

Hamburg HAW, 05/06/2014

Multicopters

A practical View on Unmanned Aerial Vehicles

Ę

Jon Verbeke

Overview

➢ UAS/RPAS

- Introduction UAS/RPAS
- Civil Applications
- Legislation
- Systems & operational aspects

> Multicopters

- Introduction
- o Design
- Control
- Example
- Live presentation

UAS/RPAS

UAS = Unmanned Aerial System RPAS = Remotely Piloted Aircraft System

"A set of configurable elements consisting of a remotely-piloted aircraft, its associated remote pilot station(s), the required command and control links and any other system elements as may be required, at any point during flight operation"

Introduction UAS/RPAS

RPAS vs. RC model aircraft

	RC planes	RPAS
What?	Тоу	Perform useful task (payload)
Purpose?	Recreational	Aerial work
Where?	Specific terrains	"Everywhere" Only after approval CAA
Legislation?	Existing model aircraft legislation	New legislation
Insurance	Model aircraft club	Operator

Parrot AR.Drone

kulab

KU LEUVEN

6

History

Started in the late 1800's with unmanned gliders

- First "successful" RPA's during WW2 as aerial targets or missile
- During Vietnam (1960's) first used in reconnaissance role

Introduction UAS/RPAS

History

From the 1980's: more military applications

Drones = BAD

Introduction UAS/RPAS

Why use RPAS?

Dangerous applications (close-up inspection)

- Tedious applications (area monitoring)
- Stealth applications (surveillance)
- Research (test platform, R&D,...)
- RPAS generally cheaper than manned aircraft

kulab

KU LEUVEN

Cost comparison

RPAS overall cheaper

- RPA is cheaper than manned version
 (No systems needed for pilot: ECS, ejection seat,...)
- RPS and ground handling is more expensive
- Pilot training is cheaper
- Difficult to precisely quantify the cost
 - o 1 manned aircraft = ? Unmanned aircraft?
 - Small or large RPA? Certification? Safety systems?

Configurations

Introduction UAS/RPAS

Configurations/classifications

Introduction UAS/RPAS

kulab

KU LEUVEN

Civil applications

Your imagination is the limit...

kulab

KU LEUVEN

> Surveillance

Mapping (GIS = Geographic information system)

Precision agriculture

Delivery Services

"Beer-delivery drone grounded by FAA"

Media (Filming + photography)

> Herding

Search (and Rescue)

Search (and Rescue)

Search (and Rescue)

Flying RPAS legally

- 1. Am I allowed to fly (Permit)?
 - \Rightarrow Aviation Authorities (State < 150kg, EASA > 150kg)
- 2. Where may I fly?
 - \Rightarrow Airspace, airports CTR, military areas,...
- 3. What operational measures should I take? \Rightarrow Location, Mission, Command & Control,...
- 4. Privacy?
 - \Rightarrow Photo and video capturing

Safety!!

Permit

- Aircraft airworthiness and registration
- Pilot license
- Operator permit (operational manual, maintenance log,..)
- Insurance
- Launch and recovery location owner's permission
- Local authority permission
- Depends on (national) legislation!
 - <u>http://uvs-international.org/</u>
 - o <u>http://www.uavdach.org/</u>

(European society)

KU LEUVEN

kulab

(German society)

German society

Where?

> Airspace:

- A,B,C,D,G?
- P,R,D regions
- Cities?
- Airports CTR
- Low level operations
 - Military low flying areas (LFA, down to 75m)
 - Helicopter training area (HTA, GND up to 75m)

VLOS, BLOS

- Visual Line of sight
- Beyond line of sight

Operational measures

Launch and recovery area

- Obstacles
- Safety region
- Mission
 - Close-up inspection industrial site vs. monitoring fields
- Line of sight, Command and Control
 - Control and telemetry data protection, frequencies
- Right of way
 - RPAS at the bottom
- Meteo
 - Required minima depend on RPA and mission

Privacy

No separate RPAS-privacy laws. Normal laws apply.

It is forbidden to take images AND distribute them IF people can be identified WITHOUT permission UNLESS there is a justified reason

kulab

KU LEUVEN

System overview

Systems and operational aspects

kulab

KU LEUVEN

Take-off

Recovery

Transport

Handling

Maintenance

Parts, structure, systems, when, how...?

Multicopters

Multicopter

- Special type of helicopter
- Has three or more rotors/propellers

- \blacktriangleright Often rotors are fixed-pitch \Rightarrow propellers
- Control of multicopter is by varying speed of each propeller
- Very robust, simple and cheap
- Name multirotor = multicopter

Types

There is no upper limit to the number of propellers:
 4 propellers = quadcopter, 6 propellers = hexacopter,
 8 = octo, 10 = deca,...

Types

Configurations

- 1) Quad +
- 2) Quad X
- 3) Hexa +
- 4) Hexa H
- 5) Tri
- 6) Hexa Y

- 7) Octo Conventional
- 8) Octo V shape
- 9) Octo Coax X
- 10) Octo Coax +

New configurations are still being conceived!!

KU LEUVEN

kulab

Special versions

> Tilt rotor/ tilt wing

> With wing

Special versions

PhD Research:

- Design & Control of an 0 autonomous rotary RPA for inspection of orchards
- Harvest yield estimation 0

kulab

Design

Multicopter control

For example: quadcopter T₁ Χ ω₄ T= Thrust Q_1 Q_4 ω = propeller speed ω_2 Q_2 Q = Torque Q_3

 ω_2

Autopilot

> Multicopters are inherently unstable \Rightarrow autopilot!

- Autopilot = computer that stabilises and controls the multicopter
- Use info from sensors to evaluate the current state of the multicopter and command the motors to achieve a desired state
- Both open-source and corporate autopilots exist

Autopilot examples

- OpenPilot
- Paparazzi
- Mikrokopter
- Kkmulticopter
- Multiwii
- Aeroquad
- > Arducopter
- Pixhawk

KU LEUVEN

kulab

APM 2.6

- ArduPilotMega 2.6 open source autopilot
 - Mission planner software on laptop for inflight real-time status
 - Suitable for fixed-wing and rotary RPA
 - Includes:
 - 6DoF Inertial Measurement Unit
 - 3-axis magnetometer
 - Barometric pressure sensor
 - Combines with 3DR telemetry link and GPS
 - Size: 7x4x1cm, Total weight: 72g

Control

PID controller (1)

Proportional-Integral-Derivative controller

- Controller looks at the error between the actual input and the desired input and translates this error into a correcting output
- Consists of three parameters that do the "translation"
 - Proportional parameter
 - Integral parameter
 - Derivative parameter

Autopilot control levels

KU LEUVEN

Onboard sensors

Inertial Measurement Unit (IMU)

- 6DoF accelerations : \ddot{x} , \ddot{y} , \ddot{z} , $\ddot{\varphi}$, $\ddot{\theta}$, $\ddot{\psi}$
- Integrated over time to give velocity and position
- Large drift over time
- Global Positioning System (GPS)
 - Absolute position
 - Used as a correction for IMU drift

KU LEUVEN

kulab

Onboard sensors

Control

- Magnetometer
 - Magnetic heading
- Barometric pressure sensor
 - o Altitude
 - Climb speed
- Ultrasonic altitude sensor (optional)
 Height above the ground

Optional onboard sensors

vliegrichting

Control

Optical flow sensor

- Films the ground and detects horizontal movement
- Takes pitch, roll and altitude into account

flower moves all the way across sensor's field of view

Navigational (Ultrasonic) sensors

- Detect walls, ceiling and floor
- Prevents collision (indoor)

Tasommeters

Optional onboard sensors

Laser scanner

- Scans environment
- Builds its own map for navigation

Optional onboard sensors

Forward camera

- Image processing
- Pilot FPV or automatic navigation (object recognition)

Control

Indoor off-board sensors

- Vicon motion capture system
 - Room full of cameras (20x MX T40 cameras)
 - $_{\circ}$ Determine 6D pose of (multiple) vehicle(s): x, y, z, $\theta, \, \phi$ and ψ
 - Very accurate (millimetres) and fast (up to 2000Hz)

Control

kulab

Optional onboard additions

- Camera gimbal
 - Mounts camera
 - 1D, 2D or 3D
 - Compensated for roll, pitch and yaw vehicle
 - From pocket camera up to cinematic cameras
- Navigational LEDs
 - Red, white and green
 - Marginal power consumption

• • •

kulab

KU LEUVEN

Research @ KU Leuven

- PMA Mechatronics and Robotics, Prof. Joris De Schutter
- ESAT TELEMIC, Telecommunications and Microwaves, Prof. Sofie Pollin
- ESAT PSI, Processing Speech and Images, Prof. Tinne Tuytelaars
- Thomas More EAVISE, Embedded Artificially intelligent Vision Engineering, Prof. Toon Goedemé
- BIOSYST M3-BIORES, Measure, Model & Manage Bioresponses, Prof. Eddie Schrevens
- Kulab Propolis, Processing Polymers & Lightweight Structures, Prof. Frederik Desplentere

kulab

KU LEUVEN

- http://www.aerialtronics.com/
- Endurance: 8 20min
- Range: 600m 2km
- Payload : 2.75kg
- Wind: up to 12m/s (40km/h)
- Very modular design
- Cameras:
 - Digital Single Lens Reflex-camera (DSLR)
 - **FS700**
 - RED

KU LEUVEN

kulab

Their new Altura Zenith ATX8

Monocoque structure!

Flight Demo

AR.Drone Parrot 2.0

- Dimensions: 52x52cm
- Weight: 400g
- Battery: 3S1500 LiPo
- Endurance <12min
- Embedded computer/autopilot
- Ultrasound altimeter 6m range
- Forward camera (1280x720pix, 30fps)
- Downward camera (320x240pix, 60fps)
- Safe to fly outside flight lab
- Watch out for Wifi hotspots!

KU LEUVEN

kulab

