Heinkel He 176 Douglas Downer-Smith

۲

•

•

Lecture of the RAeS Hamburg University of Applied Sciences 01.10.2009 Download this file from http://hamburg.dglr.de The story of the worlds first liquid fuelled rocket powered aircraft and the people involved

Peenemünde June 1939

a milestone of flight takes place

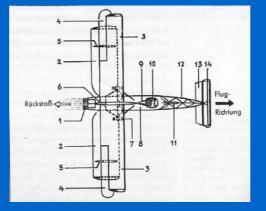
The path leading to this event:

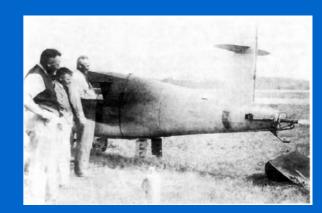
Civilian rockets & propulsion 1919 - 1932
Military rocket development 1931 - 1939
Rocket aircraft development 1935 - 1939

۲

•Heinkel He 176 1935 -1939

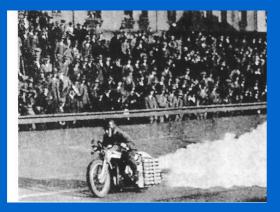
Civilian rockets and propulsion 1919 - 1932

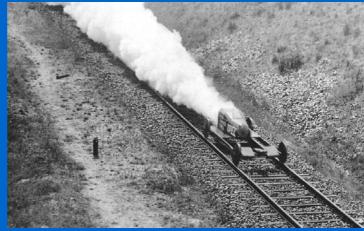

- •1919 Treaty of Versailles?
- •1923 Oberth's Die Rakete zu den Planetenräumen published
- •1927 VfR Spaceflight Society formed and quickly grows
- •1928-29 Emergence of rocket motors as a means of propulsion
- •1930 Raketenflugplatz established (Mirak & Repulsor)
- •1930 Army establishes Kummersdorf
- •1932 VfR winds down through political disputes and funding


Rocket Aircraft 1928 - 1929


Rocket Aircraft: •May 1928 - Opel RK 22 •June 1928 - Lippisch Ente •June 1929 - Opel GMG-RAK •September 1929 - Opel Rak 1 •October 1929 - Espenlaub RAK 3

Rocket Aircraft 1928 - 1929





Rocket Propulsion - Entertainment in 1929

Military Rocket Development from 1931

Personalities and Organisations

- •Dornberger Army Ordnance at Kummersdorf
- •Werner von Braun Army Ordnance
- •RLM established
- •Helmuth Walter HWK
- •Wolfram von Richthofen Technical Office, RLM

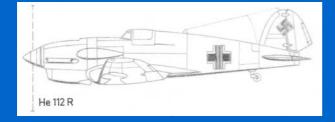
- •Junkers
- •Ernst Heinkel EHF
- •Eric Warsitz Pilot

Interservice co-operation 1933 - 1936

- •Joint Agreement Oct 1934 (Rockets & ballistics)
- •Rocket motor accident at Junkers Feb 35 (RLM & Army visit)
- •RLM & Army view Schmiddings pulsejet in Munich
- •von Richthofen proposes RLM/Army/Junkers 'Rocket Interceptor' May 1935
- •Peenemünde proposed for RLM & Army June 1935 why?
- •Joint development of Rocket Aircraft between RLM/Army/ Junkers/EHF summer 1935

Joint development of Rocket Aircraft 1935 - 1936


Construction begins at Peenemünde summer 1936


Rocket motors fitted to:
Ju 50 - explodes during testing late 1936!
He 112 - EHF supplies airframes for testing rocket motors and....

He 176 - concept discussed

Rocket Aircraft of the Military Period

Rocket Aircraft Development 1935 - 1939

Interservice rivalry emerges - why?
Dual programme of rocket motor development
WvB LOX - development time & performance
HWK H₂0₂ - simpler & availability

Rocket Aircraft Development 1935 - 1939

Interservice rivalry emerges - why?
Dual programme of rocket motor development
WvB LOX - development time/performance
HWK H₂0₂ - simpler/availability

Peenemünde East - ArmyPeenemünde West - RLM/LfW

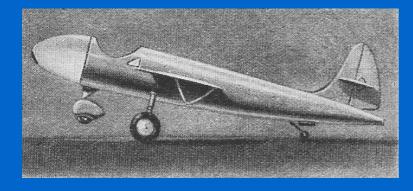
....the reasons....

Rocket Aircraft Development 1935 - 1939

•RLM no longer reliant on Army Ordnance rocket technology •Despite the rivalry co-operation remains •Rocket Aircraft •He 72 (H₂0₂) - Jan 1937 •Fw 56 (H₂0₂) - Summer 1937 •He 112 V3 (H₂0₂) and He 112 V4 (LOX) - 1937 •He 176 V1 & V2 (H₂0₂) -1935 and projected V3 & V4 (LOX) •DFS 194 (H₂0₂) - late 1940*

Rocket Aircraft 1935 - 1940

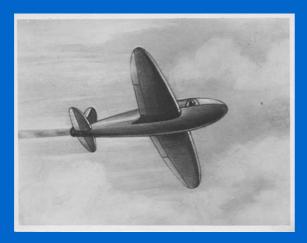
 $\bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet$

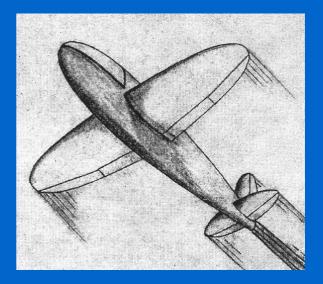

He 176 Concept 1935 - 1937

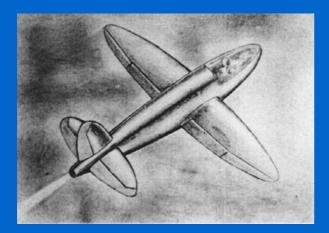
•1936 - Conceived at WvB/RLM/EHF meeting
•1937 - Designated by RLM as Interceptor
•Construction begins
•EHF and and the pursuit of speed
•LOX and H₂0₂ motors evaluated
•Final choice of motor

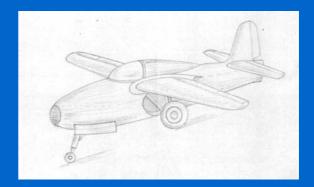
He 176 Development 1938 - 1939

- •1938 Tow and Taxi Trials at Peenemunde and Wind Tunnel Tests
- •1938 Short power burst to test handling
- •1939 (Jan to Apr) 29 flights recorded (throttle problems)
- •15 June 1939 First official flight
- •20/21st June 1939- Flights before RLM (further flights cancelled!)
- •3rd July 1939 Demonstrated to Hitler
- •1939 (Jun to Nov) 19 flights recorded Peenemunde & Rechlin

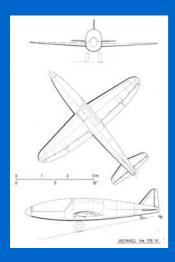

He 176 - Post War - it looked like this.....

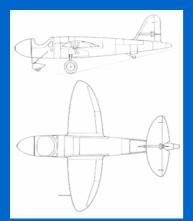


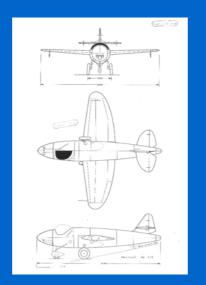


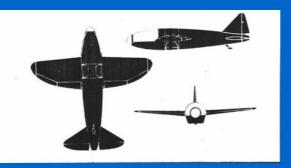


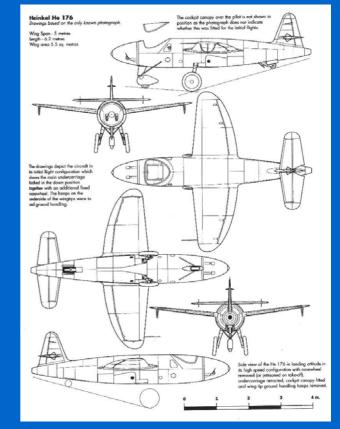
He 176 - post war recollections










He 176 Post War Technical Drawings

•

The aircraft actually looked like....this.....

He 176 under power

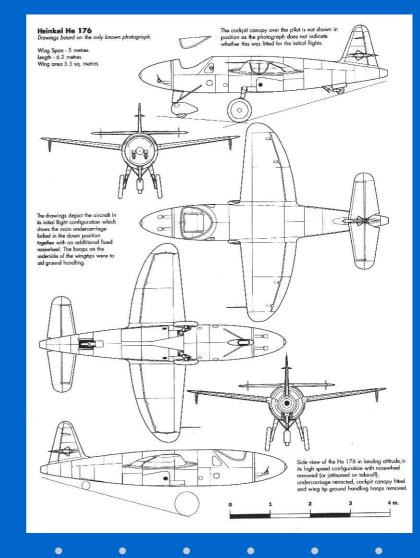
How might the aircraft have flown?

Questions and problems:

- •Speeds claimed post war were up to 800 km/h possible?
- •Could aircraft design software be used to model the aircraft?

۲

- •Would aerodynamic students be willing to recreate?
- •Any wind tunnel testing possible?
- •Limited personal aerodynamic knowledge


The solution....

was to use Aircraft PDQ software

Reconstructing the He 176 from the photograph

Arthur Bentley's drawing of 2002 based on undercarriage type and retract requirements and similarities to the He 178

Reconstructing the He 176 from the photograph

But....

.....there was a problem.

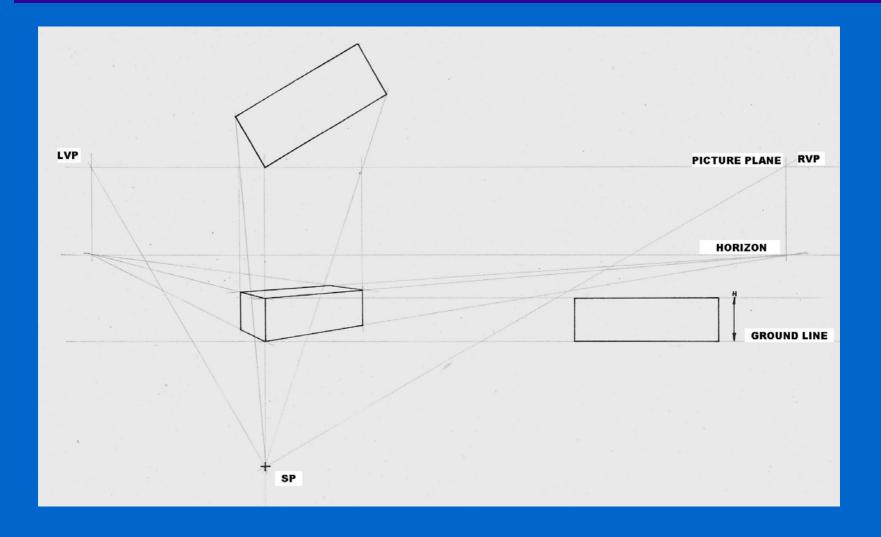
The design as drawn was unstable with poor CG position!

What to do next....?

Creating a 2D drawing from the photograph

•Discussion with Technical Illustrator

۲


۲

۲

•Understand Perspective Drawing

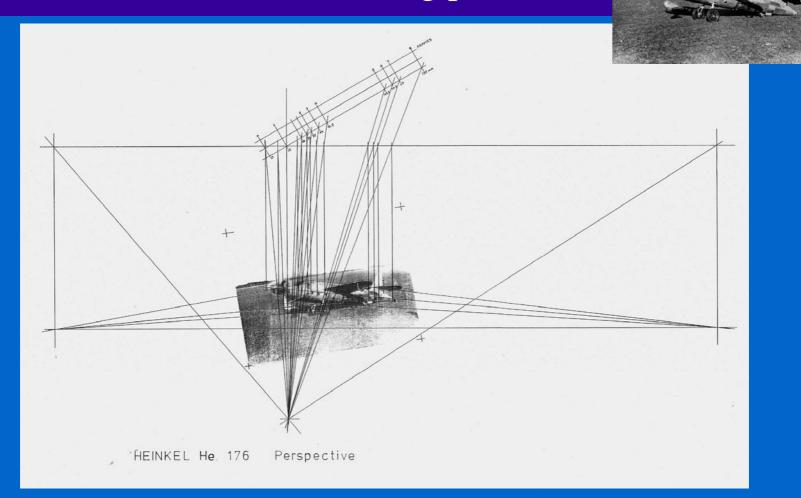
•Evaluate the wing placement

Perspective Drawing

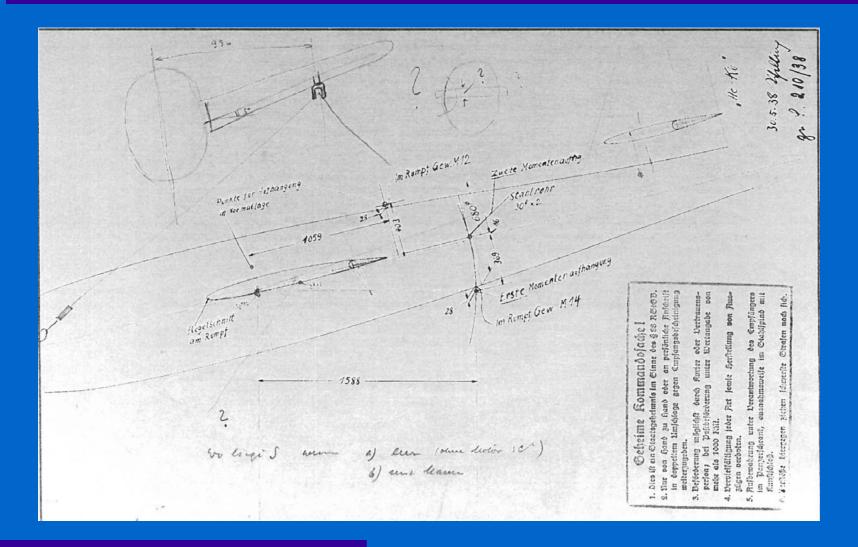
•

Perspective Drawing

Difficulties ?
Shape of the aircraft
Inclined and worms eye view
Reliable dimensions


Solutions ? •Develop a technique •PID = Perspective Interpretation Drawing

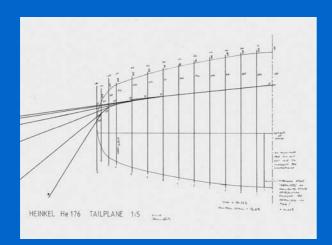
Establishing perspective construct lines

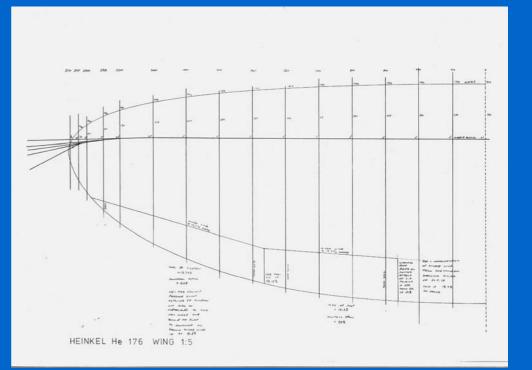


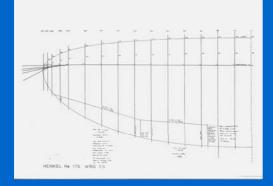
He 176 PID to establish wing position

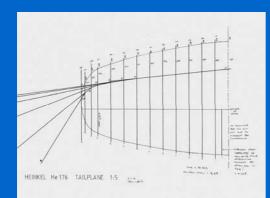
But...how accurate are the results?

A breakthrough.....found in the Göttingen Archives

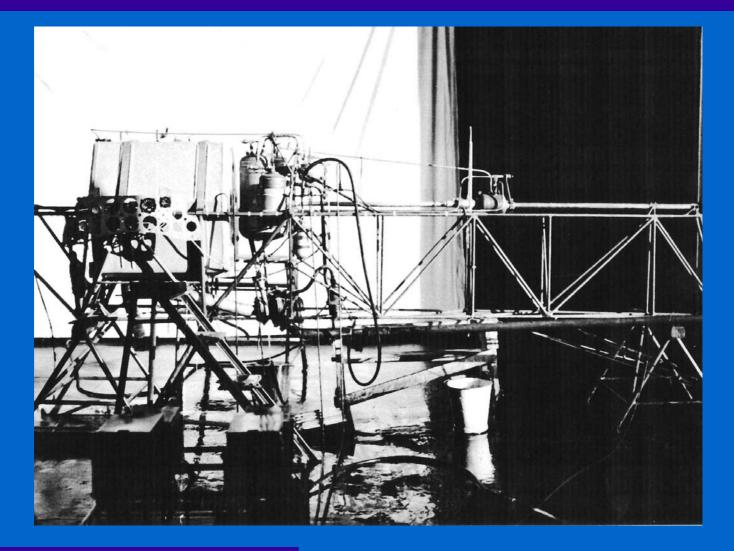



He 176 PID techniques to establish wing shape

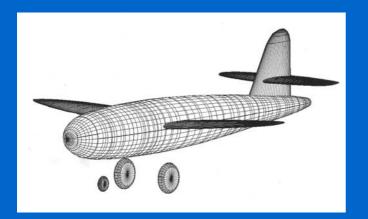

He 176 Wing and tailplane reconstructed using PID

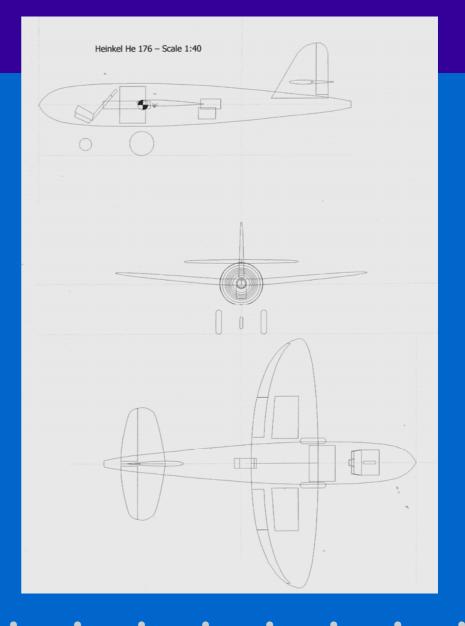

Airfoil sections similar to NACA 0009 - 34

Other Heinkel wings and tail planes used for comparisons

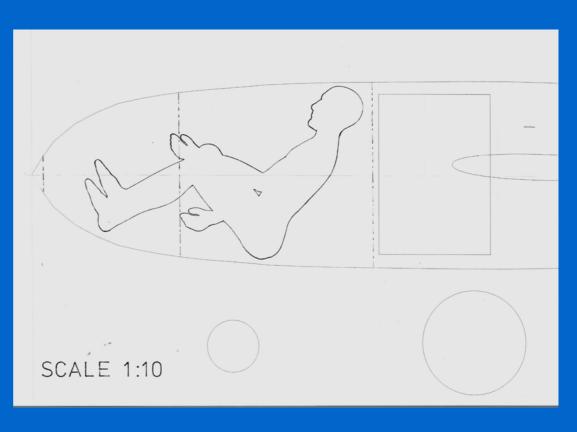


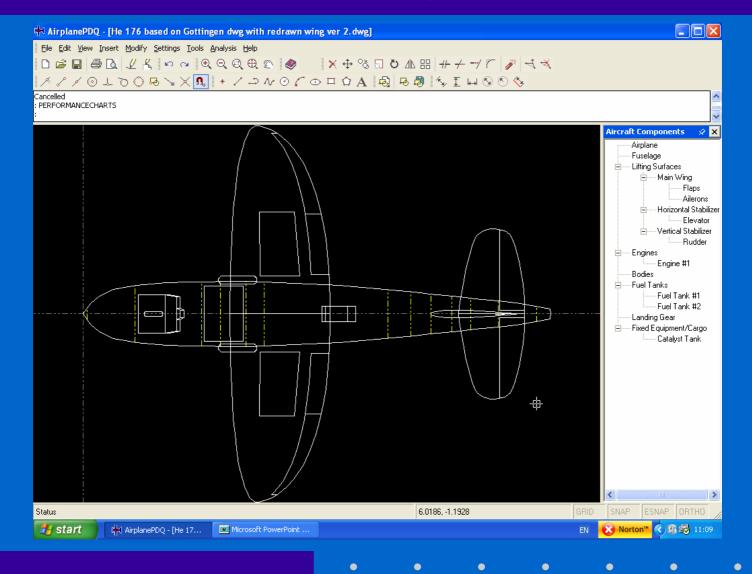
 $\bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet$


•


HWK H₂O₂ Rocket Motor similar to the He 176

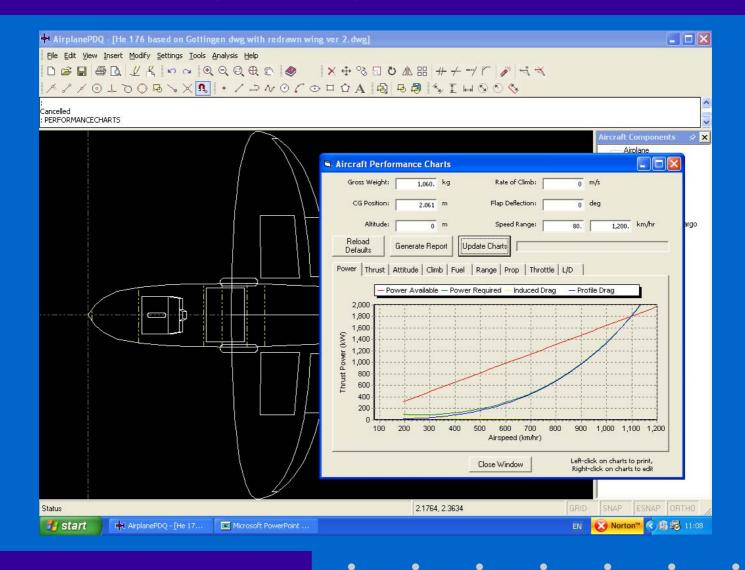
He 176 Drawings 2009


2D and 3D drawings constructed from Göttingen sketches and Perspective Interpretation Drawings of photograph in PRO - Kew



He 176 - The aircraft was small for the pilot!

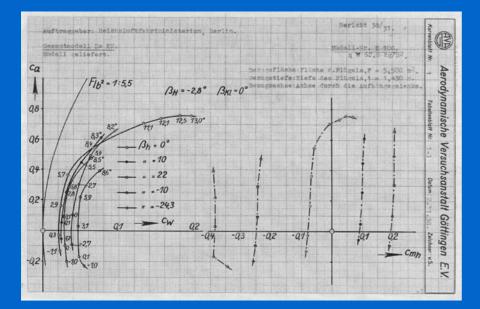
Max length from bulkhead to tip = 1580 mm Max dia. of fuselage = 850 mmRoom required for instrumentation, motor controls, aircraft controls and pedals Verdict = tight!



How could it have flown using Aircraft PDQ

•

Aircraft PDQ - generating Performance Charts



Preliminary Aircraft PDQ performance figures

•No effect of compressibility •Wing data optimised for low speed < M 0.3•Calculated top speed just over 1000 km/h •Lift curve shows lift ~9.5 times drag •Drag co-efficient at ~0.02 •Drag overall •Appears to be for max. speed without compressibility • C_D of wing ~0.005

Validating Aircraft PDQ results

Göttingen Wind Tunnel data used to reconstruct basic flight performance

ober 19	Oktob	14.	tingen, der	Göt	1/2	nblatt-Nr.	Kurve	2	nblatt-Nr.	Tabelle
		_				He Kü.	modell	Gesant	Modelles:	Art de
Nr. E 10	lell-Nr.	Moo			-					-
									geber:	2
en des Auftraggebers: Modell geliefert. Auftrag vom: 25.7.38.										Unterla
			Flügelfläche F in m ¹		Berugsti t in n	irößte nnweite in m	Spa	Profil= Bezeichnung s Auftraggebo	il-Nr. de	Prof
			5,50	0	1,43				100	
		2							2.2	
mm Q			Luftdr chwindigke			Temperat kg/m ²	•		der Messur r Staudruc	
Ge	5.8	Rezi-	Mor	Tangen-	Normal-	Wider.	Auf.	Wider.		
U	Stau- druck	proke	menten-	tialkraft	kraft-	stands- zahl	triebs- zahl	stands- kraft W	Auftriebs- kraft A	Anstell- winkel
	q kg/m ²	A/W	cmh	ct	cn	cw	ca	kg	kg	Grad
			1.1	5 11		1				
			= 0 ⁰	0	= -2.8	6	= 0	8		
		•	1			· -		4-1C		
					3.28					
	63,0								-45,900	
	63,0	-1,4	-0,080	0,021	0,029	0,0209	0,029	9 043	-10,050 55,400	2,9
	62,3								123,500	
1.	61.4								184,900	
	40.0								155,700	
	39,7		0,025						150,300	
3 21,	28,3		0,048						118,000	
2 611	35,9	3,9	0,068	0,020	0,781	0,195	0,757	38,556	149,500	3,0
			. 1			14				
			122200-10	ngegel	Aufha	rch die	hse du	hse: Ad	Bezugsa	1.1
			enke.							
			enke.							
			enke.							
			enke.							
			enke.							

Comparison of Aircraft PDQ with Göttinger results

•Using Göttinger C_L/C_D graph for no flaps

•Use weight calculated weight estimates from APDQ

۲

•Calculate C_L for V m/s

•Read off graph the values of CL

Comparison of Aircraft PDQ with Göttinger results

Calculate new values for Drag
Calculate Power Available = 650 kW
Calculate V_{ROC} = 66 m/s
Calculate Stall Speed = 234 km/h
Calculate Take off Speed = 180 km/h
Calculate Approach Speed = 300 km/h

Comparison of preliminary data with contemporary data

Ing. Walther Künzel - EHF

DDS - 2009

Max speed = 1000 km/h
R.O.C. = 67.5 m/s
Min Speed = 170 km/h
Take off Weight = 1000 kg

•Max speed = 1090 km/h

•R.O.C. = 66 m/s

•Min Speed = 180 km/h

•Take off Weight = 1060 kg

How could it have flown? - Aerodynamic Summary

Analysis in chart and tables for: •Summary Report •Geometry •Weight and Balance •Drag •Trim •Aerodynamics •CG Limits •Design Check Report

۲

۲

۲

۲

۲

Aircraft PDQ He 176 Dimensions and Weights

- •Wing Span 5.007 m
- •Length 6.203 m
- •U/C track 0.9 m
- •Fuselage Width 0.862 m
- •Wing Area 5.379 m^2
- •Wing Loading 197.1 kg/m²

Motor Thrust - 5900 N •Empty weight - 550.1 kg •Gross Weight - 1060.1 kg •Fuel capacity - 312.4 1 •Thrust to Weight - 0.5676

Aircraft PDQ He 176 Performance - theoretical

•Max. level speed - 309.4 m/s (1113.8 km/h) •Cruise - 301.4 m/s (1085.1 km/h) •Stall Speed Clean - 54 m/s (195 km/h) •Stall Speed 45° Flaps - 46 m/s (166 km/h) •Max. ROC - 66 m/s •Max. Lift/Drag - 9.6 •Max. Cruise - 79 km •Fuel Consumption - 5477 l/h*

How did it actually fly?

According to Eric Warsitz..... The flight overview consisted of: •Pre-flight checks •Take Off •Observations •Flight •Landing

۲

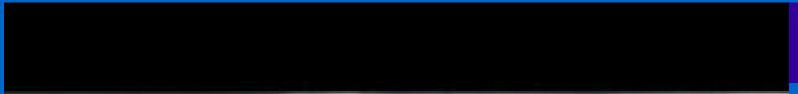
۲

۲

Duration of flight.....

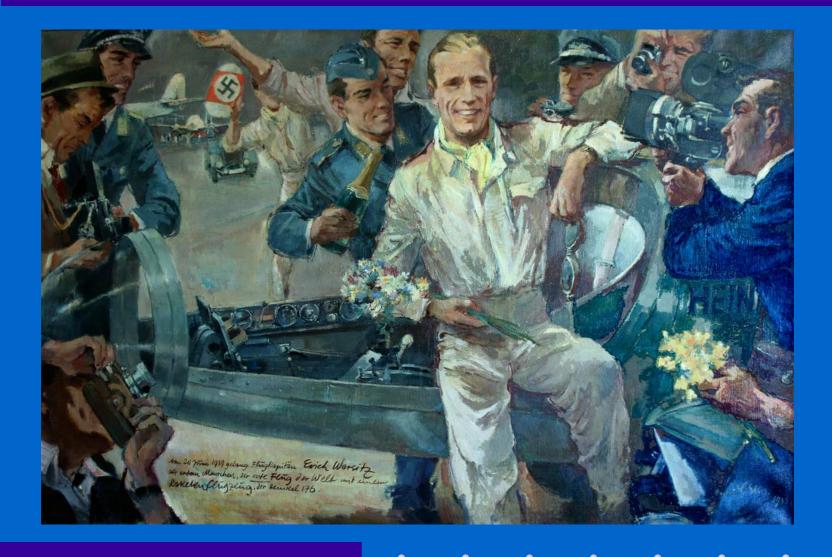
Approx. 55 seconds !

۲

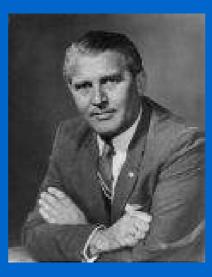

Did it fly or could it have flown?

•Documentary evidence •Theoretical calculations •Modern day Test Pilots' views •Aerodynamicist's views •Effects of undercarriage and nosewheel on drag •Preliminary conclusions •On-going work

۲


۲

- •
- •



Celebrations...!

What became of those involved....?

Werner von Braun

Eric Warsitz

Ernst Heinkel

Heinkel's Legacy - milestones of flight

He 178

The world's first turbojet powered aircraft He 280

The world's first twin jet turbojet powered aircraft He 162

The world's first single turbojet powered fighter aircraft

....and the subject of this presentation

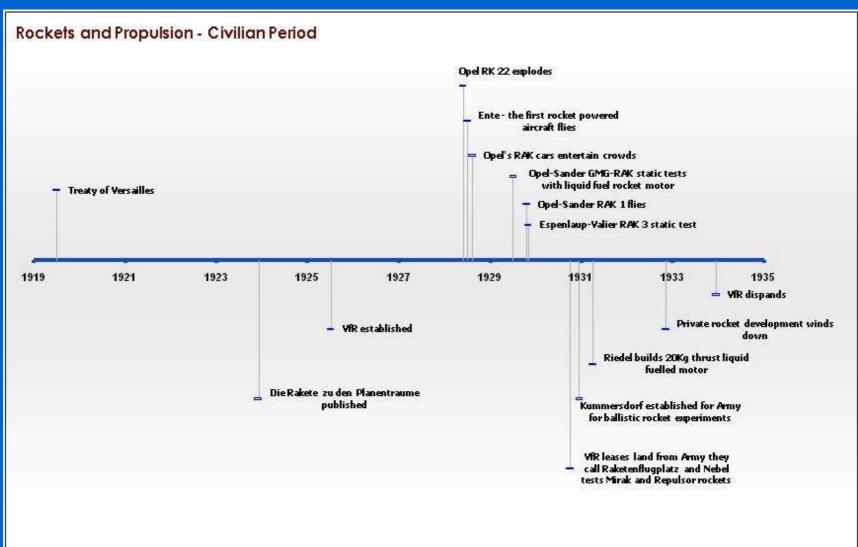
Heinkel's Legacy - milestones of flight

The world's first liquid fuelled rocket aircraft

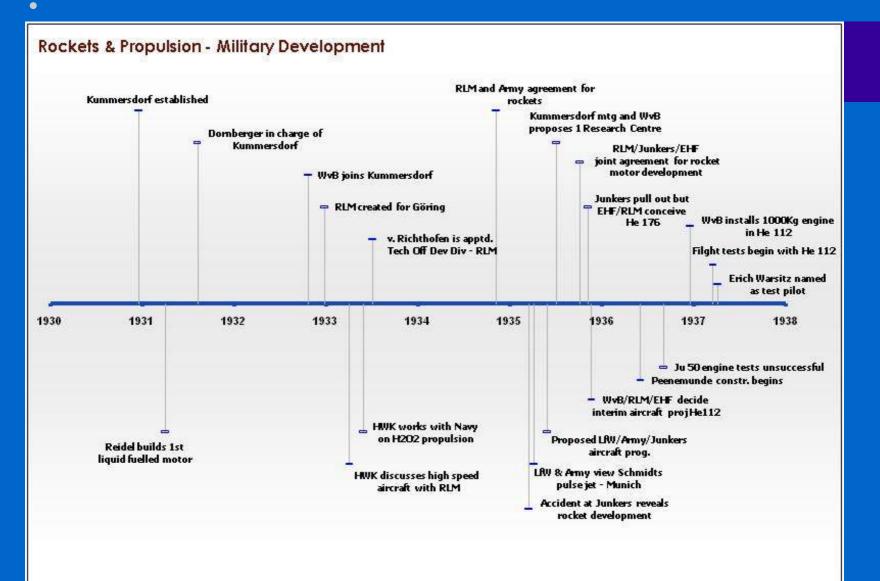
Heinkel He 176

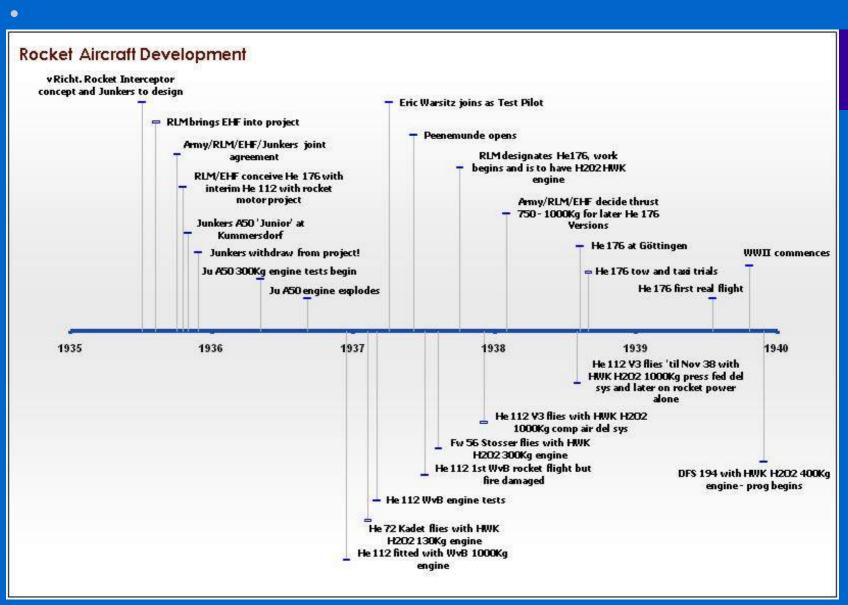
My thanks to all those who have helped and guided...

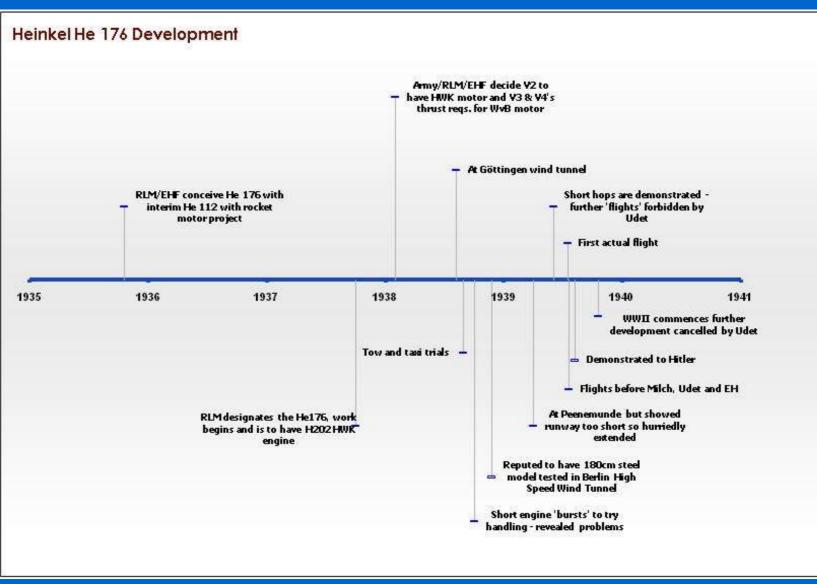
۲


Arthur Bentley - UK Gil Crouse - Aircraft PDQ, USA Dr Martin Hepperle - AVA Braunschweig C Gibberin - France Dr Volker Koos - Germany Matthew Lee - IWM, UK David Myhra - USA Henry Matthews - Beruit Dr Michael Neufeld - Smithsonian, USA

Phil Osborne - Eureka Films, Canada David Philpott - UK Shamus Reddin, UK Wolfgan Schinhan - DM, Munich John Scott-Scott - RRHC, UK Helmut Walter - Germany Lutz Warsitz & family - Switzerland Stephen Walton - IWM, UK Jessica Wichner - AVA Göttingen




The story of the worlds first liquid fuelled rocket powered aircraft and the people involved



•

.

• • • • • •

Graph to show for Power Available and max. speed (theoretical)

۲

۲

۲

•