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Abstract
Over the past decades, software development methods for satellites have undergone several changes. As in 
many other industries today, a lot of the systems functionality is implemented in software since this is more 
flexible than hardware solutions in many cases. This increases the demands and requirements regarding 
software and its development life cycle. New concepts must be investigated for finding better ways to tackle 
these challenges while at the same time using available hardware resources effectively. EADS Astrium is 
conducting concept studies regarding future software architectures for distributed on-board systems. This paper 
introduces the concept of a "global data pool" that acts as a communication interface for interacting software 
components. This results in a component-oriented software architecture that is based on a data-centric 
middleware layer. This paper elaborates the general principles of data-centric architectures and the possibilities 
of applying model-driven engineering, and discusses the current results shown by prototype implementations. 

1. INTRODUCTION 

Since its early beginnings, the spacecraft/satellite 
engineering domain - just as many others - has 
become heavily influenced by applied computer 
science and software engineering. Software cannot 
merely be considered a complementary tool for 
operating payload, simply due to the enormous 
amount of functionality and responsibility it carries. 
Software architecture and the software development 
process have become crucial parts in space missions. 
However, the functionalities and responsibilities that 
are being transferred to the software layer render 
software architectures very complex, making them 
difficult to handle. Several studies have already been 
undertaken in order to investigate the challenges 
software engineers are facing in current and future 
projects [1][2][3]. For instance, the Savoir-Fair working 
group has identified three key challenges regarding 
the software development life cycle [4]: 

1) Releasing new versions of a software in a short 
time: final versions of the software are simply 
expected earlier, e.g., for Assembly, Integration 
and Testing (AIT). 

2) Being tolerant towards late definitions or changes 
of some requirements: this can be seen in projects 
of other industries as well - changes in software 
seem to be cheaper than modifications on a 
physical subsystem. This, together with 1) actually 

shortens the overall development cycle for 
software.  

3) Being flexible regarding integration strategies: the 
software shall be available for integration of 
certain subcomponents, while not all parts of the 
system can be integrated yet.  

The Savoir-Fair working group suggested facing these 
challenges by designing architectures based on 
"building block" patterns, i.e., architectures shall be 
composed of exchangeable and reusable software 
modules. 

However, despite these challenges in software 
development there are also new possibilities 
emerging. Developments on the hardware sector 
show that higher performance components will be 
available for future missions. This paper proposes a 
possible future software architecture that shall face 
the challenges of software development using the 
given possibilities of (relatively) high-performing 
hardware. The proposed architecture relies on a 
component-based, distributed, and data-centric 
approach. Component-based means that we focus on 
modularity in the architecture. We also presume that 
future software architectures need to operate in 
distributed environments, i.e., in a small network of 
on-board computers. Finally, we suggest a data-
centric communication pattern for interaction 
between distributed software components on board a 
satellite. 
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2. MOTIVATION 

In many software architectures of current satellite 
designs communication on board the satellite is 
message oriented. Generally, this means that 
communicating software components must address 
each other directly and hence need to "know" of one 
another. This results in a software architecture with 
very tightly coupled components. These are very 
problematic when it comes to making changes in the 
system, as changing one component can have 
significant impact on the other components as well. 
Relating this issue to the previously mentioned 
challenge of being tolerant towards changes shows 
that such an architecture is unlikely to be an adequate 
solution for facing this issue. Changing requirements 
in a system with tightly coupled components has high 
costs of change as a result. 

3. A DATA-CENTRIC APPROACH 

3.1. General Idea 

The data-centric approach follows a different 
paradigm in communication. In literature it is also 
commonly referred to as "publish/subscribe" pattern 
[5][6]. It is based on the assumption that the most 
common purpose for communication within a system 
is the exchange of certain data. Following this idea, 
the concept suggests that communication should be 
focused on the data itself and not the entities 
producing or using it.  

 
Figure 1: Message-Centric (A) and Data-Centric (B) Communication 

 
Figure 1 illustrates roughly the interactions and 
coupling between software components in both the 
message-centric and data-centric approaches. Part A 
represents "message-centric" communication, where 
two communicating entities are aware of each other 
and exchange information by messaging. Part B 
represents "data-centric" communication, where the 
two communicating entities do not know each other, 
but exchange known types information by publishing 
and subscribing to a data pool. The key difference 

between the two approaches lies in the scalability of 
the resulting architectures. In a "message-centric" 
approach, we have a very tight coupling between 
components and the removal of one component can 
have impact on many other components. In the 
"data-centric" approach, we can remove and add 
components without any (direct) influence on the 
others. Of course, there eventually would be a 
problem if we removed a component providing 
certain data without replacing it adequately. However, 
the overall system remains flexible towards changes 
since components only rely on data, but do not care 
about other components involved in the processing. In 
general we can say that in a data-centric environment 
the responsibility of actually interacting with other 
software components is no longer a concern of the 
components themselves.  

 
Figure 2: Example of Software Components Interacting using a Data 
Pool 

 
Figure 2 explains the interaction between software 
components and the data pool using a very basic 
example. The figure shows a number of software 
components that publish "parameters" in the data 
pool. A parameter represents the state of a certain 
subcomponent of the spacecraft, e.g., housekeeping 
data or payload/equipment data. A parameter can be 
any kind of data that needs to be shared between 
software components. In this example the supervisor 
provides the current mode of the spacecraft, and a 
star-tracker and magnetometer provide their 
instrument data. The Attitude and Orbit Control 
System (AOCS) reads its required parameters from the 
pool, processes them, and publishes the output again 
in the data pool, making it available for other 
components. However, it is important to understand 
that even though the physical interaction only takes 
place between software components and the data 
pool, logically the components are still interacting 
with each other, as figure 3 shows. However, their 
communication interface is no longer a message 
protocol, it is now the parameter specification. 

Deutscher Luft- und Raumfahrtkongress 2011

1682



 
Figure 3: Logical and Physical Interaction of Software Components 

Each parameter is uniquely identified in the data pool, 
it carries a value (i.e., the actual data) as well as other 
attributes. The most important attributes of a 
parameter are its current age and its maximum age. 
The current age is updated every time a parameter is 
written by a component. The time between two 
updates must never be longer than what is specified 
as maximum age; the parameter would otherwise be 
declared invalid. This constraint is very essential for 
communication. In a message-based approach, if 
component A sends a request to component B, and 
component B does not respond (for instance because 
it crashed), then component A realizes that the 
required data cannot be provided and reacts on this 
situation accordingly. In a data-centric architecture 
though, component B would crash but its parameters 
that were published would still remain available to 
component A. This is why the maximum age attribute 
and its automatic check are so important in this 
concept, they provide a way for software components 
to verify that a parameter is still up-to-date and 
usable. 

3.2. Application as Satellite Middleware 

Figure 4 illustrates a data handling system with a 
software architecture that applies the proposed data-
centric approach. Each computer on board the 
spacecraft accommodates a set of software 
components that interact using the data pool, which 
is synchronized across the network. From a software 
engineering point of view, the software components 
access a data-centric middleware layer, which 
coordinates the interactions between the components 
and the data pool. An important characteristic of this 
architecture is that decoupling takes place not only at 
a logical level (i.e., avoiding the need of "direct 
addressing" between communication entities), but 
also physically, with respect to the computers the 
components are running on. This means that, given a 
data pool that is able to provide data across a 
distributed system, we do not necessarily need to 
consider where we place our software components in 
the design phase. It is also worth mentioning that 

software components may also act as interfaces to 
other equipment/payload, by making their equipment 
data available to other components via the data pool, 
as it is also seen in figure 4.  

 
Figure 4: A Data-Centric Middleware Architecture 

Changing the way of how software components 
interact in such a drastic way is a lot of effort, and 
hence it should also deliver benefits that justify this 
undertaking. The following list provides a set of 
expected improvements that should come about as a 
result of applying this concept: 

– The reduction of coupling shall make the 
development of software more flexible regarding 
component architecture and the definition of 
execution locations. In other words, things like 
"where does a component run", "when and in 
which order does it provide/fetch data" and 
"which component is providing that data" do not 
need to be defined at an early design stage and 
shall allow changes of requirements at low cost. 
This is a key requirement that was discovered by 
several studies so far [7, Sec. 11.3.4] [3] [4]. 

– Providing the software development process with 
a clear definition of interfaces without direct 
coupling between components shall be beneficial 
for parallel development and integration of third-
party software. 

– In general, the development of software 
components shall become more simple. The 
middleware API shall reduce the efforts for 
transporting data. In fact, it shall free software 
components from the responsibility related to 
transporting data. This transportation 
responsibility is a very significant factor when it 
comes to costs related to changing requirements 
of a component. The overall aim is to have a 
system of relatively small and well-defined 
software components that can be reused and 
replaced easily. 
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– The use of a central data pool is very beneficial for 
Failure Detection Isolation and Recovery (FDIR) 
mechanisms. They can be provided with a 
snapshot of the overall health status of a 
spacecraft. 

– This architecture shall allow redundancy on 
software level. This means that in a system with 
several processing units and a synchronized data 
pool, the failure of one computer could be 
compensated by migrating components of the 
failed computer to a backup system until the 
original computer is available again. This would be 
possible since the location of a software 
component is by definition not relevant to the 
system. However, exceptions are software 
components that depend on the hardware 
interfaces connected to their computer. 

– A big potential for improvement is related to 
testing. Using the data-centric concept it is very 
easy to perform unit tests for software 
components, since the parameters that are 
needed for emulating a component’s environment 
can be easily injected into the data pool via test 
scripts. In the same way it is even possible to test 
certain subsystems or even the whole system. This 
can also be very usable in early integration phases 
of the spacecraft. Parts of a satellite can already 
be integrated and tested, while simulating the 
subcomponents that are not available yet. This 
can also be useful for error isolation procedures 
when "debugging" the satellite or one of its 
subcomponents. 

Another important advantage of this approach is that 
it provides the foundation for applying model-driven 
engineering, which is described in the next section. 

4. APPLYING MODEL-DRIVEN ENGINEERING 

Model-based design has become a very popular 
methodology in various engineering domains. When 
defining a software architecture we can apply model- 
driven engineering if our system infrastructure allows 
us to abstract a formal metamodel of it [8]. The 
introduced data-centric approach for a middleware 
design would allow us to do that.  

4.1. Abstracting towards a Metamodel 

It is important to understand that the degree of 
abstraction of a certain domain is arbitrary and 
depends on practicality. When considering what 
aspects of a domain should be modeled, a good 
assessment tool is detecting reoccurrence and 
potential reapplication of certain patterns. For 
instance, software components are a key element in 
the overall avionics architecture. They occur in various 
different types, but all of them have common 
features. Hence, they are a typical candidate for 
abstraction and a lot of information about them can 
be formally defined in our metamodel, for instance: 
identifier and name, invocation filter (e.g., event 
based invocation or cyclic invocation), maximum 
allotted execution time per invocation, maximum 
allotted memory, and the parameters that are read 
and written by the component. Parameters were 
briefly introduced earlier, and they too are key entities 
that must be modeled. Along with their identifier, 
value, age and maximum age, we can define 
boundaries such as minimum and maximum value, or 
additional information like their unit of measurement. 
This information together with some additional 
definitions let us derive a set of ground facts that are 
relevant for our abstraction: 

1) The key entities within the middleware 
infrastructure are software components. These 
components have access to the data pool for 
reading and writing parameters, and are specified 
over a set of attributes. 

2) A parameter consists of a unique identifier and is 
specified over several other attributes. 

3) A parameter can be written by only one software 
component, but read by several. 

4) Parameters can be assigned to groups, and whole 
groups can be read/written by software 
components. 

5) Software components may need to handle certain 
events or device commands, which are also 
defined and handled in the data pool. 

Figure 5: Proposed Metamodel in UML 

Deutscher Luft- und Raumfahrtkongress 2011

1684



Figure 5 depicts a UML representation of a software 
component and its related entities. Of course, this is 
an incomplete abstraction, just to show the most 
important features that are necessary for 
understanding this concept and the possibilities it 
brings. 

4.2. Resulting Benefits 

As mentioned earlier, a model provides us with a 
formal definition of our architecture. This means that 
when we create a model instance, we can be just as 
flexible as the metamodel allows us to be. As a result 
of this, a lot of mistakes related to designing a 
software component can be avoided since the 
metamodel restricts our actions. A clear example is the 
restriction regarding writing a parameter. As figure 5 
shows, there is a restriction in our metamodel that 
allows us to assign only one software component as 
the writer for a parameter. This definition prevents us 
from building a model instance, in which two or more 
software components act as writers. Or, from another 
point of view, we can make sure that every parameter 
is provided by some software component.  

Of course, the restrictions we can define have their 
limits. In fact, the limits always depend on the 
technique used for metamodeling. In the previous 
example for instance, we defined that a software 
component can write a whole group of parameters. 
However, this implicitly requires that for every 
parameter of that group, there is no other writer but 
that component. UML has no practical way of 
defining this restriction. But since a model consists of 
formal definitions, it is possible to create verification 
mechanisms that investigate a model regarding 
additional constraints. Again, the possibilities available 
for both model-defined constraints and add-on 
constraints depend on the used technique. 

In general, when applying model driven engineering 
on the proposed middleware architecture, the 
following requirements can be checked and verified in 
the modeled software components: 

– Are there any collisions in identifiers? 
– Is every parameter written by exactly one software 

component? 
– If read/write permissions are modeled as well, are 

there any permission violations? 
– Is every device command and event handled? Or, 

which events/commands remain to be handled? 

Additionally, it is also possible to derive important 
information from the model, for instance a data flow 
diagram showing how software components interact 
using the interfaces. Another piece of information 
could be the minimal memory consumption based on 
a) the parameters that are requested by each 

component, b) requested persistent memory by 
component, and c) the total number of parameters in 
the data pool. Information for scheduling and CPU 
utilization can also be extracted based on the 
execution specifications defined for every software 
component. 

4.3. Code Generation 

Another important benefit of model-driven software 
engineering is the possibility of code generation. Due 
to the information provided by the model of the 
system, it is possible to generate framework source 
code for each software component, as shown in 
figure 6. 

Apart from the practical advantages like saving time 
and easier maintenance, a model driven design might 
lower the costs of the verification process. A 
verification process involves investigating the source 
code of a whole project. In the case of our 
architecture, it means we have to investigate the 
source code of every software component. However, 
when applying model-driven engineering and source 
code generation, the list of elements to be verified 
roughly consists of: 

– The modeling environment, i.e., the metamodel 
and meta-metamodel, and the restrictions checker 

– The middleware layer 
– The code generator for producing framework 

code for software components 
– The custom logic code for every software 

component 
– Any other software module that uses our 

middleware but is not a modeled software 
component 

At first glance, there seems to be a greater amount of 
components due to incorporating modeling tools. 
However, it is important to understand that the 
modeling environment, middleware layer and code 
generator are very static elements in the software 
development process. They usually undergo very little 
changes once they have reached a certain maturity 
level. Once all these tools are verified, what is left to 
verify simply boils down to functional code, since all 

Figure 6: Generating Framework Source Code from the Model 
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infrastructure code is being generated from the 
model. Three main consequences can be derived from 
this: 

1) A project needs to be of a certain complexity in 
order to justify the efforts for applying a model-
driven approach since there is more verification 
effort involved initially. 

2) Once these overhead efforts are overcome, the 
verification efforts per functional software 
component are reduced to a minimum. This also 
means that the costs for a later change are 
minimal. For instance, adding another software 
component (which is already simplified due to the 
data-centric design) does not involve any efforts 
except verifying the added functionality source 
code. Without model-driven engineering, all 
infrastructure code (initializing the component, 
getting data, writing data, etc.) would also need to 
be included into the verification process, possibly 
not only for the new component, but also for all 
other components that interact with the new one. 

3) A lot of verification effort (and thus, eventually, 
time and money) can be saved if a model-driven 
architecture can be reused in other projects.  

5. CURRENT STATUS AND RESULTS 

The concept of a data-centric middleware and the 
approach in model driven engineering are currently 
evaluated in the course of a research project at 
EADS Astrium in Friedrichshafen, Germany. The 
project has yielded a working prototype that is 
intended to be an evaluation platform for assessing 
the concept's feasibility regarding its offered 
functionality. This means that the developer and user 
(e.g., On Board Data Handling (OBDH) spacecraft 
operator) interfaces of the middleware are defined 
and evaluated, but the underlying layers are not yet 
implemented using technologies qualified for 
spaceflight. The execution platforms of the prototype 
environment are common GNU/Linux operating 
systems. Still, the API layer available to the user was 
designed with respect to coding restrictions required 
for qualification (e.g., avoiding issues like dynamic 
memory allocation, recursions, or platform specific 
data types). The following paragraphs give a short 
overview of the most important features provided by 
the prototype. 

There exists a functional middleware that allows the 
operation of software components across a network. 
The software components consist of a processing logic 
that is invoked either cyclically or based on certain 
events. The software components are provided with a 
simple API for accessing data pool and its 
functionalities. The middleware infrastructure allows 
the automatic monitoring of all running software 

components. We have further shown that functional 
C code generated by Matlab can be easily integrated 
into the software architecture, by wrapping the 
software component framework around it. Input and 
output parameters of the Matlab model are being 
connected to parameters in the data pool. Also the 
automatic generation of source code based on a 
component model has successfully been 
demonstrated. It was shown that a lot of 
infrastructure code can be written by the code 
generator, leaving the developer with only the 
component logic and parameter processing to be 
added. 
 
The middleware incorporates a framework for 
managing events. Events are categorized and occur 
asynchronously at runtime. They can be generated by 
different entities, e.g., by software components 
during their processing, or internal data pool 
operations. The architecture further allows software 
components to be implemented as specific event 
handlers that perform follow-up processing of an 
event.  
 
The effective management of parameters is one of the 
core features of the concept. As mentioned earlier, 
every parameter has certain constraints (e.g., 
minimum value, maximum value, or maximum age) 
and statistics (lowest value, highest value, or mean 
value.) that are kept track of. Parameter constraints 
can often be directly derived from system 
requirements (e.g., lowest orbital altitude, highest 
velocity, or minimum internal temperature). For every 
parameter it can be specified if an event shall be 
generated, when constraints are violated. Parameters 
can further be organized in groups, for instance 
according to certain payload or housekeeping 
categories. The transformation from an input value to 
an engineering value no longer needs to be done by 
the component developer. The data pool keeps 
information about how to transform the parameter 
(e.g., over a polynomial function) and automatically 
calculates the engineering value when a parameter is 
written. In the data pool it is also defined, which 
components are allowed to read/write a parameter. 
 
The architecture also provides the possibility of 
managing On Board Control Procedures (OBCPs). 
OBCPs are scripts that are executed for performing 
special tasks on board the spacecraft. These OBCPs 
can also be stored inside the data pool. Special 
software components can act as OBCP handlers by 
forwarding execution requests to an external 
interpreter. Additionally, an event can be linked to an 
OBCP that is executed then when the event occurs. 
For instance, the power subsystem constantly 
publishes the remaining battery voltage in the data 
pool. If the voltage goes below its allowed minimum, 
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the data pool automatically generates an event 
reporting the violation. The event handler sees that 
this specific event has an OBCP attached and orders 
the execution of this OBCP. The OBCP handler starts 
the OBCP interpreter which executes a script that 
shuts down all non-vital payload.  
 
Similar to the concepts of events and OBCP execution, 
the middleware also supports automatic generation of 
messages according to templates. These messages can 
be processed by message handlers in order to forward 
data from the data pool to recipients that cannot 
access the data pool. For instance, a message 
template can be defined for generating a 
housekeeping report according to the Packet 
Utilization Standard (PUS, [9]). A dedicated message 
handler would read the request and the template 
from the data pool, generate and format a 
corresponding PUS message, and transmit it to the 
recipient. In a similar fashion, there are handlers which 
receive external messages, extract information from 
them, and publish this information in the data pool. 
These mechanisms show that the data pool is also 
capable of communicating with external entities. 

6. CONCLUSION AND OUTLOOK 

This paper introduced a data-centric approach for 
designing a component-based and distributed 
middleware for data handling on satellites. The 
motivation for investigating the feasibility of this 
concept is to face certain challenges in software 
development in a more effective way than with 
previous approaches. The concept and the advantages 
of this approach were introduced, as well as the 
possibilities of turning it into a middleware for 
satellites. Further, the idea of applying model driven 
engineering based on the data-centric architecture 
was discussed.  

 
Figure 7: Middleware Implementation using an Embedded Database 

The overall concept is still under evaluation, but 
prototype implementations have shown promising 
results and delivered interesting features and 
possibilities. The next step in the project will be the 
evaluation of technologies for implementing a version 

that could be qualified for spaceflight. Possible 
technologies under investigation are the Data 
Distribution Service (DDS, [10]) as well as several 
embedded database solutions (see figure 7). A second 
follow-up activity will be the definition of standard 
parameters for the middleware, on both component 
level as well as system level. A further task for the 
future is investigating the possibilities of automating 
the integration of Matlab models into the software 
architecture.  
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