

Sicherheit im Luftverkehr

Herausforderung und Chance für die Ausrüstungsindustrie

Kai Burkhardt
Diehl Avionik Systeme GmbH

A Company of **Diehl VA Systeme**

Vortragsgliederung

Sicherheit im Luftverkehr: Safety und Security

Die Rolle der Ausrüstungsindustrie

Safety: Airport Navigation Function

Security: Geographical Envelope Protection

Begriffsdefinition

• Sicherheit: Zustand des Sicherseins, Geschütztseins vor Gefahr oder Schaden; höchstmögliches Freisein von Gefährdungen Deutsches Universal Wörterbuch A-Z, 2. Auflage, DUDEN Verlag

 Sicherheit bezeichnet die Eigenschaft eines Systems, weder Menschen, Sachen noch Umwelt zu gefährden

Was ist Sicherheit im Luftverkehr?

Szenarien Safety

Bilder mit freundlicher Genehmigung von: O. Jürgensmeier, P. Lutz, I. Marc

A Company of **Diehl VA Systeme**

Szenarien Security

A Company of **Diehl VA Systeme**

Operationelle Phasen Flugzeug

Entwicklung, Produktion und Zulassung

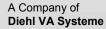
Operationeller Betrieb

Wartung

Stehend am Boden

Flug (Gate to gate)

> Teilnehmer am Verkehrssystem Luftverkehr

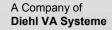

Rollen zur Startbahn

Start

Reiseflug

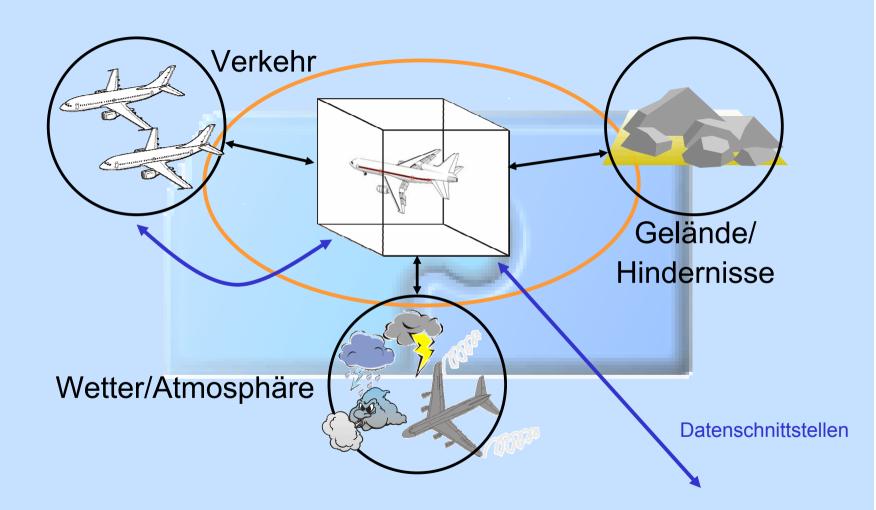
Landung

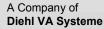
Rollen zum Gate


Flugunfallstatistik nach Flugphasen

Flugzeugunfälle und Todesfälle an Bord nach Flugphasen - 1991 bis 2001 in %*

Flugphase	Unfälle in %	Todesfälle in %
Geparkt	6	0
Start	13	8
Anfangssteigflug	4	8
Steigflug (Klappen eingef.)	10	26
Reiseflug	5	5
Sinkflug	5	15
Beginn des Anflugs	6	14
Endanflug	8	18
Landung	43	5


*Berücksichtigt wurden Totalverluste und/oder Unfälle mit Todesopfern Quelle: F. Littek, "Technik und Sicherheit von Passagierflugzeugen"



Umwelt des Systems Flugzeug

Interagierendes System Flugzeug

- Flugzeug ist kein abgeschlossenes System
- Flugzeug operiert in und kommuniziert sowie interagiert mit einer komplexen Umwelt
- Schritte zur Lösung von Konflikt- oder Problemsituationen können Folgekonflikte auslösen
- Zukünftig wird die Bedeutung und Komplexität der Datenschnittstellen zunehmen

Sicherheit im Luftverkehr

Beispiele für Flugunfälle Safety

Safety

27. März 1977

26. Mai 1991

20. Dez. 1995

17. Juli 1996

12. Nov. 2001

01. Juli 2002

Teneriffa, Spanien

Suphan Buri, Thailand

Cali, Kolumbien

Long Island, New York, USA

Queens, New York, USA

Überlingen, Deutschland

Runway Incursion

Techn. Versagen

CFIT

Techn. Versagen

Techn. Versagen

Mid-Air Collision

Spannweite Safety

Fehler in Verfahren im Luftverkehr

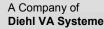
Material (Konzeption, Funktion)

Umwelteinflüsse

Wetter, Scherwinde, Wirbelschleppen

Vereisung

Vogelschlag


Technisches
Versagen
(Geräteausfall,
Materialermüdung)

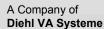
Menschliches Versagen An Bord

Flugsicherung

13

Wartung

Safety Unfälle

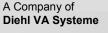

Sich ändernde Rahmenbedingungen: z.B. wachsender Luftverkehr, wirtschaftlich schwierige Rahmenbedingungen

Es treten immer wieder Fälle auf, die sich nicht vorhersagen lassen

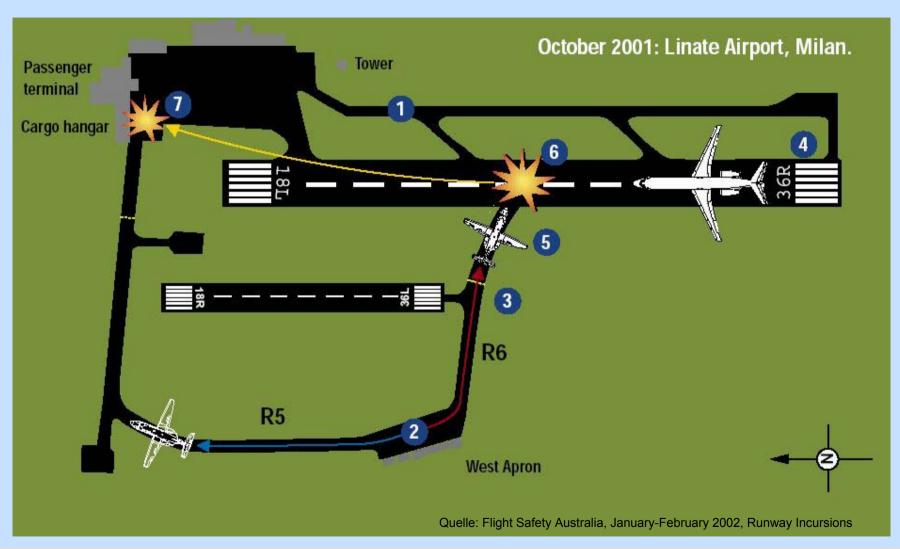
Faktor Mensch

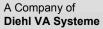
Insbesondere die Koinzidenz von meist zunächst unabhängigen Problemen/Fehlern kann zu Katastrophen führen

Fallbeispiel Mailand, Linate, 8. Okt. 2001



- Kollision auf der Startbahn zwischen einer McDonnell Douglas MD87 der Fluglinie SAS und einer Cessna Citation CJ2
- 114 Tote an Bord der beiden Flugzeuge, 4 Tote am Boden, Totalverlust beider Maschinen
- Verkettung mehrerer Ereignisse und Fehler führte zur Katastrophe


Quelle: Agenza Nazionale Per La Sicurezza Del Volo, Interim Factual Report



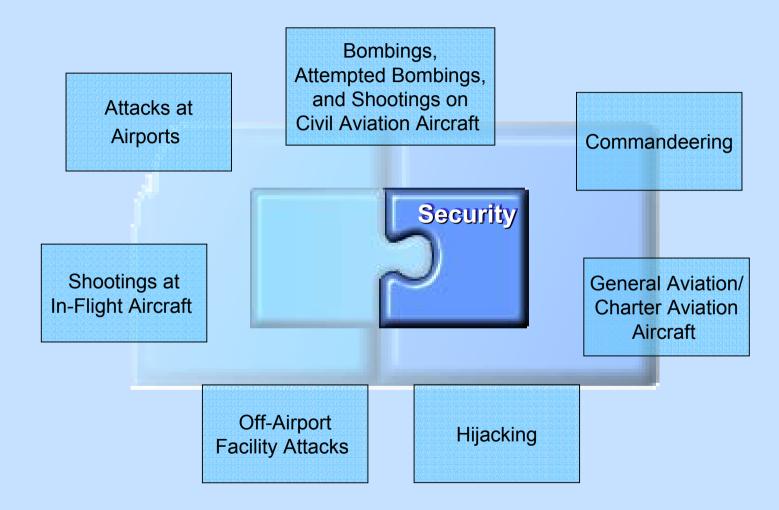
Fallbeispiel Mailand, Linate, 8. Okt. 2001

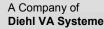
Fallbeispiel Mailand, Linate, 8. Okt. 2001

Verkettung von Problemen/Fehlern, die zur Kollision führte:

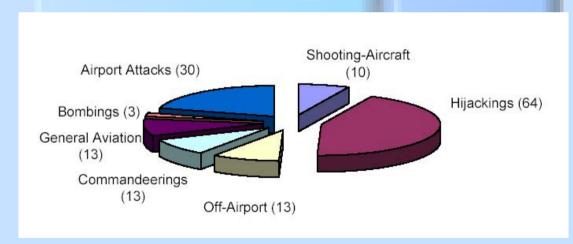
- Bodenradar am Flughafen Litate, Mailand, nicht in Betrieb
- Markierungen am Taxiway R6 entsprechen nicht den ICAO-Standards
- Schlechte Sicht (dichter Nebel, generelle Sichtweite nicht größer als 100m, RVR um 200m)
- Falscher Rollweg der Cessna Citation CJ2
- Missverständnisse bei der Interpretation der Freigaben und Missinterpretationen bzgl. der Position der Cessna Citation CJ2
- Überschneidende Freigaben für Taxe-Off der MD87 bzw. für Taxiing über die Startbahn der Cessna Citation CJ2

Sicherheit im Luftverkehr



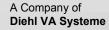


Security Szenarien gemäß FAA



Beispiele für Ereignisse Security

Security

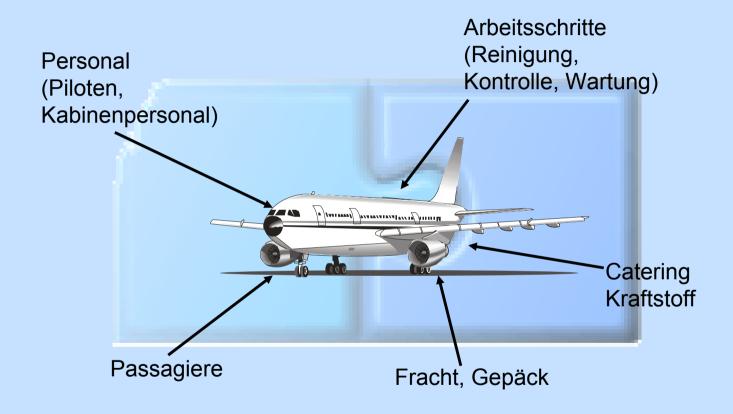

23. Juni 1983	Atlantischer Ozean	Bombenattentat
21. Dez. 1988	Lockerbie, Schottland	Bombenattentat
11. Sept. 2001	New York, USA	Missbrauch
11. Sept. 2001	Washington, USA	Missbrauch
28. Nov. 2002	Mombasa, Kenia	Beschuss

Quelle: FAA, Criminal Acts against Aviation 2000

20

Angriffe gegen den Luftverkehr, 1996-2000

Bestehende Securitysysteme



A Company of **Diehl VA Systeme**

System Flugzeug: Schnittstellen am Boden

Angriffe auf das Flugzeug in der Luft

A Company of **Diehl VA Systeme**

Security - Beispiele für neue Systemansätze

Security-Systeme zur

- Prävention
- Intervention
- Krisenmanagement

Bordsysteme

Verstärkte Cockpittür

System zur Identifikation von Personen, Erkennen von kritischen Situationen, usw.

Authentifizierungssysteme

System zur Abwehr von schultergestützten Boden-Luft-Raketen

24

Vollelektrisches Türsystem

Instanzen

Für Sicherheit im Luftverkehr verantwortliche Instanzen

Airframer

Luftfahrtausrüster

Zulassungsbehörden

Flugzeuginstandhaltungsbetriebe **Piloten**

Flughäfen

Luftfahrtgesellschaften

Flugsicherung

Regelsetzende Organisationen

Herausforderung und Chance

Optimierung bestehender Systeme

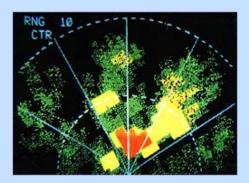
Konzeption und Entwicklung neuer Systeme zur Verbesserung von Safety und Security Erprobung und
Einführung neuer
technologischer Verfahren
und Materialien

Technische Verbesserung von Mensch-Maschine-Schnittstellen

Aufgaben, die im Verbund mit Airframern, Zulassungsbehörden, Piloten usw. zu lösen sind!

Meilensteine für die Ausrüstungsindustrie

GPWS - Ground Proximity Warning System


Seit 1974 für Verkehrsflugzeuge im Luftraum USA vorgeschrieben

TCAS II - Traffic Alert and Collision Avoidance System

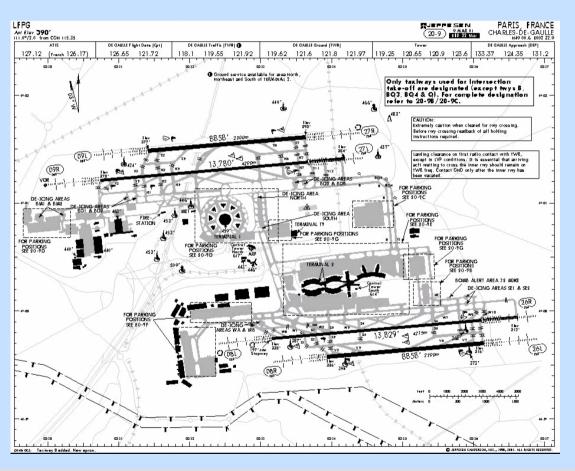
Seit Ende 1993 Pflicht für Flugzeuge mit mehr als 30 Sitzen im Luftraum USA

EGPWS - Enhanced Ground Proximity Warning System

vorgeschrieben ab 2005

Neue Systemansätze

Safety-Projekt



Taxi Guidance

Bessere Orientierung selbst bei schlechtesten Sicht- und Wetterverhältnissen

- Kurze Rollzeiten
- Sicheres Finden des eigenen Gates

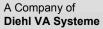
Runway Incursion

- NTSB sieht Runway Incursion als eine der wichtigsten Risiken
- Weltweit mehrere Vorfälle jede Woche

31

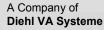
Bekannte Unfälle

- Teneriffa, 27. März 1977
- Mailand, 8. Okt. 2001


Parking Guidance

- Derzeit sind derartige Systeme noch nicht am Markt eingeführt.
- Neue Großraumflugzeuge benötigen Systeme zur Unterstützung beim Rollen und Parken

Traffic/Aircraft Dimension

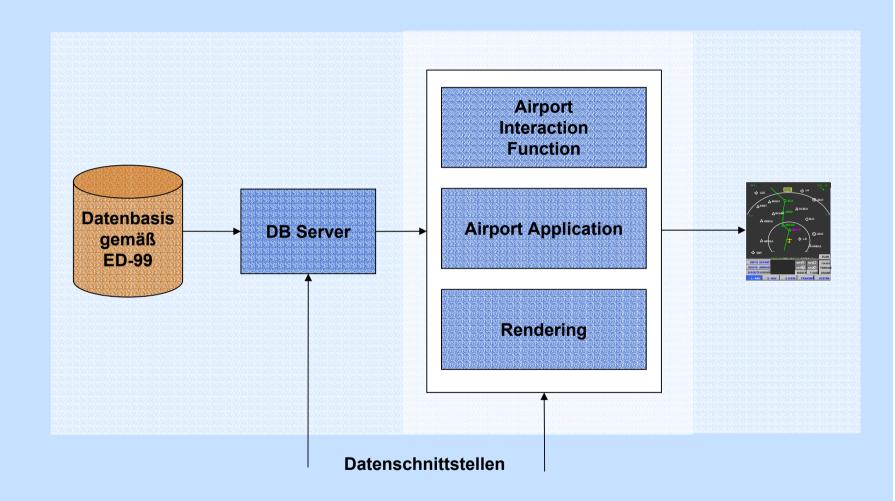


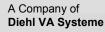
- Verkehrsbewusstsein (traffic awareness) unter beliebigen Wetterbedingungen
- Erfassen der räumlichen Ausdehnung des Flugzeugs (Flügelspannweite, Leitwerk)

Systemansatz

Entwicklung innovativer Funktionen

Airport Navigation Function


- Orientierungshilfe
- Verbesserung des Situationsbewusstseins
- Verhinderung von Runway Incursions

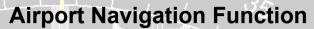

Diehl Avionik Beteiligung am 5. EU-Rahmenprogramm im Projekt VICTORIA

Systemarchitektur ANF

EU Programm VICTORIA

Validation platform for Integration of standardised Components, Technologies and tools in an Open, modulaR and Improved Aircraft electronic system

- Laufzeit: 36+6 Monate (Verlängerung), 01.01.01 bis 30.06.04
- Gesamtbudget: 80 Mio €
- Thales (Projektkoordinator), Airbus-D, Airbus-F, Airbus-UK, NLR, BAES, Eurocopter, insgesamt 34 Partner
- Diehl Avionik Arbeitsanteile: Airport Navigation Function (in Kooperation mit Thales), Graphics Generation Module, DSMS Can-Bus-Simulator



Demonstration

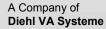
GS 120 TAS 124

32 33

SAIRBUS

THALES

Thales Avionics



Ein speziell für
Testzwecke
eingerüsteter Bus dient
als DemonstrationsPlattform

Klassifizierung und Einführung

- Klasse 1: Orientierungshilfe (Autarke Systeme, sofort einführbar)
 - less paper cockpit
 - Moving Map Display

Datenbasis (+ Navigation (DGPS, INS))

- Parking Guidance
- Klasse 2: Verbesserung des Situationsbewusstseins (keinen Einfluß auf operationelle Verfahren)
 - Darstellung der eigenen Position

Datenbasis + Mode-S Transponder +

Verhinderung von Runway Incursion

Navigation

- Taxi- und Konfliktbewusstsein
- Klasse 3: Navigationsunterstützung (Einfluß auf operationelle Verfahren)
 - Verkehrsbewusstsein
 - Vorausberechnung von Konflikten
 - Kollisionsvermeidung

+ zusätzliches Equipment

- Zeitliche Angaben
- Klasse 4: Guidance

In Anlehnung an: FAA, Advisory Circular 120-76: "Guideline for the Airworthiness and operational Approval of Electronic Flight Bag computing devices"

Security-Projekt

11. September 2001

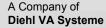
Erstmals sind Verkehrsflugzeuge als Waffen gegen die Zivilbevölkerung und Ziele am Boden missbraucht worden

A Company of **Diehl VA Systeme**

Weitere Bedrohungsszenarien

A Company of **Diehl VA Systeme**

KKW in Deutschland



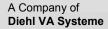
- Neue Kernkraftwerke (1.
 Teilerrichtungsgenehmigung nach
 1973) müssen einem zufallsbedingten
 Aufprall einer Militärmaschine (v=774
 km/h) standhalten
- Bzgl. des Aufpralls von Großraumflugzeugen liegen keine Untersuchungsergebnisse vor (Reaktorsicherheitskommision)
- Aufprall eines Großraumflugzeugs: große Masse, große Mengen an Treibstoff, schnell rotierende Triebwerkachsen.

Quelle: Informationskreis

Kernenergie

GEP - Funktion

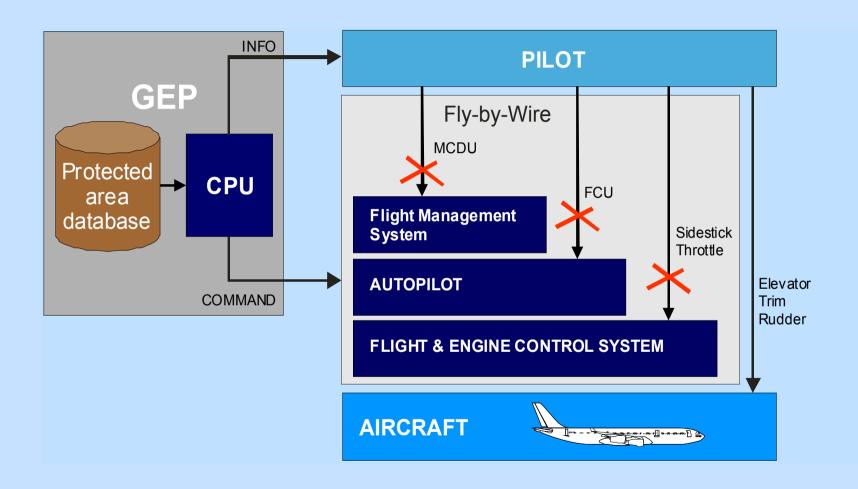
Geographical Envelope Protection


- GEP verhindert das Eindringen von Verkehrsflugzeugen in geschützte Bereiche
- Die dreidimensionalen Schutzzonen sind in einer Datenbank definiert
- GEP wird in einer Notsituation durch die Crew aktiviert

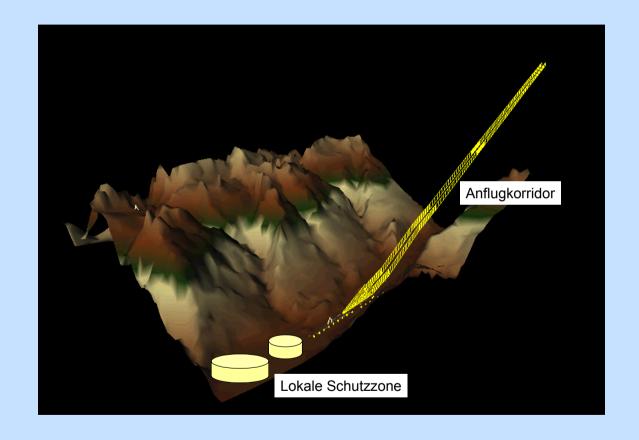
 Das Flugzeug kann außerhalb der Schutzzonen normal gesteuert werden

43

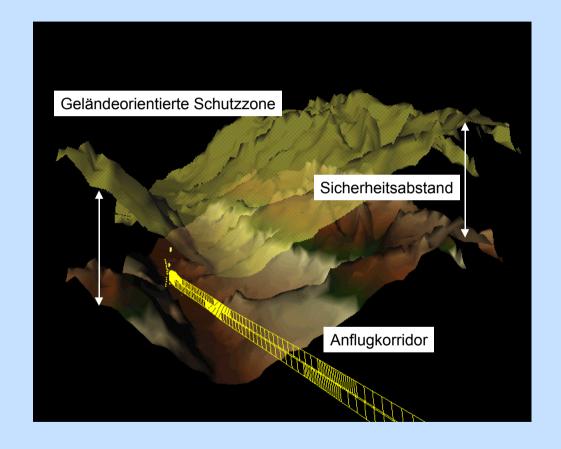
 Die Landung wird nur auf vordefinierten Flugplätzen zugelassen



Systemübersicht



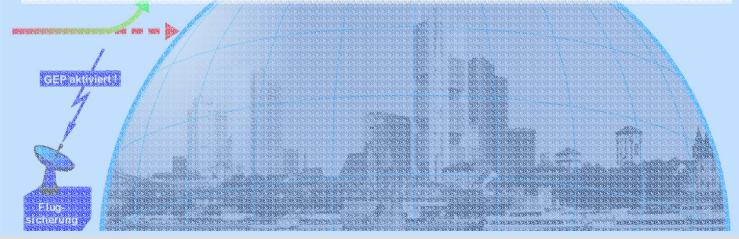
Geographical Envelope (lokale Definition)

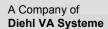


Geographical Envelope (globale Definition)

Darstellung im Cockpit

Darstellung in geeigneter Weise auf den Flugführungsdisplays (Navigationsdisplay, evtl. auch Primary Flight Display)


GEP - Einführung



Einbau nur in Fly-by-Wire-Flugzeugen möglich

Wirklicher Schutz erst nach flächendeckender Einführung: mehrere Jahrzehnte

Konzeption derart, dass ein "ins Ziel segeln" nicht möglich oder zumindest stark erschwert wird.

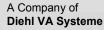
Einführung von neuen Sicherheitssystemen

Es müssen immer auch wirtschaftliche Betrachtungen durchgeführt werden

Unter Umständen ist die Einführung schwierig, weil Vorschriften und Verfahren angepasst werden müssten

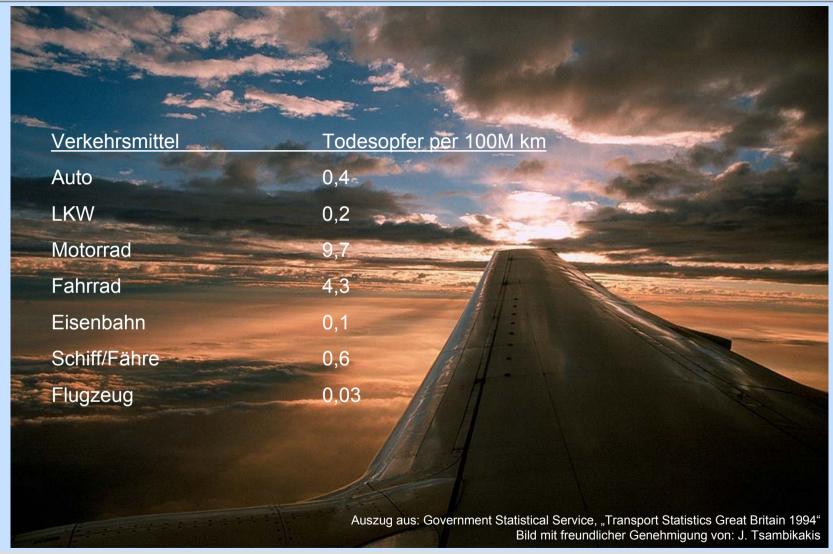
Gesetzliche Vorschrift erleichtert eine schnelle Markteinführung

Sicherheit im Luftverkehr

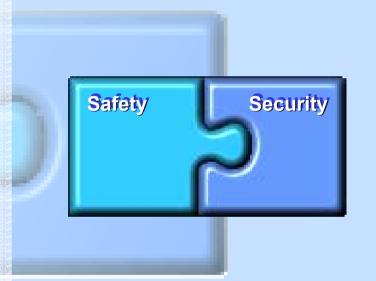


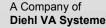
Bereits heute hoher Sicherheitsstandard Trotz zunehmendem Luftverkehr Ziel der Verbesserung der Sicherheit

Absolute Sicherheit nicht erreichbar


Technologischer Fortschritt ermöglicht die Entwicklung und Einführung neuartiger Systeme

Sicherheit im Luftverkehr

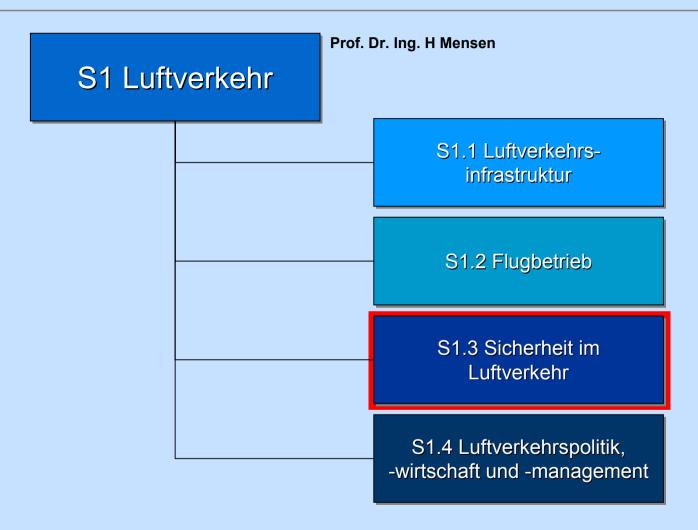

A Company of **Diehl VA Systeme**



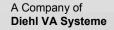
Zusammenfassung

- Sicherheit im Luftverkehr ist eine vielschichtige Aufgabe, an der zahlreiche Instanzen beteiligt sind
- Die Ausrüstungsindustrie kann über die Entwicklung von neuen Sicherheitssystemen einen wichtigen Beitrag leisten
- Die Aufgaben müssen im Dialog mit allen an Sicherheit im Luftverkehr beteiligten Instanzen gelöst werden

Vision



Sicherheit im Luftverkehr lässt sich langfristig gewährleisten, wenn alle sicherheitsrelevanten Aufgaben dauerhaft gelöst werden!



DGLR Fachbereich S1 Luftverkehr

Kai.Burkhardt@diehl-avionik.de

