - → Final selection was Peaky section
 - \vdash Can reduce wing sweep
 - └→ Can remove Fowler flap track fairings (at least 1% drag reduction)
- Wing glove study
 - → Aim was to reduce wing loading, delay stall (increase C_{Lmax} for lower reference speeds) & improve fuel storage
 - Comparison with & without wing glove using TORNADO
 - A neutral performance result was found
 - Idea was dropped due to problems with landing gear integration, modest incremental fuel storage & ramp safety

Aerofoil L/D values

Y2005 RFP: Next Generation Regional Transport

RFP: 50-70 PAX family focused on turboprop renewal & organic growth into turbofan domain New Regional Transport 170 PAX

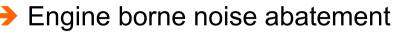
- → Baseline aircraft specs
 - → 70 PAX at 31" seat pitch
 - Limited-scale operations such as thin routes, actual PAX loads fluctuate
 - Combined exceptional field performance with high productivity
 - → Must fly in and out of London City or Toronto City Center (steep approach)
 - └→ Columbus-Denver city pair
 - → Must operate autonomously
 - Emphasis placed on marketability (PAX prefer)

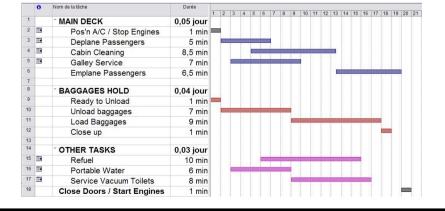
New Regional	
Accommodation	70 PAX
Seat pitch	At least 31 in. (0.79 m)
Weight per PAX	225 lb (102 kg) includes baggage
Baggage volume	At least 7 cu.ft (0.20 m ³) per PAX
Overhead bin volume	At least 2 cu.ft (0.06 m ³) per PAX
Design Range, IFR, 100 nm alt.	1500 nm (2780 km) @ M0.70
Out-and-return maximum range	At least 800 nm (1485 km) @ M0.70
Number of 200 nm sectors without refueling	At least 4
Long Range Cruise	At least M0.65
Normal cruise	At least M0.70
Maximum cruise	At least M0.75
Takeoff field length, ISA, s.l.	< 4200 ft (< 1280 m)
Takeoff field length, ISA+30°C, 5000 ft	< 6500 ft (< 1980 m)
Approach speed	< 120 KCAS
Initial cruise altitude, ISA, MTOW @ takeoff	At least 31000 ft
Time-to-climb, ISA, MTOW @ takeoff	< 25 min.
Single Engine Net Ceiling, ISA, 95% MTOW	At least 17000 ft
Service ceiling	At least 35000 ft
Service Life	80000 cycles
Fatigue Life	200000 cycles
Operational requirements	High elevation airports
	Unpaved and contaminated runways
	Design intent for steep-approach
	99.0% dispatch reliability and 99.5%
	scheduled completion rate @ EIS
	RVSM
Emissions	CAEP6 with 40% margin for NOX, CO,
	Hydrocarbons and Smoke
Noise	Average for cabin 76 dBA
	Stage 4 – 20 EPNdB
Operating Economics	Cash operating cost at least neutral with
	best comparable turboprop

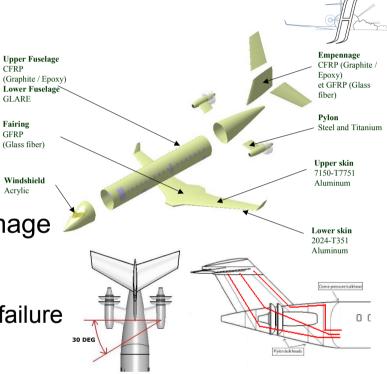
- → Family member 50 PAX regional
- → Missionised aircraft for freighter, corporate & government/military

Y2005: EPdM "Horizon 1100"

Entry-into-service in 1Q10


Propulsion - gearless counter-rotating open rotor fan rated at 10,000 lb.f each


- Hydraulic power free, Electro-mechanical (EMA) & Electrohydrostatic (EHA) actuators
- Lower maintenance & operating costs, no hydraulic fluid fire hazards, lower manufacturing times & bill-of-material
- → Landing gear: EHAs, electrically powered carbon brakes
- Traditional pneumatic [engine bleed] system services cabin environmental control, ice & rain protection, engine start
- Flight Control System
 - → Analog FBW with stability augmentation, 8% static margin
 - Primary FCS are EHAs, Secondary FCS use EMAs for spoilers & electric Power Drive Unit for high-lift & trim
 - Standard single yaw-damper none required for dispatch



Power Plant, Structures & Operation

- → Target Stage 4 minus 10 EPNdB CFRP
 - → Redesign fan blades using CFD methods & employ effective noise damping material
 - → Inlet cowl to utilise new composite acoustical panels
- Rotor-burst & Foreign Object Damage
 - Titanium/composite fan blades
 - → In case of fan blade separation designed to prevent catastrophic failure

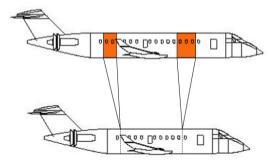
- 20 minute turn-around
- \rightarrow The aircraft is fully autonomous, no need for external stairs or Ground **Power Unit**

Fairing

Acrylic

GFRP

Competitors & Further Product Development

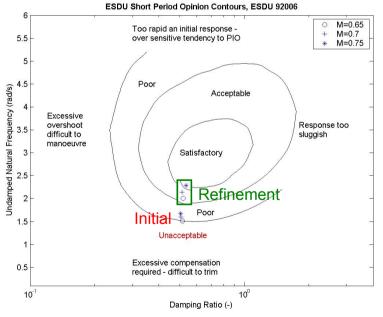

Competitive edge suited to turboprop renewal market

- → Good comfort, climbs higher, flies faster, longer range, good field operations
- Community noise needs further work
- Excellent operating economics

	HORIZON			1	-	
Competitor	Comparison Chart	2	6.49		200	-
Design Criteria	Specifications	AEROX Horizon 1100	Bombardier Q400	Avions de Transport Regional ATR 72-500	Bombardier CRJ-700	Embraer ERJ-170
Purchase Cost	Acquisition Price (US\$)	\$23,300,000	\$20,000,000	\$17,500,000	\$28,000,000	\$25,310,000
Accommodation	Seating (standard)	70	74	68	70	70
Accommodation	Weight per PAX (lb/PAX)	225		-		-
Cabin Dimensions	Seat pitch (in)	31	31	31	31	32
	Baggage volume/PAX (cu.ft)	7.31	10.23		-	
	Overhead bin volume/PAX (cu.ft)	3.01	3.45		2.2	2.5
	Cabin Volume/PAX (cu.ft)	38.4				
	Engine Manufacturer			Pratt&Whitney Canada		General Electric
Propulsion	Engine Model	GE38 Propfan	PWC-150A turboshaft	PWC-127F turboshaft	CF34-8E5 turbofan	CF34-8C1 turbofar
	Number of Engines	2	2	2	2	2
	Rated Thrust/Shaft hp per eng, SL	9640lbT	5071 hp			13790lb
	Long Range Cruise (Mach)	0.65	-	0.41	0.78	
Cruise	Normal cruise (Mach)	0.7	0.58			
	Maximum cruise (Mach)	0.75				0.8
A :	Design Range, IFR, 100 nm alt. (nm)	1650				
Airfield	Takeoff field length, ISA, s.l. (ft)	4166				
Performance	Approach speed (KCAS)	115				
Cash Operating	COC/Seat Mile - 200 nm (US\$) COC/Seat Mile - 400 nm (US\$)	5.00¢ 3.50¢	1		,	
Cost	COC/Seat Mile - 800 nm (US\$)	2.74¢	,	1	· /	
Noise	Noise Stage 3 Cum. Margin (EPNdB)				,	

- Family concept
 - \rightarrow 70 PAX \rightarrow 50 PAX, derated engine
 - Minor derivative with fuse plugs fwd & aft of centre cabin, retain part numbers
 - → Removal of 1 galley & 1 lavatory
 - → Similar handling characteristics
 - → No differential training for crew type rating

Y2005 KTH: Aero and S&C Refinement of "Horizon"


Aerod	ynamics
Low-speed	High-speed
• TORNADO • XFOIL • PLLT	• MSES

- Low and high-speed analysis/refinement
 - Attempt to retain original low-speed targets

→ Rule:
$$[M_{DD} - M_{crit} \ge 0.15] \& [M_{DD} > M_{MCRZ}]$$

Achieved satisfactory aerodynamic performance of the wing, however, steep approach still was left unresolved

- Refined sizing for S&C: Short Period & Dutch-Roll required remedying
 - → Wing
 - \mapsto Moved fwd, \uparrow S_W, \downarrow AR, \downarrow Γ
 - → Horizontal tail
 - \vdash Lowered, $\uparrow S_{HT}$, $\uparrow AR_{HT}$
 - → Vertical tail
 - $\rightarrow \downarrow S_{VT}$ (due to wing movement)

"Horizon 1100" S&C Improvements: Further Details

- Aerodynamic derivatives
 - New configuration has better drag properties & more benign C_{Mα}
 - → Improvements were considered to be a suitable trade against some loss of lift

	$C_{L\alpha}(1/deg)$	$C_{D\alpha}(1/deg)$	C _{ma} (1/deg)
Initial Geometry	0.0952	0.0026	-0.5891
Improved Geometry	0.0924	0.0018	-0.4698

No significant change in moments of inertia resulted

									Minin	num Dutch Roll N	AIL-F-8785C Level 1 - 0	Cat. B and C						
Type of Name motion	Name	122	Period (s)		ïme-to-half (s)		Cycles-to-half (-)								zeta	, Appr and Land a x omega = 0.10	1	
	Initial	Imprd	Initial	Imprd	Initial	Imprd	0.15 -	Min. Frequency		Clb, Crz and Des zeta x omega = 0.15								
Longitudinal	Phugoid	1.76e⁵	1.81e ⁶	94.98	95.9	5.4e ⁻⁴	5.3e-4	0.1 - 	Min	F	Refinement	Min. Damping						
Longitudinai	Short-period	4.35	2.92	0.82	0.58	0.19	0.20	Damping Rati − 0		Initial								
	Dutch roll	5.11	5.40	12.94	6.84	2.52	1.26	-0.05 -										
Lateral	Spiral	128.4	117.5															
	Rolling Convergence	0.86	0.89					-0.1 –				 Initial geometry Improved geometry 						
								0	0.5	1 Undamped I	1.5 2 Natural Frequency (rad/							

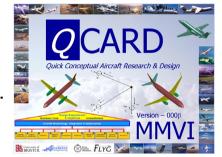
Conclude: Lessons Learned & Cascading Benefits

- Industry-university & university-university relationships are fostered, subsequently strengthened
- Three groups of beneficiaries
 - → Industry

VETENSKAI

OCH KONST

- └→ Offered graduates who have systems integration experience
- → Educational institutions EPdM & KTH *directly*
 - └→ Improved quality of education, marketable graduates
- Other educational institutions indirectly
 - → Ever-increasing numbers of international students
 - Institutions: University of Bristol, University of Edinburgh, ENSTA & Politecnico di Milano



Motivations for Continual Improvement

- Additional industry-university opportunities
 - \rightarrow New research possibilities
 - Inter-university final year project/thesis activities, e.g. 2005-06 UoB-KTH QCARD software development
 - → New initiatives
 - Industry internship/research programmes, e.g. Boltjes' "Optimisation of a Three Lifting Surface Configuration for a Business Aircraft" (BA-KTH)
 - → Assisted to generate previously non-existent third party industry-university ties

- Educational Initiatives
 - → KTH developing **new unit** in curriculum: 1233FRT Design Course
 - → Aim is to set up a foundation between course work and subsequent final year "exjobb" thesis project; carry out an industry-defined project
 - → Students fostered to be self-sufficient, e.g. must find own information
 - → Project topics: aerodynamics flight mechanics aero-elasticity
 - └→ Learn project work: process to reach a desired objective
 - └→ Learn teamwork: organisation & management dynamics

Future: Collaborative Design Education Activities

- New collaborative education set up between **UoB & KTH**
 - → 2005-06 **UoB-Airbus UK** ultra long haul wide-body design project
 - → B747 replacement; Middle-East to US operations
 - └→ Passenger Capacity
 - ⊢ Range
 - └→ Take-Off Distance @ MTOW
 - → Approach speed
 - └→ Engine-out Ceiling

 - → Other Constraints
 - → Airport Compatibility
 - → Turn Around Time
 - → Noise and Pollution
 - └→ Operating Costs
 - ⊢ Family concept

- 360 Seats (2-class)
- 7300 nm
- < 3350 m (ISA + 15°C, Sea Level)
- < 150 kts CAS
- 16000 ft at 97% MTOW, ISA + 10 °C
- 25 min. to 35000 ft
- Emergency exits to cover high density layout (30" seat pitch)
- ICAO Category F (span & length < 80m)
- < 90 min.
- Meet Stage 3 minus 25 EPNdB noise limit
- LHR QC0.5 Approach, QC1 take-off
- 15% improvement relative to B777-300ER
- Low Gross Weight option (range 4500nm)
- 15% PAX growth (with 6500nm range)

