
LOCAL PLANNING FOR A FIXED-WING UAV WITH A TREE-BASED 
PLANNER AND MOTION PRIMITIVES 

M. Niendorf, Institute of Flight Mechanics and Control, University of Stuttgart, Germany 
M. Gros, Institute of Flight Mechanics and Control, University of Stuttgart, Germany 

A. Schöttl, MBDA Deutschland, Germany 
W. Fichter, Institute of Flight Mechanics and Control, University of Stuttgart, Germany  

Abstract 

Motion planning for a fixed-wing UAV is a complex task, especially due to the dynamic constraints of the 
aircraft. The work presented here is based on a two-stage planning framework. The global planning stage 
consists of a probabilistic roadmap planner which computes a sequence of waypoints accounting for 
kinematic constraints. Those are fed into a deterministic tree-based local planner that locally refines the path 
using closed-loop dynamics motion primitives. In this paper we focus on the local planner which we present in 
detail. Tree expansion is guided by a metric based on Dubins curves. We provide simulation results 
comparing the metric to three alternative metrics to support our choice. The computational complexity is 
reduced by limiting the set of motion primitives depending on the environment. Furthermore, we redefine the 
waypoint proximity criterion by considering the Dubins metric. We discuss the suggested planner and 
thoroughly analyze its possible failure modes. The simulations are concluded by showing the efficiency of the 
local obstacle avoidance strategy using just the local planner and together with the global planner in a 
complex urban scenario. The simulation reveals promising behavior for both the local planner and the 
coupled planners. 

1. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) have been in 
development for several decades and will play an 
increasingly important role in various future scenarios. 
Typical missions for UAVs today include surveillance 
tasks, reconnaissance, environmental monitoring, etc. As 
of today, most deployed unmanned aerial systems make 
use of a human operator in the loop who remotely pilots 
the aircraft. However, it is desirable to strive for a higher 
degree of automation to enable the operator to give higher 
level commands.  

Within complex obstacle-filled environments operating an 
UAV holds several challenges to be solved. Fixed-wing 
aircrafts must maintain a velocity sufficiently greater than 
stall speed at any time in order to provide safe operation. 
Furthermore, since hovering in place is not possible, 
heading and flight path angle changes require significant 
space and time. Obstacle-cluttered environments 
therefore require a planner that exploits the 
maneuverability of the underlying system.  

A popular approach to solving the motion planning 
problem in an obstacle-cluttered environment is to 
decompose it into a coarse, discretized global planning 
problem and a finer local planning problem which 
accounts for the dynamic constraints.  

Roadmap-based planners have been widely adopted to 
solve the global planning problem [1,2]. Probabilistic 
Roadmaps (PRM) have gained special attention due to 
their favorable runtime and completeness guarantees as 
well as their multi-query property. During the query phase, 
well studied graph search algorithms such as A* are 
employed to obtain a solution. Randomized Trees such as 

the RRTs have been used for path planning under 
kinodynamic constraints [3]. However, increasing the 
dimension of the search space to the state space to 
account for dynamic constraints increases the 
computational effort dramatically. Therefore, it is common 
to perform sampling in the configuration space with 
position and attitude or even work space with only position 
information rather than in the state space which would be 
preferable in terms of system dynamics.  

The reduction of the state space of a system to 
maneuver-space by the introduction of a state machine, 
which interconnects steady-state trajectories and 
maneuver trajectories, was introduced in [4]. This allows 
for implicitly addressing the dynamic constraints of the 
system. The application of this concept to a tree-based 
planner, which builds a tree of motion primitives, was 
presented in Ref. [5].  

In [6] we introduced a two-staged approach to the UAV 
motion planning problem for a small fixed-wing UAV, 
which consists of a modified PRM stage to solve the 
global planning problem and a deterministic online tree-
based local planning stage which implicitly addresses the 
dynamic constraints by using closed-loop motion 
primitives. It refines the trajectory locally. The local 
planner is strictly deterministic in contrast to the RRT 
motivated planner strategy mentioned above. It uses a 
metric based on Dubins curves as heuristic. �������	

avoidance during runtime is crucial when unmanned aerial 
vehicles fly through dynamic environments. Thus, it 
makes sense to directly embed range information such as 
from a laser range finder (LRF) or a radar distance sensor 
into the motion planner. Such an approach is reported in 
[7] and [8] in the framework of RRTs and potential fields, 
respectively. 
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The objective of this paper is to provide deep insight into 
the deterministic online local planner and to introduce 
details beyond the scope of the previous paper [6]. We 
depict the algorithm in detail. We pay special attention to 
the choice of an appropriate metric and provide simulation 
results using 4 different metrics. The switching maneuver 
automaton, which reduces the computational complexity 
by limiting the set of applicable motion primitives 
depending on the environment, is introduced. 
Furthermore, we introduce a new waypoint proximity 
criterion and provide simulation results concerning the 
efficiency of the local obstacle avoidance strategy. We 
discuss the local planner and thoroughly analyze its 
possible failure modes. The remainder of this paper is 
organized as follows. Section 2 provides a brief overview 
of the PRM global planner. The local planner is presented 
in detail in section 3 and results obtained from simulation 
are presented in section 4. A discussion of the results 
paying special attention to the performance of the local 
planner in section 5 leads to the conclusions given in 
section 6.  

2. GLOBAL PLANNER 

The global planner computes a series of waypoints which 
lead from start to goal offline, i.e. once before the actual 
flight and accounts for static and known obstacles. The 
Probabilistic Roadmap algorithm is used as global planner 
due to its well-studied advantageous properties, i.e. 
probabilistic completeness and multi-query capability.   

Planning a path for a robot using a probabilistic roadmap 
consists of two phases. First, a predefined number of 
random nodes are sampled from the free work space, R³ 
in this case. The planner then tries to connect n nearest 
neighbors to each other with straight line segments. We 
store the nodes in a kd-tree to allow for efficient n-nearest 
neighbor search. The edge candidates are checked 
against collision with the world model by using oriented 
bounding boxes (OBB) and the collision algorithm 
depicted in [9].  

We impose additional constraints on the slope as well as 
on the length of the edges to pay respect to the kinematic 
constraints of the UAV [6].  

The resulting graph represents the free space and can be 
used to solve multiple queries in a second step. Start and 
goal are connected to the roadmap and then a modified 
version of the A* algorithm is used to solve the query. 
Modifications account for flight path constraints, e.g. the 
heading change between two consecutive edges is limited 
to be smaller than a threshold. 

The a priori known obstacles are modeled using axis 
aligned bounding boxes. The notion of the Dubins aircraft 
is exploited to develop a metric. Even though, this metric 
does not underestimate the distance between two points 
as required by the A* algorithm to be admissible, we 
achieved good results in practice, especially when 
combining the global and the local planner. The 3D 
Dubins heuristic will be discussed in detail in the following 
section.     

The found path is smoothed in a post-processing step, 
which skips nodes by connecting non-neighbor nodes with 
each other, if the resulting edges are collision-free and 
satisfy the previously mentioned constraints. 

3. LOCAL PLANNER 

So far, the global planner has been presented, which 
generates a series of waypoints accounting for 
kinematical constraints.  However, as the a priori known 
world model might be incomplete, i.e. unknown obstacles 
might exist and to make use of the full capabilities of the 
aircraft, an online local planner is executed during the 
flight. We chose an approach which builds a tree of 
motion primitives to directly address the nonholonomic 
constraints of the aircraft. Figure 1 illustrates the 
exemplary use of a tree of discrete maneuvers, which can 
be connected smoothly to each other, to find a path from 
an initial position to a goal position passing by a waypoint, 
with a goal area represented by a circle in �² with 
radius goalR . The local planner is meant to refine the 
global path locally with a set of densely sampled motion 
primitives. We will now briefly cover the simulation model 
as well as the motion primitive generation and then focus 
on selected details. 

3.1. Simulation Model 
To generate the set of motion primitives, a model of the 
plant is necessary. In this work we use a nonlinear 6 
degrees of freedom model of a fixed-wing aircraft. We 
simulate the closed-loop model due to the stability 
advantages. The control loops were designed in order to 
give flight path variables as reference inputs. This leads to 
the following closed-loop system 

(1) ),,,(,)0()),(),(( 0 comcomcom Vrxxtrtxfx γφ===�

where comφ is the commanded roll angle. For small γ,   a 
small angle of attack α and sideslip angle β , φ is 
equivalent to the bank angle μ . Therefore, φ  is chosen 
as reference signal of the lateral motion. The commanded 
flight path angle comγ and the commanded absolute speed 
comV  are chosen to be the reference signals of the 

longitudinal motion. The reference input vector is 
therefore defined as ),,( comcomcom Vr γφ= . Refer to [6] for 
the full feedback policy and further details.  

3.2. Motion Primitive Generation 

To obtain the set of motion primitives (MPs), we 
suggested a straight-forward sampling method. The 
response of the nonlinear system in the interval ],[ gs ttt ∈
with initial state sx to the input vector sr is recorded as a 
motion primitive. By sequentially applying this method to 
all combinations of  sx  and sr  we obtain a set of motion 

����������

FIGURE 1. Exemplary Tree Expansion in 2D 
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primitives, which can be stored in a maneuver automaton. 
We apply each input vector for a time interval that 
satisfies setg tt ≥ , where sett  is the settling time of the 
underlying controller loops. Thus, we call these motion 
primitives steady-state motion primitives. Furthermore, a 
second class called non-steady state motion primitives 
was introduced to enable small heading changes in the 
horizontal plane, which could not be realized with the 
steady-state motion primitives due to the magnitude of 
sett . For a more rigorous explanation of the motion 

primitive generation process as well as a detailed 
description of the non-steady state primitives, refer to [6].  

3.3. Metric 

In motion planning the appropriate choice of a metric 
measuring proximity between configurations, i.e. position 
and attitude, is crucial. When dealing with a system that is 
subject to nonholonomic constraints such as a car or a 
fixed-wing aircraft, both constrained with a minimum 
turning radius minR , the Euclidean distance between two 
points can be a poor estimate of the achievable path 
length. To find the shortest path between two 
configurations in a 2d environment  for a nonholonomic 
car, Dubins presented a sufficient set of 6 path types, 
each consisting of at maximum 3 segments, which can 
either be circular arcs or straight line segments [10]. 

A significant speed gain in computation can be achieved, 
if the final orientation is left arbitrary such that the shortest 
path consists of at most 2 segments. An analytical 
solution to this problem was given in [11]. We use this 
result in the horizontal plane to compute the length of the 
shortest path from an initial configuration ),,( iiii yxq χ= , 
where χi  is the initial heading angle, to a goal 
position ),( ggg yxq = .  

Since the constraints on possible motion for the Dubins 
car and an aircraft are closely related, the notion of a 
Dubins car can be expanded to R³. The Dubins aircraft 
was introduced in [12]. In [5] a metric based on Dubins 
curves in 3d was depicted. We suggest 3 different 
metrics, which each use a sum of a horizontal metric and 
a vertical metric to compute a 3d metric. The metric in the 
horizontal plane is computed as the length of a two 
segment Dubins path between the start configuration and 
goal position. The 3 suggested metrics are depicted in 
table 1.  Dubins Metric I uses the approach depicted in 
algorithm 1 to compute the path length, i.e. if the flight 
path angle γ  is too large, revolutions of a circle with 
minimum turning radius are added until the path angle 
constraint is satisfied. However, other than in [5] we add 
zΔ  as we obtained better results with this modification. 

Dubins Metric II is the sum of the length of the Dubins 

curve in the horizontal as well as in the horizontal plane. 
In this case the same minimum turn radius is assumed in 
the horizontal and the vertical plane. Metric III is the sum 
of the Dubins curve in the horizontal plane and the vertical 
distance vIIIL  computed as: 

(2) 22/)tan(22
, yxzyxL IIIv Δ+ΔΔ−⋅Δ+Δ= γ

This will penalize any flight path angle, which is not 
pointing towards the goal. vIIIL is therefore not a measure 
of proximity but rather a measure of matching flight path 
angle.  

3.4. Search Tree 

The local planner builds a tree of motion primitives in 
order to find a feasible trajectory from a start configuration 
to a goal position. The planner returns a sequence of 
control inputs to the aircraft, which then follows the 
generated trajectory in an open-loop fashion. 

The search tree is guided by the previously found 
waypoints. It refines the global solution into a dynamically 
feasible trajectory. Depth-first behavior is desirable in 
uncluttered environment to avoid unnecessary branching 
of the tree. However, in the proximity of obstacles as well 
as close to the goal breadth-first behavior is preferred. A 
node of the local planner can be fully represented by its 
configuration ),,,,( γφzyxq = . Tree expansion is guided by 
a partially greedy cost function J . For a MP that starts at 
iq and ends at fq the cost functional J 
is defined as  

(3) ),(),(),()( obsfgoalffif qqhqqgqqfqJ ++=

where ),( fi qqf is the trace length of the MP and 
),( goalf qqg is the cost-to-go computed by using the 3D 

Dubins heuristic between fq and goalq . The term 
),( obsf qqh  represents the value of a potential function, 

which will be explained in the next section. It is important 
to note that the motion primitives do not have the same 
length, as the feedback controller cannot drive the 
nonlinear plant from one state to any arbitrary state in 
constant time. Therefore, the term ),( fi qqf is necessary to 
account for the differing length. A purely greedy cost-
function would favor longer motion primitives over shorter 
motion primitives. 

The pseudo code given algorithm 2 depicts the structure 

Dubins Metric 
I 

Dubins Metric 
II Metric 3 

IL Dubins curve Dubins curve Dubins curve 

vL Helix Dubins curve Eq. 1 

Algorithm 1 Dubins Metric I

1: Lh,Dubins←compute horizontal Dubins distance (qi, qg)
2: h ← Lh,Dubins

3: while Δz/h ≥ sin(γmax) do h ← h + 2 · π · Rminend

4: Lv,Dubins ← h + Δz
5: L3D,Dubins ← Lh,Dubins + Lv,Dubins

Algorithm 2 Tree of Motion Primitives

1: nodebest ← open_list.push() ← nodeUAV ← qi; age = 0;
2: while xg not reached
3: if waypoint reached
4: update waypoint to next from PRM
5: open_list : for all nodes: update J , evaluate G
6: nodebest ← open_list.pop()
7: age_waypoint ← age
8: else

9: age ← age + 1
10: nodebest for all successors: evaluate J and G, collision/safety maneuver check
11: for all feasible successors: open_list.push()
12: if open_list is empty then planning failure end

13: if age − age_waypoint > threshold
14: if waypoint = global_goal then planning failure end

15: else skip waypoint
16: nodebest ← open_list.pop()
17: if age − ageold > planning_depth
18: path ←recursively find path from find path from current_node to nodeUAV

19: nodeUAV ←move UAV to the end of next trim state along path
20: if nodeUAV = nodebest then planning failure end

21: open_list: delete branches whose origin nodes possess timestamps ≤ age(nodeUAV )
22: ageold ← age

ALGORITHM 2. Local Planner 

ALGORITHM 1. Dubins Metric I 

TAB 1. Metric comparison
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of the local planner. The resemblance to the A* algorithm 
[13] is obvious. The algorithm maintains a priority queue 
of nodes called Open List, which is sorted according to 
the cost function. However, we limit the size of the Open 
List, which will drive the search tree towards the goal and 
avoid unnecessary branching in uncluttered environment, 
yet still provide enough options for tree expansion in more 
difficult terrain. The best node bestnode  is expanded by 
applying all possible motion primitives in line 10. All 
maneuvers that can be smoothly connected to the 
configuration at the best node are stored as new branch 
candidates. The new branch candidates are then checked 
for collision and, if feasible, added to the search tree and 
inserted into the Open List with the appropriate priority in 
line 11. 

To ensure the safety of the aircraft a branch is only added 
to the search tree, if at the end of each motion primitive at 
least one out of 4 safety maneuvers can be performed, 
which reverse the current heading. Safety maneuvers 
were represented by OBB placeholders and collision 
checked for every motion primitive. It is assumed that a 
safety maneuver takes advantage of the full capabilities of 
the aircraft and therefore the minimum turning radius is 
much smaller than the one observed during nominal flight 
represented by the motion primitives.  

The online search property is realized by the introduction 
of the parameter “planning depth” in line 17. We limit the 
number of node expansions before propagating the 
aircraft to the next position, which is found by recursively 
calculating the trajectory from the current best node in the 
search tree to the current position of the aircraft in line 18.  
Parts of the tree, which become unreachable, are pruned 
in line 21. 

We included a check for planning failure in three lines of 
the pseudo code in algorithm 2. In case one of the 
constraints is violated, a safety maneuver is executed. 
Obstacle avoidance techniques complementary to the 
collision checks countervail these cases. 

3.5. Obstacle Penalty function 

Typically, a free space heuristic such as the Euclidian 
distance or the Dubins metric is used to guide tree 
expansion, i.e. a possible line-of-sight to the goal is 
assumed. However, this might lead to the tree being 
dead-locked, as local minima such as the bug-trap might 
prevent further tree expansion. By the introduction of the 
term ),( obsf qqh  into the cost function, we include 
environment information, resulting in a more informed 
heuristic. ),( obsf qqh  is the value of a potential function that 
takes the position coordinates fq  and an obstacle 
position obsq  into account.  

(4) )1|/(|1),( −−⋅= obsfobsf qqKqqh

obsq  is determined by the simulation of a laser range 
finder (LRF) similar to Ref. [7]. The simulation of the LRF 
assumes a beam with limited range LRFd , variable pitch 
angle LRFθΔ  and variable azimuth angle LRFψΔ . obsq  is the 
minimum distance between fq  and any obstacle in range. 
Thus, motion primitives that lead too close to obstacles 
will be penalized heavily, which in return guides the tree 
towards the free space. 

3.6. Switching Maneuver Automaton 

The computational effort in motion planning can be 
reduced efficiently by the representation of the vehicle 
dynamics with a maneuver automaton. However, there is 
a trade-off between how densely the flight envelope is 
sampled and computational effort. It is desirable to 
densely sample the flight envelope, which will in return 
increase the computational effort significantly, because 
denser sampling requires a larger number of motion 
primitives, thus leading to a higher branching factor of the 
tree of motion primitives. Especially in obstacle cluttered 
environment or close to the initial and goal position it is 
favorable to have a wide set of motion primitives available 
to make use of the full dynamics of the aircraft. To 
address this dilemma a maneuver automaton can be 
defined, which only allows a subset of the complete set of 
motion primitives at a time [14]. One can classify subsets 
by different characteristics such as velocity, range, turn 
radius or by maximum roll angle. A switching function then 
has to be chosen, which limits the allowable states and 
transitions of the maneuver automaton to a specific set. 
The switching function can depend on time or 
environmental factors such as proximity to obstacles or 
proximity to start and goal.  

To achieve a maximum of maneuverability in obstacle 
cluttered environment, we define a subset of motion 
primitives with roll angles greater than a threshold boundφ
that are applicable additionally when close to obstacles. In 
an obstacle free environment only MPs below boundφ  are 
applied; this is called  limited set of MPs. We use obstacle 
proximity information provided by the simulated Laser 
Range Finder in the switching function G  to provide the 
switching function depending on a threshold boundd . 
Additionally, if the difference between current heading and 
the azimuth of an assumed line-of-sight connection to the 
goal is greater than an upper bound ψΔ  the MPs with φ
� boundφ are also applicable to allow for turning with 
minimum turning radius.  

3.7. Goal Area  

During planning each waypoint can be considered a local 
goal for the local planner. The global goal is the last of the 
waypoints and is therefore planned towards by the local 
planner as if it was another local goal. 

Due to the discrete nature of planning with motion 
primitives it is unlikely that goals can be reached 
precisely. It is therefore common practice to define a 
spherical goal area around the goal. The Dubins metric, 
which penalizes heading errors close to the goal heavily, 
makes the heuristic value alone an insufficient measure of 
proximity to a goal. Therefore the node with top priority 
might not be the physically closest to the goal. In general 
a global goal should be encountered as precisely as 
possible, i.e. the goal area around it should be small. In 
contrast, the waypoints only give “guidance” on how the 
local planner should approach the environment. It is 
therefore possible to relax the constraints on how 
precisely they need to be followed. Nonetheless, if the 
constraints are too loose, chances are high that the locally 
planned trajectory will deviate too far from the previously 
found global solution, which can then lead to planning 
failure, because the local planner might not succeed in 
guiding the aircraft back to the global solution.  
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On implementation level two different ways to distinguish, 
whether a goal has been reached, were found to be 
efficient. An upper bound on the Euclidian distance goalR
and a looser upper bound on the Dubins metric serve as 
decision criteria. The looser bound on the Dubins metric 

DubinsgoalR _  is possible, because heading information is 
directly incorporated into this metric. If one of the 
conditions is satisfied, the waypoint is reached and the 
next waypoint becomes active. For the global goal, i.e. the 
last waypoint, we chose that only the Euclidian distance is 
of interest, as this goal should be reached as precisely as 
possible with arbitrary heading. It is important to note, 
however, that the magnitude of the thresholds have to be 
adjusted to the specific model of the aircraft, i.e. the 
maneuver automaton. If the maneuver automaton 
included shorter or more aggressive maneuvers, one 
could lower the threshold and vice versa.  

4. SIMULATION RESULTS 

The following parameters have been set if not otherwise 
stated to conduct the presented simulations. Motion 
primitives for a set of ���� reference vectors r  shown in 
table 2 were generated.  Additionally, to allow for small 
heading changes a set of non steady-state MPs has been 
added. In total we obtain a set of 1087 motion primitives. 
The limited set of motion primitives was chosen to be the 
Motion Primitives with a roll angle φ � �25 . The thresholds 
in the switching function G  were set to mdbound 50=  and 

°=Δ 15ψ . Parameters for the global planner are set to 
°=10maxγ , °=Δ 60maxχ , mR 38min =  and the LRF parameters 

were set to mdLRF 80= , ]20,20[ °°−=Δθ , ]45,45[ °°−=Δψ . The 
default metric is Dubins metric I. The radius of the sphere 
around waypoints is set to mRgoal 15=  and the threshold 

for proximity when evaluating Dubins metric I to 
mR Dubinsgoal 30_ = . 

4.1. A Deeper Insight Into the Local Planner 

By definition the global planner returns an obstacle free 
path, i.e. intervisibility between waypoints is guaranteed. 
Therefore, any case in which intervisibility between the 
start position and goal position is not given, the obstacle 
blocking the line-of-sight can be considered unknown and 
will be referred to as unknown obstacle.      

                                                                             
4.1.1   Dubins Metric Performance 

First, we present a comparison of the 3 suggested 
metrics. Simulation results obtained when using the 
Euclidian distance serve as reference. Table 3 shows the 
number of node expansions necessary to reach the goal 

using each one of the metrics. 

Heading information is necessary in test case 1 (figure 2) 
for the planner to find a solution, because the goal is 
located elevated and behind the aircraft’s initial position. 
The Euclidean Distance does not provide such 
information and therefore the algorithm is not able to 
determine which branch to expand, since none of the 
candidates is the best evaluating J . Thus, when the 
condition in line 13 of algorithm 2 is violated, the planner 
aborts the planning process. The usage of Dubins curves 
in the horizontal plane incorporates heading information 
into the other 3 tested metrics. They perform similarly 
well. Using metric 3, the planner expands one more node 
compared to Dubins Metric I and Dubins Metric II.  

Test case 2 (fig. 3) is trivial, but reveals the core message 
of the metric comparison. In terms of node expansions all 
metrics perform almost similarly well. However, a visual 
comparison reveals a very wiggly path for the Euclidean 
Metric compared to Dubins Metric I+II caused by lack of 
heading information in the Euclidean Metric.                  

Figure 4 demonstrates the difference in behavior of 
Dubins Metric I and III, if an unknown wall is introduced. 
The planner is able to encounter the goal using all 4 
metrics. Dubins metric I, Dubins metric II and the 
Euclidean distance result in the same path, whereas 
metric 3 produces a slightly longer path. The property of 
metric to maintain the trajectory headed directly towards 
the goal 3 in the x-z plane can be observed. 

4.1.1. Reducing Computational Effort in 
Obstacle Free Environments 

To evaluate the performance of the Switching Maneuver 
Automaton, table 4 gives the number of node expansions 
���� and the number of times the limited set of motion 
primitives is used in test cases 1 through 5. The 
application of the limited set reduces the computational 
effort since fewer motion primitives have to be evaluated 
in each step. In test cases 2, 3 and 4 the limited set has 
been applied in at least one third of the node expansions. 
Difficult start-goal configurations or unknown obstacles 
need to make use of the full flight envelope of the UAV, 
therefore requesting all motion primitives. Such cases are 
test cases 1 and 5.  

φ -45° -20° -10° 0° 10° 20° 45° 
γ  -15° -10° 0° 10° 15°  
kv   20m   

Case Dubins 
Metric I 

Dubins 
Metric II Metric 3 2-Norm 

1 10 10 11 - 
2 9 10 9 9 
3 6 6 7 6 

Case Distance ���� �	
�
��
 �	
�
��
�������
1 - 10 0 0% 
2 374m 9 5 55.56% 
3 274.4m 6 5 83.33% 
4 254m 30 11 36.67% 
5 196.5m  6 0 0% 

TAB 2.  Discretized Reference Inputs 

TAB 3. Number of node expansions for each metric

TAB 4. Applicability of the limited set of MPs

Deutscher Luft- und Raumfahrtkongress 2011

1031



FIGURE 2. Test Case 1 shows the necessity to incorporate heading information. In (a) Dubins Metric I comes to 
a feasible solution, the Euclidean Metric in (b) fails to reach the goal with the given parameters. 

FIGURE 3. Test Case 2: For long obstacle free sections the comparison of Dubins Metric I (a) with the  
Euclidean Distance (b) reveals a meandering path for the latter which is in general not favorable. 

FIGURE 4. Test Case 3:  Passing the unknown obstacle (green) from the x-y perspective is shown here. Figure 
(a) depicts a trajectory created with Dubins Metric I. The planning process is terminated successfully as the 
trajectory enters the goal region with no direction preference. The result of the additional incorporation of x-y 
plane direction information towards the goal in Dubins Metric III can be seen in (b).   

                                            (a)                                                                                                (b) 

                                            (a)                                                                                                (b) 

                                            (a)                                                                                                (b) 

Deutscher Luft- und Raumfahrtkongress 2011

1032



FIGURE 7.Test Case 6: Global + Local planning  

FIGURE 5. Test Case 4: A scenario with an unknown obstacle (green) with penalty function (a) and without penalty 
function (b) can be seen. 

FIGURE 6.Test Case 5: Narrow passage 

4.1.2. Obstacle Avoidance 

We already showed basic unknown obstacle avoidance in 
test case 3. However, it is interesting to compare the 
performance of the planner in a more difficult scenario 
with the penalty function disabled. U-shaped obstacles 
present a special challenge to planning algorithms as the 
search tree can become dead-locked. In test case 4, 
depicted in figure 5, we introduce a large U-shaped 
obstacle with height mhobs 50= . If the penalty function is 
disabled, the Open List is empty after 22 node expansion, 
leaving the planner with no more branches to explore, 
thus aborting planning. If the penalty function is used, it 
successfully biases the tree away from the obstacle. 

Another case, which needs special attention, is a scenario 
with narrow passages, because the dynamic constraints 
of the aircraft make it difficult to enter canyons. 
Furthermore, obstacle avoidance techniques should not 
be too conservative, because otherwise goal positions, 
which are only reachable through canyons, will not be 
attained. Test case 5 depicted in figure 6 shows such a 
case. The local planner performs well and finds the 
connection through the canyon even if no line-of-sight 
connection between start and goal exists.  

4.2. Integrated Planner 

Test case 6 depicted in figure 7 presents a solution of the 
two-stage planning approach. The roadmap of the global 
planning stage consisted of 10000 nodes and the 500 
nearest neighbors of each node were considered during 

roadmap construction. The red circles represent the 
waypoints, which were computed using the global planner.  
The blue solid line depicts the final solution of the local 
planner and the green U-shaped obstacle with height 

mhobs 35= was unknown during global planning. It 
intersects the edge between waypoint 5 and the goal 
rendering the global solution infeasible.  

The initial heading of the aircraft points away from the 
goal.  A U-turn towards waypoint 1 leads the aircraft 
towards the global path. At the first tree-expansion step 
the Dubins metric ensures, that the branch of the tree, 
which is the closest to waypoint 1 under the minimum 
turning radius constraint is expanded. As soon as the 
waypoint proximity condition (line 3 of algorithm 2) is 
fulfilled, waypoint 2 is set as next local goal. Then the 
nodes on the Open List are reevaluated (lines 5-6) and 
the best node with respect to waypoint 2 is expanded. It 
can be seen that this is not necessarily the node closest 
to waypoint 1. 

As already shown in the previous section, the local 
planner is able to avoid the unknown obstacle using the 
obstacle avoidance techniques implemented. A feasible 
3D trajectory, which avoids previously known as well as 
unknown obstacles by flying over them as well as around 
them, was found in this test case using our two-stage 
approach in an urban scenario. 

                                            (a)                                                                                                (b) 
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5. DISCUSSION 

5.1. Local Planner - Features and Failure Cases  

The presented local planning algorithm works fast and 
returns smooth trajectories for a variety of cases. The 
switching maneuver automaton provides a feasible 
representation of the aircraft’s dynamics and reasonably 
reduces the computational effort due to the switching 
property. 

The choice of an appropriate metric was identified as a 
key component. A metric should be computationally 
cheap but also robust in a sense, that it does not lead to 
failure in unforeseen situations, such as pop-up obstacles 
or goals, which are positioned directly behind the aircraft. 
The Euclidean Distance is therefore not suitable. Even if 
the advantages of the Dubins metric are not of purely 
quantitative nature, as can be seen in table 2, its use 
results in paths of higher quality i.e. less unnecessary 
turning. To provide comparability throughout testing of the 
properties of the suggested planner we chose to 
implement Dubins Metric I as default metric.  

The penalty function is computationally cheap but 
improves the performance in obstacle rich environment.  
We chose a completely deterministic approach for the 
local planner, due to the advantages of predictability and 
traceability. However, there is a trade-off between these 
advantages and completeness. Other than in the case of 
planners with probabilistic completeness guarantees the 
presented local planner is not guaranteed to find a 
solution if one exists. It is therefore necessary to carefully 
analyze the reasons for aborted planning. 

Three failure modes exist, which cause the local planner 
to abort the planning process depicted in algorithm 2.  

1) Empty Open List failure: If the last node on the Open 
List cannot be expanded successfully, planning is 
aborted in line 12. This failure mode occurs, if the 
search-tree gets entrapped by the environment. It can 
be countervailed by increasing the size of the Open 
List. Furthermore, the aforementioned penalty term 
lowers the probability of this failure mode. 
2) Expansion Failure: The threshold in line 13 is set 

to 50. Given that the global planner returns a set 
of waypoints, which are spaced by the length of 
at least 1 but on average 4 to 5 motion primitives 
in the given test environment, 50 tree expansion 
steps are sufficient to plan a trajectory between 
two consecutive waypoints. Thus, a violation of 
this limit can have two reasons: 

a.  The sequence of waypoints produced by the 
global planner is not kinematically feasible. This 
can occur, when planning in maze-like 
environments with sharply cornered canyons. 
This is the most common reason for failure, 
because the sequence of waypoints cannot be 
tracked by the local planner. 

b. Unknown obstacles are discovered blocking the 
globally planned path. In this case the local 
planner plans around the obstacle. However, 
unfavorable obstacle geometries such as U-
shaped obstacles or wedges, which drive the 
tree away from the waypoint, can result in this 
failure mode. The penalty term countervails the 
occurrence of this failure mode. 

If the waypoint, which cannot be reached within the 
limits, is not the global goal, the planner tries to skip 
this waypoint in line 15.  

3) Propagation failure: If the node, the aircraft is 
supposed to move to during the propagation 
procedure in line 20, is equivalent to the current best 
node, the aircraft would move to a node, which has 
not been successfully expanded yet. We choose to 
abort planning in this case, as no information exists if 
this node can be expanded successfully. This failure 
mode is caused by large unknown obstacles such as 
walls preventing the aircraft from reaching a 
waypoint. This failure mode is closely related to the 
failure mode presented in 2.(b) 

Considering the failure modes, it can be observed that 
failure mode 2.(a) is caused by problems concerning the 
combination of both planners. Further research will 
address this issue. The other failure modes, however, are 
due to unknown obstacles or very difficult obstacle 
configurations. This might be tolerable, because the 
aircraft’s safety can be guaranteed through the safety 
maneuvers. Failure mode 2.(a) also does not compromise 
the safety of the aircraft, as the safe execution of one of 
the safety maneuvers is always guaranteed.  

5.2.  Integration of Global and Local Planner 

The integration of the global planner and the local planner 
into a two-stage motion planning framework has been 
outlined and a simulation in a difficult scenario has been 
performed. The overall performance is good, i.e. feasible 
trajectories between random start and goal configurations 
can be generated reliably for a wide variety of 
environments, start and goal configurations.  

We found it difficult to carefully account for the kinematic 
constraints in the global planner due to the random 
sampling approach used by the PRM. However, the 
results we obtained were satisfying. Deterministic 
sampling during roadmap generation [16] seems 
promising to directly address kinematic feasibility 
constraints and improve the performance of the global 
planner. However, a kinematically unfeasible path does 
not necessarily lead to failure of the integrated planner if 
the environment allows for additional turns of the aircraft. 
Overall, the integrated planning approach performs well 
and is able to successfully address narrow passages as 
well as unknown obstacles. It also exhibited promising 
runtime behavior in the test runs we conducted. 

6. CONCLUSION 

We presented a deterministic tree-based local planner for 
a fixed-wing UAV in detail. It is part of the two-stage 
planning approach presented in [1]. The Dubins metric 
was shown to outperform the Euclidian metric in terms of 
visible path quality. Furthermore, augmenting the heuristic 
with environment information such as obstacle proximity 
increased the success rate of the planner significantly. 
We conducted simulations of the integrated planner in 
difficult terrain and obtained promising results. The 
presented local planner as well as the framework is a step 
towards a computationally inexpensive online planner for 
small UAVs which are able to function safely in a varying 
urban environment. Further details can be found in Ref. 
[15]. 
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