

Standschwingungsversuch am AIRBUS A380-800

Gerrit Gloth

Deutsches Zentrum für Luft- und Raumfahrt (DLR) Institut für Aeroelastik, Göttingen

5 April 2005

Structural Dynamics DLR Goettingen

Standschwingungsversuch am Airbus A380-800

- Warum Standschwingungsversuche?
- Grundlagen von Standschwingungsversuchen
- Der Airbus A380-800
- Test Vorbereitung
- Test Durchführung
- Resultate
- Zusammenfassung

- Untersuchung des dynamischen Verhaltens
- Experimentelle Identifikation modaler Parameter

 - Anregung der wichtigen Eigenformen mit hohen Kräften
 - ♦ Evaluierung der Linearität der Eigenformen
 - Sensoren auf der primären Struktur (Flügel, Leitwerke, Rumpf, Kontrollflächen)
- Validierung des dynamischen Finite Elemente Modells

 Justierung von Parametern des FE Models (Model Updating)

- Flatteruntersuchungen nach den Regularien der Zulassungsbehörden für die Zertifizierung von neuen Flugzeugtypen
 - ♦ Flatterberechnungen mit dem FE Model
 - ♦ Erlangung der Flugzulassung
 - ♦ Vorbereitung von Flugtests
- Weitere schwingungstechnische Untersuchungen
 - Windmilling oder Fan-Blade-Off Untersuchungen; Erregung an den Triebwerken mit sehr großen Kräften; Sensoren auf Systemen (Cockpit, Computer etc.)
 - Komforttest; Erregung der Decks mit Unwuchterregern;
 Sensoren auf den Decks

Modale Parameter

Physikalische Darstellung:

$$[M]{\dot{x}} + [D]{\dot{x}} + [K]{x} = {F}$$

Modale Transformation:
$$\{x\} = \sum_{i=1}^{N} (q_i \{\varphi_i\})$$

Für jeden Eigenmode: $m_i \ddot{q}_i + d_i \dot{q}_i + k_i q_i = f_i$

Updating mit Eigenfrequenz $\omega_i = \sqrt{k_i / m_i}$ und $[\varphi]$

Grundlagen von Standschwingungsversuchen

- Zentrale Messkampagne am fertiggestellten und bereits flugtauglichen Flugzeug
- Großer Zeitdruck direkt vor dem Erstflug
- Messung mehrerer Konfigurationen zur Identifikation der strukturdynamischen Eigenschaften
- Nutzung des Aufbaus f
 ür weitere Schwingungsuntersuchungen (Windmilling, spezielle Komponenten – Fahrwerke, Decks, Landeklappen)

Grundlagen von Standschwingungsversuchen

Typischer Versuchsaufbau

Grundlagen von Standschwingungsversuchen – PRM

Phasenresonanz-Verfahren (PRM)

- Harmonische mono-frequente Anregung
- Anpassung der Kraft f
 ür jede Eigenform
- Direkte Messung der reellen Eigenformen
- Zeitaufwändig, aber verlässlich, hohe Genauigkeit möglich
- Gut geeignet im Fall von strukturellen Nichtlinearitäten

Grundlagen von Standschwingungsversuchen – PSM

Phasentrennungs-Verfahren (PSM)

- Messung von Übertragungsfunktionen (engl. frequency response functions - FRF)
- Breitband-Anregung durch Gleitsinus- oder Randomläufe
- Schnelle Messung
- Sorgfältige Auswertung notwendig
- Zahlreiche Erregerkonfigurationen

Grundlagen von Standschwingungsversuchen – PSM

Stabilisierungsdiagramm

- ♦ Indikatorfunktion (gelb)
- ♦ Gemittelte FRF (grün)
- ♦ Identifizierte Eigenformen (Buchstaben)

- Vergleich zwischen
 - ♦ gemessenen FRF (gelb)
 - Aus modalen Daten
 rückgerechneten FRF (grün)

Grundlagen von Standschwingungsversuchen

Verbesserte Teststrategie

- ♦ Kombination von PRM and PSM
- Reduktion der Testzeit um 1/3 gegenüber den 90er Jahren
- ♦ Verbesserung der Datenqualität
- ♦ Schnelle, zur Messung parallele Analyse von Gleitsinusläufen
- Detaillierte Analyse von von ausgewählten Eigenformen mit PRM (Flatter-relevante Eigenformen, nichtlineare Phänomene, etc.)

Airbus A380-800

Super Jumbo A380 - "Flagschiff" des 21 Jahrhunderts Größtes Passagierflugzeug der Welt

- ♦ Spanweite: 80 m
- ♦ Länge: 73 m
- ♦ Höhe: 24 m
- Zwei Decks:
 "main and upper deck"
- ♦ maximales
 Startgewicht: 560 tons
- ♦ Kabinengestaltung für
 555 bis 806 Passagiere

Copyright AIRBUS Computer Graphics by Fixion

Test Vorbereitung – Übersicht

- Enge Zusammenarbeit mit der französischen ONERA (Office National d'Études et de Recherches Aérospatial)
 - ♦ Gemeinsame Vorbereitung, Team-Training

Hardware-Entwicklungen

- ♦ Sicherheitsabschaltung
- ♦ Unwuchterregung der Decks

Software-Entwicklungen

- ♦ Anpassung der Kraft ("Force notching")
- ♦ Virtueller Anregungspunkt
- ♦ Ermittlung nichtlinearer Eigenschaften aus PSM
- Nutzung des Finite Elemente Models
 - ♦ Antwortrechnungen

DLR-ONERA Kooperation

- Gemeinsamer Forschungs-SSV 1999
 - Vorstellung neuer Teststrategie
 - Definition zukünftiger Hardware- und Softwareentwicklungen
- Weitgehende Hardware-Kompatibilität
 - Zusammenschaltung der Datenakquisitionsanlagen (VXI)
 - Verwendung gleicher Erregertypen
- Gemeinsame kommerzielle Tests
 - Jan./Feb. 2001: A340-600, Toulouse
 - Okt./Nov. 2001: A340-500 , Toulouse
 - Jan./Feb. 2002: A318, Hamburg
 - Okt. 2003: A310-MRTT, Dresden

Test Vorbereitung – Sicherheitsabschaltung

Test Vorbereitung – Linearitätsdiagramme

Test auf Abweichungen vom linearen Strukturverhalten → Linearitätsdiagramme

Auftragen der identifizierten Eigenfrequenz in Abhängigkeit vom Anregungsniveau

Oft wird ein Sättigungseffekt beobachtet

→ hohes Anregungsniveau notwendig

Bislang: Linearitätstest nur im Rahmen der PRM

Neues Verfahren: Erzeugung von Linearitätsdiagrammen aus Gleitsinusläufen

Test Vorbereitung – Anpassung der Kraft

Restriktionen:

- Maximale Beschleunigung
- Auslenkung des Stößels
- Stabilität des Aufbaus

Test Vorbereitung – Nutzung des FE Models

Numerische Rechnungen mit dem Finite Elemente Model

- Serechnung von Antwort- und Indikatorfunktionen f
 ür potentielle Erregerpositionen
- Planung von Aufnehmer- und Erregerpositionen (Nachweis von Beobachbarkeit und Steuerbarkeit)

Versuchsaufbau – Übersicht

- Beschleunigungsaufnehmer: 850
 - ♦ Sensoren auf der primären Struktur: 450
 - ♦ Sensoren auf Systemen: 260
 - ♦ Sensoren auf den Decks: 80
- Elektrodynamische Erreger: 20
 - \diamond Kräfte zwischen 300 N und 2200 N
- VXI-System mit 896 Kanälen
- Gesamtkabellänge: ~25.000 m
- Arbeitsplattformen für die Installation der Sensoren und Erreger
- Mobiler Container f
 ür die Versuchssteuerung und Datenanalyse

Versuchsaufbau – Übersicht

A380 während des Standschwingungsversuchs

Versuchsaufbau – Übersicht

A380 während des Standschwingungsversuchs

Versuchsaufbau – Beschleunigungsaufnehmer

Installation der Aufnehmer

Verschiedene Typen von Sensoren

Versuchsaufbau – Erreger

Erreger (550 N) auf Gleittisch Flügelanregung in Schlagrichtung

2000 N Erreger Triebwerksanregung

Versuchsaufbau – Erreger

Unwuchterreger - Rumpf

Erregung an den ausgefahrenen Landeklappen

Versuchsaufbau – VXI-System

896 simultane Datennahmekanäle

Versuchsaufbau - Messcontainer

A380 und Messcontainer

Online Analyse der Breitbanddaten

Versuchsdurchführung - Übersicht

- Versuchsdurchführung in enger Kooperation von ONERA and DLR
- Test-Team:
 - ♦ 7 Testingenieure
 - \diamond 6 Techniker
 - \diamond 25 Personen für den Auf- und Abbau
- Testphase: 7. Januar bis 8. Februar 2005
- Tägliche Flugzeugbelegung von 7:00 to 22:00 Uhr in 2 Schichten
- Ablauf:
 - ♦ 5 Tage f
 ür den Aufbau
 - \diamond 23 Tage für die Versuchsdurchführung
 - ♦ 1 Tag f
 ür die Demontage der Aufnehmer

Versuchsdurchführung - Testprogramm

Vibrationstest - Flugzeug

- ♦ Konfiguration 1: "leere Tanks"
- ♦ Konfiguration 2: "(halb-)gefüllte Tanks"
- ♦ Konfiguration 3: Ausgefahrene Landeklappen
- ♦ Spezielle Tests der Kontrollflächen

♦ Identifikation der modalen Parameter

Windmilling-Versuch

- ♦ Triebwerkserregung mit sehr hohen Kräften
- Messung dynamischer Antworten (FRF)

Deck-Test

- ♦ Erregung der Decks mit Unwuchterregern
- \diamond Identifikation der modalen Parameter

Versuchsergebnisse – Übersicht

Vibrationstest – Flugzeug

- ♦ 111 Eigenformen f
 ür Konfiguration 1
- ♦ 89 Eigenformen f
 ür Konfiguration 2
- ♦ 53 Eigenformen f
 ür Konfiguration 3

Windmilling-Versuch

♦ 38 Gleitsinusläufe

 \diamond 30020 gemessene FRF

Deck-Test

- ♦ 19 Gleitsinusläufe
- \diamond 37 identifizierte Eigenformen

Versuchsergebnisse – Eigenschwingungsform (1)

Versuchsergebnisse – Eigenschwingungsform (2)

Versuchsergebnisse – Eigenschwingungsform (3)

Versuchsergebnisse – Linearitätsdiagramm

Zusammenfassung und Ausblick

- Grundlagen von Standschwingungsversuchen
- Einblick in den Versuchsablauf beim Airbus A380-800
- Nächste geplante oder mögliche Tests von ONERA und DLR:
 A380-800 mit EA GP7200 Triebwerken
 - ♦ Frachter Version A380-800F
 - ♦ Verlängerte Versionen der A380 (?)
 - ♦ Militärisches Transportflugzeug A400M (?)
 - ♦ Airbus A350 (?)
- Anwendung der Standschwingungstechnik in der Raumfahrt
 - \diamond Satelliten
 - \diamond Raketen/Raketenkomponenten

Vielen Dank für Ihre Aufmerksamkeit

Structural Dynamics DLR Goettingen

38