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Abstract—One key element of future Air Traffic Management
concepts are automated support tools that help to separate
aircraft from one another in a tactical environment. This work
investigates the possibilities of a centralized approach to sepa-
ration or conflict management, based on optimal control theory
and its applications. Therefore we will present an optimization
framework that generates conflict-free trajectories for all aircraft
within a regarded airspace. The optimization process is based on
the direct solution method and uses multiple shooting features
with a SQP method to solve the resulting nonlinear problem.
Numerical computations were performed with the MUSCOD-II
software from the IWR at University of Heidelberg, Germany.
The principle advantage of a centralized approach is that
the optimization framework has full information of the traffic
situation in a sector, so it may generate solutions that incorporate
information of all airspace users. This will prevent solutions that
could otherwise yield even more severe traffic situations later in
time. As an optimality measure we used a function that aims
to assess the deviation from a nominal flight path and flight
time. This work focuses on en-route traffic scenarios, so we
will present some numerical examples of solutions provided by
the framework for two-dimensional traffic situations. Numerical
use cases will show that the method delivers very promising
results — with subsequent research yielding the possibility of
further improvement. These results will be validated with real-
time simulations at the DFS R&D department in November 2011.

I. INTRODUCTION

Automated support tools are key elements of future

Air Traffic Management as they will become essential to

controller daily work by potentially enabling the increase

in capacity that is demanded by future ATM programs

(SESAR, NextGen, CARAT). As it was pointed out in the

Performance Review Report 2010, [1], 5% of all flights

in Europe are held on the ground to manage en-route

congestion, resulting in more than 50% of all delay minutes

within the system. This shows evidence that en-route

congestion is a severe problem in Europe, with the situation

to become even more severe when we are moving towards

the SESAR and NextGen expectations as stated in [2] and [3].

In the future ANSPs (air navigation service provider)

will need to deliver more capacity, in a cheaper, safer and

environmental-friendlier way. This feat will most likely not

be achieved without the aid of sophisticated support tools.

One of the air traffic management fields that is necessary to

provide future capacity is separation management. Separation

Management can be understood as a consecutive function to

complexity management: while airspace design provides the

space in which aircraft have to be separated, flow management
determines the number of aircraft that have to be dealt with

in that airspace. So both complexity functions determine

the density of a traffic scenario, hence generate the problem

that separation management has to solve. A comprehensive

overview of current complexity research can be found in [4]

or [5].

This paper addresses separation management as it yields a

lot of potential when engaged by optimal control methods.

Typically one distinguishes between two approaches to

separation management, depending on the chosen perspective.

In de-centralized approaches, airspace users solve conflicts

independently from ANSPs by using airborne communication

and on-board trajectory computations. Examples for this are

projects in the fields of self-separation and articles like [6]

and [7]. The disadvantage of a de-central solution is that the

whole system is unknown, so that the resolution of a conflict

could possibly yield more severe traffic situations. Usually

these approaches try to compensate for this by using heuristic

rules that are followed by individual solutions.

The centralized approach depends on a central controller, i.e.

the local ANSP, who has full information of the regarded

airspace. Even though the disadvantage of modeling a more

complex system is apparent, this approach has the significant

advantage of optimizing the global system by incorporating

all aircraft in a sector to the optimization process. Until today

centralized approaches have usually focused on the above

mentioned aspects of flow management or airspace design,

most notably in [8] and [9] — but never in a way to generate

individual flight trajectories for all users.

In this paper we will investigate the possibilities and the

efficiency of a centralized approach to separation management

that may be controlled by an ANSP, and could be possibly

realized as an automated controller support tool. Therefore

we present a framework that is based on optimal control

methods. In the scope of this paper we will use the direct

multiple shooting method as described in various literature,

e.g. in the work of Diehl, [10] or Bock and Plitt, see [11].

Control theory is used to determine controls for a dynamic
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system which will drive the system from its initial state to

its final state in an optimal way. The optimality of a feasible

trajectory is measured by a performance index. Here we use

information regarding a particular traffic scenario to derive

an optimal control problem of which the solution will yield

optimal controls for all aircraft within the sector.

The results presented in this paper mostly originate from

the work for the author’s diploma thesis, to be submitted to

Philipps University Marburg in January 2012, see [12].

II. OPERATIONAL FRAMEWORK

The task for separation management is to resolve conflicts

that are projected to occur on a tactical time horizon. In

contrast to flow management, here we address individual

aircraft on their way through airspace. Currently we are

mitigating the risk of conflict by imposing a 5nm (nautical
miles) lateral minimum separation that could easily be

decreased if we had better and more efficient separation

methods — and of course more accurate information about

the aircraft position, see [13].

Automated ground-systems may assist the controller in

separating aircraft so that the available space can be used

more effectively. Furthermore, workload is reduced once the

controller can rely on automation tools to resolve conflicts

automatically. Especially when thinking about future concepts

like free flight, where flights are no longer bound to fixed

traffic routes, the aspect of separation management will

become even more important.

In the scope of this paper we want to investigate initial

results for a centralized approach to separation management,

where we not only solve a single conflict between two or

more aircraft, but rather generate trajectories throughout

a given airspace, incorporating information about possible

future conflicts or other disadvantageous consequences of a

resolution process. That way trajectories can be optimized

throughout the whole sector. This optimization process should

be synchronized with individual customer preferences, like

chosen cost index within the FMS (Flight Management
System, a key component in the cockpit) etc. This can

be realized by deploying a modular approach to system

architecture. For the purpose of the scenarios engaged in this

paper, we will optimize trajectories so that its deviation from

a chosen nominal trajectory is minimized.

Notable studies applying mathematical optimization to

air traffic management include [14], [15] and [16]. The major

difference however is that in this approach we will not only

separate aircraft and optimize the whole traffic situation within

a sector, we will also compute full control trajectories that

might be transmitted via FMS uplink in a future environment.

Enabling a ground-to-air data up- and downlink is a key

requirement for all future ATM technologies, so assuming

this capability is reasonable. Please see [13], [17], [18] and

[19] for more information.

A. System Control Loop

We assume that we are facing a traffic situation T0, from

which we can read essential data that describes this particular

scenario. This data includes information regarding all airspace

users within the airspace (position, speed vector, entry point,

destination and so on), as well as geometric information

about the airspace itself. The necessary information may be

derived by using radar tracking or, in a future environment,

data downlink from the aircrafts FMS.

From this information we may build an optimal control

problem by looking for control trajectories for each aircraft

that will drive the whole system from its initial state (i.e. at

the current instant of time t0) to its final state. What is this

final state?

The system is assumed to reach its final state once every

regarded aircraft reaches its destination, i.e. its exit point of

the sector. By assuming that at the current instant of time t0,

each aircraft has a very different way to go in the sector, we

may very well conclude that not all aircraft will reach their

destination at the same time. Therefore we must introduce

individual parameters for each aircraft, indicating the time

spent in the sector. By normalizing the dynamic system of

each aircraft by that individual time pi, we obtain a system

that does indeed reach its terminal state homogeneously.

Once we have used the data containing all essential

information of the traffic situation to formulate an optimal

control problem, this problem will be solved by the ground-

system in a control center. The resulting optimal control

trajectories are distributed among airspace users via data

comm uplink to the FMS, which then steers the aircraft

accordingly.

This again leads to a new traffic situation T1 at a later

instant of time t1. The cycle ultimately starts anew to

determine whether the dynamic system propagates as

projected. Using a nonlinear model predictive control process

in such a control framework potentially enables a feedback

law that protects the system against possible disturbances.

Figure 1 illustrates this process. It must be noted that even

Fig. 1. System framework for centralized separation management.
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though this framework is designed to work automatically,

there can, and actually should be, a possible controller-

machine interaction implemented. This could be realized in

a way that the automation suggests solutions for the given

traffic situation and the controller may interfere if he does

not feel comfortable with the solution.

B. Generating the Control Problem

In order to generate a control problem for a specific traffic

situation, we need to formulate a dynamic system describing

the propagation of all aircraft within a sector. We have to

determine control variables that are then evaluated by a chosen

objective function — and finally we have to specify constraints

and boundary conditions that have to be satisfied.

a) Dynamic System: The system of ordinary differential

equations for the numerical examples that will be investigated

in section IV was chosen to best meet the BADA (Base of

Aircraft Data, [20]) model that is used within the AFS (Ad-
vanced Flight Simulator by DFS) real-time simulation. Since

we only inspect 2-dimensional en-route scenarios without level

changes, the dynamic system is quite simple:

θ̇(t) =
g

V (t)
tan(μ(t))

ẋ(t) = V (t) cos(θ(t)),
ẏ(t) = V (t) sin(θ(t)).

Here θ(t) is the aircraft heading, V (t) the true airspeed, μ(t)
the bank angle, x(t) the lateral and y(t) the longitudinal

position. Control variables are chosen to be the aircraft

velocity and its bank angle, so u0(t) = μ(t) and u1(t) = V (t).

From now on we assume that the traffic vector T (t0)
for the initial instant of time t0, t0 = 0 without loss of

generality, yields the following initial state information:

θi(0) = θi
0,

xi(0) = xi
0, (1)

yi(0) = yi
0,

for all aircraft i = 1, . . . , m, with m being the total number

of aircraft. The nominal heading θi
0 is assumed to be the

direct heading between entry and exit point. Note that for the

sake of simplicity, we will assume direct routes from extry to

exit point - one could define more complex routes throughout

the sector without having to modify the general approach.

For the remainder of this paper all three differential states are

incorporated in a vector ω, i.e. ω := (θ(t)T , x(t)T , y(t)T )T .

We can very well assume that the systems initial state

ω(0) = ω0 is known (either from radar tracking or FMS

downlink), and the desired state at the final instant of time T
can be formulated as a terminal condition

ω(T ) = ωT .

Depending on the actual traffic scenario, ωT contains infor-

mation about the corresponding exit point of the aircraft, i.e.

information about x(T ) and y(T ).
An important feature of this approach is the introduction

of an individual aircraft time pi, that represents the time

spent by that aircraft in the regarded airspace. This time

may be very different for various aircraft. As a consequence

we set the global time to be fixed T = 1. By using the

vector p = ((pi, pi, pi)T )i=1,...,m ∈ R
3m, and the identity

matrix I ∈ R
3m×3m, we may obtain a diagonal matrix

p · I =: P ∈ R
3m×3m. This matrix has to be multiplied with

the right-hand side of the ODE system, so that the dynamic

system finally becomes:

ω̇(t) = P · f(ω(t), u(t)),

where f is the right-hand side of the ODE system 1. Beside

the dynamic system we also define variables that represent

the distance between two individual aircraft. For every pair of

aircraft (i, j) we define an algebraic variable

a(i,j)(ω(t)) =
√

(xi − xj)2 + (yi − yj)2 (2)

which determines the separation between aircraft i and j. In

the remainder we will choose the index k = i+ j, so that k =
1, . . . , (m − 1)! and a = (ak)k=1,...,(m−1)!. For the scenarios

investigated in section IV we assume a minimum separation

of 5nm, so that

h(i,j)(ω(t)) = a(i,j) − 5 ≥ 0.

Note that these algebraic variables were introduced for the

purpose of monitoring the separation between aircraft during

the optimization process. They can be considered as an auxil-

iary variable, as it does not interfere with the dynamic system

itself.

b) Objective Function: Formulation of the objective

function is not a straightforward task. Here we suggest a

performance index that assesses the deviation from individual

flight trajectories to their nominal ones. This contains the

difference of sector times, as well as deviations in velocity or

heading angles.

First we want to identify the difference between the

actual time that the aircraft spent within the sector and its

nominal sector time, i.e. the time that was filed in its flight

plan. Let p̂i be the nominal sector time by aircraft i, then

we want to minimize the difference p̂i − pi. By defining the

function

ψ(p) =
m∑

i=1

√
(p̂i − pi)2, (3)

we obtain a measure to minimize the difference of actual and

filed sector time.

As a second optimality measure we need to identify

the deviation from the aircraft’s nominal path. As we have

mentioned above, we here assume that these nominal flight

paths are direct routes from entry to exit point. We want

to control aircraft in a way that even though we manage

conflicts, we also minimize the deviation from its planned
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flight track as chosen by the user himself. Therefore, we

compute a nominal position ω̄(t̂) for the instant of time

t̂ ∈ [0, 1] and for aircraft i by setting

x̄i(t̂) = xi
0 + V̄ i cos(θi

0)t̂p
i,

ȳi(t̂) = yi
0 + V̄ i sin(θi

0)t̂p
i,

where V̄ i is the nominal, i.e. filed, cruise speed of aircraft

i. By integrating over the difference of nominal position and

actual position, we obtain a measure for the deviation from an

aircraft’s nominal path. Hence we define

Li
1(ω(t̂)) =

√
(x̄i(t̂) − xi(t̂))2 + (ȳi(t̂) − yi(t̂))2, (4)

for all aircraft i. This measure is important because we

want the airspace to look like it was projected in strategic

applications in terms of workload distribution and flow

management. Huge deviations from the nominal flight track

should be avoided so that we do not impact the macroscopic

system.

Furthermore, we want to minimize the total interference

with the aircraft, hence we want to minimize the magnitude

of control changes. This applies to both change of velocity

and change of bank angle. In other words, we need to

minimize the total deviation of controlled velocity and the

aircraft’s nominal velocity, as well as the total bank angle

flown. Recalling from above that ui
0(t) is the bank angle and

ui
1(t) the velocity, we may define

Li
2(u

i
0(t)) = (ui

0)
2, (5)

Li
3(u

i
1(t)) = ‖ui

1 − V̄ i‖. (6)

Taking together equations (4), (5) and (6), and by integrating

over the whole time horizon, we obtain the Lagrange term of

the objective as

∫ 1

0

L(α, ω(t), u(t))dt =
∫ 1

0

m∑
i=1

[α1L
i
1(ω(t), u(t)) (7)

+α2L
i
2(ω(t), u(t))

+α3L
i
3(ω(t), u(t))]dt,

where α = (α1, α2, α3)T is a vector composed of weights

assigned to the different terms within the objective function.

Using equations (3) and (7), we finally obtain the performance

index as

J(α, β) :=
∫ 1

0

L(α, ω(t), u(t))dt + βψ(p), (8)

with β being an additional weight. Note that all individual

measures in (8) are indeed dependend on each other. For

example the deviation from a nominal flight track naturally

also influences the sector time. Furthermore, in reality we need

to introduce weights to conform for objective components of

different magnitudes (e.g. bank angle in radians and sector

times in seconds). It should be noted that even though we

address multiple indicators within our objective function,

we are not trying to optimize all of them at the same time.

Instead we optimize one scalar value J(α, β), for which

a trade-off between multiple indicators (depending on the

weights) is expected.

From the considerations above we may now formulate

an optimal control problem in correspondence with a standard

form of problems with fixed final time. The problem is as

follows:

min
u(t),ω(t)

∫ 1

0

L(ω(t), u(t))dt + ψ(p) (9)

subject to

ω̇(t) − P · f(ω(t), u(t)) = 0,

g(ω(t)) = 0,

h(a(t)) ≥ 0,

ω(0) − ω0 = 0,

u(0) − u0 = 0,

re(ω(T ), u(T )) = 0,

where re(ω(T ), u(T )) contains information about the air-

craft’s position and its controls at the sector exit point as

equality constraints. Since we want aircraft to be transfered

from one sector to another in a steady flight state, we demand

terminal controls to be nominal, i.e.

ui
0(T ) = 0,

ui
1(T ) = V̂ i.

III. OPTIMAL CONTROL

Typically control problems are solved by either indirect

or direct methods. While indirect methods use optimality

conditions derived from calculus of variations to obtain a

multi-point boundary value problem that can later be solved

by numerical methods, direct solution methods first discretize

the problem and then solve it by techniques of nonlinear

programming. The indirect method has the disadvantage of

introducing so-called adjoint variables that become part of

the MPBVP — and for which initial values are very difficult

to determine. More information on the indirect method can be

found in [21], [22] or [23].

In this paper we use the direct method to obtain solutions

for problem types of (9), described as first discretize, then
optimize. We perform a multiple shooting discretization that

transforms the ∞-dimensional control problem into a finite-

dimensional nonlinear optimization problem which is finally

solved with the SQP method. More detailed information on the

direct method and its variations can be found in [11], [24], [25]

and [26].

A. Discretization

Optimal control problems are typically infinite-dimensional

problems since they yield an infinite number of unknowns.

Even if you are dealing with a finite time horizon (as in

problem (9)), the control function that we are looking for
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still has an infinite number of unknown values along its

continuous trajectory.

As a first step we introduce grid nodes τi to divide the

regarded time horizon [0, 1] in multiple intervals. By choosing

a number of N grid nodes, including initial and terminal

points, we have

0 = τ0 < τ1 < · · · < τN−2 < τN−1 = 1, (10)

as a grid of multiple shooting nodes.

For each single interval [τj , τj+1] we obtain an initial

value problem based on the differential equations that define

the dynamic system. The solution of each IVPs only depend

on the initial value itself, i.e. at the state value for a particular

grid node sj = (ω(τj), a(τj)). This way the state values at

grid nodes remain as the only unknowns with regard to the

states. All values between grid nodes are determined by the

differential equations and the defining algebraic equations

respectively.

Consequently, the differential state trajectories between

grid nodes are given by ωj(t) = ω(t; sj) for t ∈ [τj , τj+1].
The algebraic states on the other hand may be directly

computed from the given differential states, according to

equation (2).

Furthermore, we will parameterize the control trajectory

in a way that we assume it to be piece-wise linear and

continious between grid nodes. Other discretizations are

possible as well, including piece-wise constant or cubic

controls. Choosing the type of discretization is usually a

trade-off between computation time, feasibility and stability

on one side, and realism on the other. Here we have chosen

piece-wise linear controls as this approach already delivers

very promising results without yielding too expensive

computation times. By parameterizing the control trajectory

as

u(t) = qj · t + vj , (11)

for t ∈ [τj , τj+1], we have reduced the total number of

unknown variables in our examples (considering four aircraft,

i.e. m = 4) from ∞ down to 448, with 192 state unknowns

and 256 control unknowns.

Finally, we also need to discretize the objective function,

which is easy since we simply evaluate the objective at the

grid nodes, obtaining a straightforward sum approximation of

the integral, yielding

J(α, β) =
N−1∑
j=0

Li(α, ωj , aj , uj) + βψ(p). (12)

By parameterizing the state variables, along with (11) and

(12), we have transformed the infinite-dimensional control

problem (9) in a finite-dimensional problem. This problem can

be formulated as

min
q,v,s

N−1∑
j=1

Lj(α, qj , rj , ωj) + βψ(p) (13)

subject to

s(τj+1) − ωj(τj+1; sj , qj , rj) = 0, j = 0, . . . , N − 1,

g(sj) = 0, j = 0, . . . , N − 1,

h(sj) ≥ 0, j = 0, . . . , N − 1,

ω(0) − ω0 = 0,

q(0) − q0 = 0,

v(0) − v0 = 0,

re(ωN , sN ) = 0,

which can then be engaged by nonlinear optimization meth-

ods. Here

q = (qj)j=0,...,N−1,

v = (vj)j=0,...,N−1,

s = (sj)j=0,...,N .

Note that by defining functions F , G and H according to

the functions in problem (13), we easily obtain a nonlinear

optimization problem in standard form, as

min
ζ∈R

nζ
F (ζ) (14)

subject to

G(ζ) = 0,

H(ζ) ≥ 0,

where ζ = (qT , vT , sT )T .

We have now formed a nonlinear problem of finite dimension

that originates in the control problem (9) introduced above.

Finding a solution of these nonlinear problems is a common

task in optimization and we will present one solution method

in the next section.

B. Nonlinear Programming

Nonlinear optimization or nonlinear programming

comprises methods that search for an optimal vector

instead of an optimal function as it would be necessary for

generic control problems. However, we have transformed the

problem by the discretization process above, so that methods

of nonlinear programming may be applied. A comprehensive

overview of methods in this field can be found in either [27]

or [28].

In the scope of this paper we will only summarize the

methods that are used and refer to further sourcess whenever

more detailed study could be valuable. The author is providing

a closer look on nonlinear optimization in his diploma thesis,

[12].
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Model Velocity/[nm/s] (TAS) Cruise/[nm/s] (TAS)
B737-800 0.0894-0.1336 0.12

Cessna C550 0.0694-0.1117 0.09

TABLE I
AIRCRAFT TYPES

In general nonlinear problems as (14) are typically solved by

using the Lagrangian function

L(ζ, λ, μ) = F (ζ) − λT G(ζ) − μT H(ζ), (15)

with λ,μ as Lagrange multipliers, for which we try to meet

certain optimality conditions, see [27]. To achieve conditions

for optimality one applies iterative descent algorithms that

generate successive iterates ζk by using

ζk+1 = ζk + tkdk, (16)

where tk is the step length and dk is the search direction.

In this approach we have used a SQP (sequential quadratic
programming) algorithm that has a special way to obtain

dk. In each iteration the search direction is computed by

solving a quadratic sub-problem (hence the name), which

corresponds to a second-order Taylor approximation of the

Lagrangian, with linearized constraints. The SQP algorithm

itself can be adapted by choosing different strategies for

approximating the Hessian of the Lagrangian, and by

choosing one specific globalization technique. Here we have

configured MUSCOD-II such that its SQP module uses a

BFGS update on the Hessian approximation of the Lagrangian

contained in the SQP, as well as a VMCWD (Variable Metric
Constrained WatchDog) technique to determine the step

length tk (globalization), see [29].

IV. NUMERICAL RESULTS

In this section we will finally look at some numerical use

cases that have been solved, using the methods presented

above. Every scenario is assumed to take place at an altitude

of 35000ft, i.e. FL350 - which is the typical environment for

en-route flight phases. Furthermore, each scenario runs in a

generic airspace of 100nm × 100nm.

Our use cases include two types of aircraft, see table

I for more detailed information. The artificial controller

provided by this method is able to influence the aircrafts bank

angle ui
0(t) and its velocity ui

1(t). Both controls are assumed

to be piece-wise linear as outlined above. Each use case

is solved multiple times, each time with different weights

assigned to the objective function. The different elements

of the objective were introduced in paragraph II-B0b.

Table II shows the different weights that were assigned

to individual indicators. As the numbers show they were

primarily chosen to represent different orders of magnitude

— and to dis- or enable certain indicators within the objective.

Indicator Set A Set B Set D Set E
Sector Time 0 10 10 0
Flight Track 0 0 0 10
Cruise Speed 100 0 100 0
Bank Angle 100 0 100 0

TABLE II
WEIGHTS SETS USED TO SOLVE USE CASES.

Set A Set B Set C Set D
Time
Scenario A 00:43.324 00:28.384 00:40.958 00:04.454
Scenario B 01:57.170 01:19.553 07:52.416 00:04.325
Scenario C 04:14.832 00:32.181 04:54.172 04:12.262

Iterations
Scenario A 121 79 111 12
Scenario B 288 192 1119 9
Scenario C 662 89 647 493

TABLE III
COMPUTATION TIMES FOR ALL SCENARIOS.

Every solution was started with an heuristic pre-optimization

to obtain initial control values. This heuristic approach

included simple rules, as aircraft will turn left to solve
conflicts. Indeed all initial state values were extrapolated from

an entry-exit linearization.

Solutions are visualized by a two-dimensional top view

on the sector, showing flight tracks for all regarded aircraft.

For every scenario we will show statistics, including total

delay, maximum delay for an individual flight, total flight

track excess and the magnitude of speed control (SC
Magnitude). Table III shows computational times and number

of iterations for all three scenarios as well as for the different

weight sets in the objective. Computations were performed

on a 2GHz Intel Core 2 Duo machine.

A. Scenario A: Rogue

In this scenario four B737-800 aircraft need to pass the

center of a sector in order to reach their destination at the

opposite of their entry point. While heuristically it is not

difficult to obtain a feasible solution that is a conflict-free

trajectory for all aircraft, the determination of an optimal

solution is not straightforward.

Table IV shows the results obtained for each objective

function. It clearly shows that a ground-system can determine

a solution within reasonable time. As table III indicates,

computation time never exceeded the one minute mark for

any feasible solution. Figure 2 shows the solution using

weight set A. It is interesting to see that even without any

heuristic information within the algorithm, the mathematical

method finds a very similar solution to what is taught to

controllers: to resolve conflicts as soon as possible so that

flight track excess is minimized.
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Total Delay/[s] Max. Delay/[s] Track Excess SC Magnitude
A 11.12 2.91 0.32% 0.004
B 0.01 <0.01 1.33% 5.384
C 0.01 <0.01 0.76% 4.420
D 42.18 11.21 1.51% 1.613

TABLE IV
STATISTICS FOR SCENARIO A.

Fig. 2. 2D top-view, showing the solution for scenario A (weight set A).

B. Scenario B: Velocity Rogue

In this scenario we have two aircraft following each other,

with the leading one being the slower aircraft as shown in

table I. Both aircraft start on the left side of the sector, at

points (0, 50) and (10, 50) respectively, with both aircraft

heading for the same destination (100, 50). Consequently, the

faster aircraft has to overtake the slower one at some point of

the sector — or the system could choose to slow down the

faster one so significantly, that it may follow the slower one.

A third aircraft (red color) approaches them from the

right, starting at (100, 50) and a fourth strikes through

the center as well, starting at (50, 0) and heading for its

destination at the opposite side of the sector. Table V shows

the results that were obtained. In figure 3 we can see the

solution provided by weight set C. It shows the compensation

between a reduced delay as well as minimized influence to

the aircraft. The trajectories shown are conflict-free.

C. Scenario C: Switching Lanes

In scenario C all four aircraft are of the same type. They

start on the left side of the sector and head for the opposite

position again. Two of these vessels need to cross their flight

Total Delay/[s] Max. Delay/[s] Track Excess SC Magnitude
A 20.89 13.93 0.52% <0.001
B 0.10 <0.01 2.70% 19.998
C 0.01 <0.01 0.45% 1.848
D 45.90 17.05 2.67% 1.867

TABLE V
STATISTICS FOR SCENARIO B.

Fig. 3. 2D top-view, showing the solution for scenario B (weight set C).

Total Delay/[s] Max. Delay/[s] Track Excess SC Magnitude
A 47.19 39.22 0.77% 1.594
B <0.01 <0.01 3.62% 48.713
C <0.01 <0.01 0.30% 32.559
D* 263.51 198.19 1.26% 74.521

TABLE VI
STATISTICS FOR SCENARIO C.

paths as aircraft 1 is heading from (0, 40) to (100, 60), and

aircraft 2 heads from (0, 60) to (100, 40). Table VI shows

Fig. 4. 2D top-view, showing the solution for scenario C (weight set C).

numerical results for scenario C. It must be noted that for

weight set D, the algorithm did not deliver an operationally

feasible solution. While minimum separation was satisfied on

all grid nodes, it was violated between two of them.

Figure 4 shows the results for weight set C. Here, both

the red and blue aircraft change their velocity before their

tracks cross each other to guarantee separation minima.

All three use cases have shown the strong potential of

this method to automatically generate solutions. Except for

weight set D in scenario C, minimum separation was always
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ensured and it was possible to find no-delay trajectories

within the range of aircraft performance. Furthermore, it was

shown that with an objective function that tries to minimize

the influence of a centralized control system (set A), the

algorithm will deliver promising results as well. Weight set C

was chosen to combine all factors - however, results indicate

that this performance index will lead to high computational

costs, as shown in table III.

V. CONCLUSION

We presented a framework for a centralized approach to

separation management, using an optimal control element

that automatically computes conflict-free trajectories for all

aircraft within a regarded airspace. As an optimality measure

we used a function comprising a set of four indicators that

aim to assess the deviation from a nominal flight track and

time and we investigated the results for different weight sets

within this function.

Numerical results showed that this method can achieve

very promising results, even when faced with complicated

traffic scenarios that yield multiple conflicts. This method

could indeed lead to a significant improvement in terms of

separation management in order to enable more capacity and

throughput.

These results need to be validated by real-time simulations

as it will be done in November 2011 at DFS, where human

controllers will be confronted with a set of traffic scenarios

(including the ones presented above). The results of these

simulations will be compared to numerical simulations.

This will bring more insight to the task of identifying the

best objective function, as well as information about which

objective function is reproducing controller behaviour most

accurately. This is considered to be a valuable input as a

possible future support tool should deliver solutions that can

easily be followed by the controller to approve.

Moreover we saw that even though the results are promising,

they are sometimes complicated and expensive to achieve.

Initial research showed that there is a vital necessity for

pre-optimization modules that prepare the optimal control

algorithm with useful initial control and state trajectories.

As we showed the necessary computation times to obtain

certain solutions are beyond the scope of a future real-time

environment. Furthermore the determination of scales within

the solution algorithm is an important issue.
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