
LOCAL PLANNING FOR A FIXED-WING UAV WITH A TREE-BASED
PLANNER AND MOTION PRIMITIVES

M. Niendorf, Institute of Flight Mechanics and Control, University of Stuttgart, Germany
M. Gros, Institute of Flight Mechanics and Control, University of Stuttgart, Germany

A. Schöttl, MBDA Deutschland, Germany
W. Fichter, Institute of Flight Mechanics and Control, University of Stuttgart, Germany

Abstract

Motion planning for a fixed-wing UAV is a complex task, especially due to the dynamic constraints of the
aircraft. The work presented here is based on a two-stage planning framework. The global planning stage
consists of a probabilistic roadmap planner which computes a sequence of waypoints accounting for
kinematic constraints. Those are fed into a deterministic tree-based local planner that locally refines the path
using closed-loop dynamics motion primitives. In this paper we focus on the local planner which we present in
detail. Tree expansion is guided by a metric based on Dubins curves. We provide simulation results
comparing the metric to three alternative metrics to support our choice. The computational complexity is
reduced by limiting the set of motion primitives depending on the environment. Furthermore, we redefine the
waypoint proximity criterion by considering the Dubins metric. We discuss the suggested planner and
thoroughly analyze its possible failure modes. The simulations are concluded by showing the efficiency of the
local obstacle avoidance strategy using just the local planner and together with the global planner in a
complex urban scenario. The simulation reveals promising behavior for both the local planner and the
coupled planners.

1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have been in
development for several decades and will play an
increasingly important role in various future scenarios.
Typical missions for UAVs today include surveillance
tasks, reconnaissance, environmental monitoring, etc. As
of today, most deployed unmanned aerial systems make
use of a human operator in the loop who remotely pilots
the aircraft. However, it is desirable to strive for a higher
degree of automation to enable the operator to give higher
level commands.

Within complex obstacle-filled environments operating an
UAV holds several challenges to be solved. Fixed-wing
aircrafts must maintain a velocity sufficiently greater than
stall speed at any time in order to provide safe operation.
Furthermore, since hovering in place is not possible,
heading and flight path angle changes require significant
space and time. Obstacle-cluttered environments
therefore require a planner that exploits the
maneuverability of the underlying system.

A popular approach to solving the motion planning
problem in an obstacle-cluttered environment is to
decompose it into a coarse, discretized global planning
problem and a finer local planning problem which
accounts for the dynamic constraints.

Roadmap-based planners have been widely adopted to
solve the global planning problem [1,2]. Probabilistic
Roadmaps (PRM) have gained special attention due to
their favorable runtime and completeness guarantees as
well as their multi-query property. During the query phase,
well studied graph search algorithms such as A* are
employed to obtain a solution. Randomized Trees such as

the RRTs have been used for path planning under
kinodynamic constraints [3]. However, increasing the
dimension of the search space to the state space to
account for dynamic constraints increases the
computational effort dramatically. Therefore, it is common
to perform sampling in the configuration space with
position and attitude or even work space with only position
information rather than in the state space which would be
preferable in terms of system dynamics.

The reduction of the state space of a system to
maneuver-space by the introduction of a state machine,
which interconnects steady-state trajectories and
maneuver trajectories, was introduced in [4]. This allows
for implicitly addressing the dynamic constraints of the
system. The application of this concept to a tree-based
planner, which builds a tree of motion primitives, was
presented in Ref. [5].

In [6] we introduced a two-staged approach to the UAV
motion planning problem for a small fixed-wing UAV,
which consists of a modified PRM stage to solve the
global planning problem and a deterministic online tree-
based local planning stage which implicitly addresses the
dynamic constraints by using closed-loop motion
primitives. It refines the trajectory locally. The local
planner is strictly deterministic in contrast to the RRT
motivated planner strategy mentioned above. It uses a
metric based on Dubins curves as heuristic. �������	

avoidance during runtime is crucial when unmanned aerial
vehicles fly through dynamic environments. Thus, it
makes sense to directly embed range information such as
from a laser range finder (LRF) or a radar distance sensor
into the motion planner. Such an approach is reported in
[7] and [8] in the framework of RRTs and potential fields,
respectively.

DocumentID: 241468
Deutscher Luft- und Raumfahrtkongress 2011

1027

The objective of this paper is to provide deep insight into
the deterministic online local planner and to introduce
details beyond the scope of the previous paper [6]. We
depict the algorithm in detail. We pay special attention to
the choice of an appropriate metric and provide simulation
results using 4 different metrics. The switching maneuver
automaton, which reduces the computational complexity
by limiting the set of applicable motion primitives
depending on the environment, is introduced.
Furthermore, we introduce a new waypoint proximity
criterion and provide simulation results concerning the
efficiency of the local obstacle avoidance strategy. We
discuss the local planner and thoroughly analyze its
possible failure modes. The remainder of this paper is
organized as follows. Section 2 provides a brief overview
of the PRM global planner. The local planner is presented
in detail in section 3 and results obtained from simulation
are presented in section 4. A discussion of the results
paying special attention to the performance of the local
planner in section 5 leads to the conclusions given in
section 6.

2. GLOBAL PLANNER

The global planner computes a series of waypoints which
lead from start to goal offline, i.e. once before the actual
flight and accounts for static and known obstacles. The
Probabilistic Roadmap algorithm is used as global planner
due to its well-studied advantageous properties, i.e.
probabilistic completeness and multi-query capability.

Planning a path for a robot using a probabilistic roadmap
consists of two phases. First, a predefined number of
random nodes are sampled from the free work space, R³
in this case. The planner then tries to connect n nearest
neighbors to each other with straight line segments. We
store the nodes in a kd-tree to allow for efficient n-nearest
neighbor search. The edge candidates are checked
against collision with the world model by using oriented
bounding boxes (OBB) and the collision algorithm
depicted in [9].

We impose additional constraints on the slope as well as
on the length of the edges to pay respect to the kinematic
constraints of the UAV [6].

The resulting graph represents the free space and can be
used to solve multiple queries in a second step. Start and
goal are connected to the roadmap and then a modified
version of the A* algorithm is used to solve the query.
Modifications account for flight path constraints, e.g. the
heading change between two consecutive edges is limited
to be smaller than a threshold.

The a priori known obstacles are modeled using axis
aligned bounding boxes. The notion of the Dubins aircraft
is exploited to develop a metric. Even though, this metric
does not underestimate the distance between two points
as required by the A* algorithm to be admissible, we
achieved good results in practice, especially when
combining the global and the local planner. The 3D
Dubins heuristic will be discussed in detail in the following
section.

The found path is smoothed in a post-processing step,
which skips nodes by connecting non-neighbor nodes with
each other, if the resulting edges are collision-free and
satisfy the previously mentioned constraints.

3. LOCAL PLANNER

So far, the global planner has been presented, which
generates a series of waypoints accounting for
kinematical constraints. However, as the a priori known
world model might be incomplete, i.e. unknown obstacles
might exist and to make use of the full capabilities of the
aircraft, an online local planner is executed during the
flight. We chose an approach which builds a tree of
motion primitives to directly address the nonholonomic
constraints of the aircraft. Figure 1 illustrates the
exemplary use of a tree of discrete maneuvers, which can
be connected smoothly to each other, to find a path from
an initial position to a goal position passing by a waypoint,
with a goal area represented by a circle in �² with
radius goalR . The local planner is meant to refine the
global path locally with a set of densely sampled motion
primitives. We will now briefly cover the simulation model
as well as the motion primitive generation and then focus
on selected details.

3.1. Simulation Model
To generate the set of motion primitives, a model of the
plant is necessary. In this work we use a nonlinear 6
degrees of freedom model of a fixed-wing aircraft. We
simulate the closed-loop model due to the stability
advantages. The control loops were designed in order to
give flight path variables as reference inputs. This leads to
the following closed-loop system

(1)),,,(,)0()),(),((0 comcomcom Vrxxtrtxfx γφ===�

where comφ is the commanded roll angle. For small γ, a
small angle of attack α and sideslip angle β , φ is
equivalent to the bank angle μ . Therefore, φ is chosen
as reference signal of the lateral motion. The commanded
flight path angle comγ and the commanded absolute speed
comV are chosen to be the reference signals of the

longitudinal motion. The reference input vector is
therefore defined as),,(comcomcom Vr γφ= . Refer to [6] for
the full feedback policy and further details.

3.2. Motion Primitive Generation

To obtain the set of motion primitives (MPs), we
suggested a straight-forward sampling method. The
response of the nonlinear system in the interval],[gs ttt ∈
with initial state sx to the input vector sr is recorded as a
motion primitive. By sequentially applying this method to
all combinations of sx and sr we obtain a set of motion

����������

FIGURE 1. Exemplary Tree Expansion in 2D

Deutscher Luft- und Raumfahrtkongress 2011

1028

primitives, which can be stored in a maneuver automaton.
We apply each input vector for a time interval that
satisfies setg tt ≥ , where sett is the settling time of the
underlying controller loops. Thus, we call these motion
primitives steady-state motion primitives. Furthermore, a
second class called non-steady state motion primitives
was introduced to enable small heading changes in the
horizontal plane, which could not be realized with the
steady-state motion primitives due to the magnitude of
sett . For a more rigorous explanation of the motion

primitive generation process as well as a detailed
description of the non-steady state primitives, refer to [6].

3.3. Metric

In motion planning the appropriate choice of a metric
measuring proximity between configurations, i.e. position
and attitude, is crucial. When dealing with a system that is
subject to nonholonomic constraints such as a car or a
fixed-wing aircraft, both constrained with a minimum
turning radius minR , the Euclidean distance between two
points can be a poor estimate of the achievable path
length. To find the shortest path between two
configurations in a 2d environment for a nonholonomic
car, Dubins presented a sufficient set of 6 path types,
each consisting of at maximum 3 segments, which can
either be circular arcs or straight line segments [10].

A significant speed gain in computation can be achieved,
if the final orientation is left arbitrary such that the shortest
path consists of at most 2 segments. An analytical
solution to this problem was given in [11]. We use this
result in the horizontal plane to compute the length of the
shortest path from an initial configuration),,(iiii yxq χ= ,
where χi is the initial heading angle, to a goal
position),(ggg yxq = .

Since the constraints on possible motion for the Dubins
car and an aircraft are closely related, the notion of a
Dubins car can be expanded to R³. The Dubins aircraft
was introduced in [12]. In [5] a metric based on Dubins
curves in 3d was depicted. We suggest 3 different
metrics, which each use a sum of a horizontal metric and
a vertical metric to compute a 3d metric. The metric in the
horizontal plane is computed as the length of a two
segment Dubins path between the start configuration and
goal position. The 3 suggested metrics are depicted in
table 1. Dubins Metric I uses the approach depicted in
algorithm 1 to compute the path length, i.e. if the flight
path angle γ is too large, revolutions of a circle with
minimum turning radius are added until the path angle
constraint is satisfied. However, other than in [5] we add
zΔ as we obtained better results with this modification.

Dubins Metric II is the sum of the length of the Dubins

curve in the horizontal as well as in the horizontal plane.
In this case the same minimum turn radius is assumed in
the horizontal and the vertical plane. Metric III is the sum
of the Dubins curve in the horizontal plane and the vertical
distance vIIIL computed as:

(2) 22/)tan(22
, yxzyxL IIIv Δ+ΔΔ−⋅Δ+Δ= γ

This will penalize any flight path angle, which is not
pointing towards the goal. vIIIL is therefore not a measure
of proximity but rather a measure of matching flight path
angle.

3.4. Search Tree

The local planner builds a tree of motion primitives in
order to find a feasible trajectory from a start configuration
to a goal position. The planner returns a sequence of
control inputs to the aircraft, which then follows the
generated trajectory in an open-loop fashion.

The search tree is guided by the previously found
waypoints. It refines the global solution into a dynamically
feasible trajectory. Depth-first behavior is desirable in
uncluttered environment to avoid unnecessary branching
of the tree. However, in the proximity of obstacles as well
as close to the goal breadth-first behavior is preferred. A
node of the local planner can be fully represented by its
configuration),,,,(γφzyxq = . Tree expansion is guided by
a partially greedy cost function J . For a MP that starts at
iq and ends at fq the cost functional J
is defined as

(3)),(),(),()(obsfgoalffif qqhqqgqqfqJ ++=

where),(fi qqf is the trace length of the MP and
),(goalf qqg is the cost-to-go computed by using the 3D

Dubins heuristic between fq and goalq . The term
),(obsf qqh represents the value of a potential function,

which will be explained in the next section. It is important
to note that the motion primitives do not have the same
length, as the feedback controller cannot drive the
nonlinear plant from one state to any arbitrary state in
constant time. Therefore, the term),(fi qqf is necessary to
account for the differing length. A purely greedy cost-
function would favor longer motion primitives over shorter
motion primitives.

The pseudo code given algorithm 2 depicts the structure

Dubins Metric
I

Dubins Metric
II Metric 3

IL Dubins curve Dubins curve Dubins curve

vL Helix Dubins curve Eq. 1

Algorithm 1 Dubins Metric I

1: Lh,Dubins←compute horizontal Dubins distance (qi, qg)
2: h ← Lh,Dubins

3: while Δz/h ≥ sin(γmax) do h ← h + 2 · π · Rminend

4: Lv,Dubins ← h + Δz
5: L3D,Dubins ← Lh,Dubins + Lv,Dubins

Algorithm 2 Tree of Motion Primitives

1: nodebest ← open_list.push() ← nodeUAV ← qi; age = 0;
2: while xg not reached
3: if waypoint reached
4: update waypoint to next from PRM
5: open_list : for all nodes: update J , evaluate G
6: nodebest ← open_list.pop()
7: age_waypoint ← age
8: else

9: age ← age + 1
10: nodebest for all successors: evaluate J and G, collision/safety maneuver check
11: for all feasible successors: open_list.push()
12: if open_list is empty then planning failure end

13: if age − age_waypoint > threshold
14: if waypoint = global_goal then planning failure end

15: else skip waypoint
16: nodebest ← open_list.pop()
17: if age − ageold > planning_depth
18: path ←recursively find path from find path from current_node to nodeUAV

19: nodeUAV ←move UAV to the end of next trim state along path
20: if nodeUAV = nodebest then planning failure end

21: open_list: delete branches whose origin nodes possess timestamps ≤ age(nodeUAV)
22: ageold ← age

ALGORITHM 2. Local Planner

ALGORITHM 1. Dubins Metric I

TAB 1. Metric comparison

Deutscher Luft- und Raumfahrtkongress 2011

1029

of the local planner. The resemblance to the A* algorithm
[13] is obvious. The algorithm maintains a priority queue
of nodes called Open List, which is sorted according to
the cost function. However, we limit the size of the Open
List, which will drive the search tree towards the goal and
avoid unnecessary branching in uncluttered environment,
yet still provide enough options for tree expansion in more
difficult terrain. The best node bestnode is expanded by
applying all possible motion primitives in line 10. All
maneuvers that can be smoothly connected to the
configuration at the best node are stored as new branch
candidates. The new branch candidates are then checked
for collision and, if feasible, added to the search tree and
inserted into the Open List with the appropriate priority in
line 11.

To ensure the safety of the aircraft a branch is only added
to the search tree, if at the end of each motion primitive at
least one out of 4 safety maneuvers can be performed,
which reverse the current heading. Safety maneuvers
were represented by OBB placeholders and collision
checked for every motion primitive. It is assumed that a
safety maneuver takes advantage of the full capabilities of
the aircraft and therefore the minimum turning radius is
much smaller than the one observed during nominal flight
represented by the motion primitives.

The online search property is realized by the introduction
of the parameter “planning depth” in line 17. We limit the
number of node expansions before propagating the
aircraft to the next position, which is found by recursively
calculating the trajectory from the current best node in the
search tree to the current position of the aircraft in line 18.
Parts of the tree, which become unreachable, are pruned
in line 21.

We included a check for planning failure in three lines of
the pseudo code in algorithm 2. In case one of the
constraints is violated, a safety maneuver is executed.
Obstacle avoidance techniques complementary to the
collision checks countervail these cases.

3.5. Obstacle Penalty function

Typically, a free space heuristic such as the Euclidian
distance or the Dubins metric is used to guide tree
expansion, i.e. a possible line-of-sight to the goal is
assumed. However, this might lead to the tree being
dead-locked, as local minima such as the bug-trap might
prevent further tree expansion. By the introduction of the
term),(obsf qqh into the cost function, we include
environment information, resulting in a more informed
heuristic.),(obsf qqh is the value of a potential function that
takes the position coordinates fq and an obstacle
position obsq into account.

(4))1|/(|1),(−−⋅= obsfobsf qqKqqh

obsq is determined by the simulation of a laser range
finder (LRF) similar to Ref. [7]. The simulation of the LRF
assumes a beam with limited range LRFd , variable pitch
angle LRFθΔ and variable azimuth angle LRFψΔ . obsq is the
minimum distance between fq and any obstacle in range.
Thus, motion primitives that lead too close to obstacles
will be penalized heavily, which in return guides the tree
towards the free space.

3.6. Switching Maneuver Automaton

The computational effort in motion planning can be
reduced efficiently by the representation of the vehicle
dynamics with a maneuver automaton. However, there is
a trade-off between how densely the flight envelope is
sampled and computational effort. It is desirable to
densely sample the flight envelope, which will in return
increase the computational effort significantly, because
denser sampling requires a larger number of motion
primitives, thus leading to a higher branching factor of the
tree of motion primitives. Especially in obstacle cluttered
environment or close to the initial and goal position it is
favorable to have a wide set of motion primitives available
to make use of the full dynamics of the aircraft. To
address this dilemma a maneuver automaton can be
defined, which only allows a subset of the complete set of
motion primitives at a time [14]. One can classify subsets
by different characteristics such as velocity, range, turn
radius or by maximum roll angle. A switching function then
has to be chosen, which limits the allowable states and
transitions of the maneuver automaton to a specific set.
The switching function can depend on time or
environmental factors such as proximity to obstacles or
proximity to start and goal.

To achieve a maximum of maneuverability in obstacle
cluttered environment, we define a subset of motion
primitives with roll angles greater than a threshold boundφ
that are applicable additionally when close to obstacles. In
an obstacle free environment only MPs below boundφ are
applied; this is called limited set of MPs. We use obstacle
proximity information provided by the simulated Laser
Range Finder in the switching function G to provide the
switching function depending on a threshold boundd .
Additionally, if the difference between current heading and
the azimuth of an assumed line-of-sight connection to the
goal is greater than an upper bound ψΔ the MPs with φ
� boundφ are also applicable to allow for turning with
minimum turning radius.

3.7. Goal Area

During planning each waypoint can be considered a local
goal for the local planner. The global goal is the last of the
waypoints and is therefore planned towards by the local
planner as if it was another local goal.

Due to the discrete nature of planning with motion
primitives it is unlikely that goals can be reached
precisely. It is therefore common practice to define a
spherical goal area around the goal. The Dubins metric,
which penalizes heading errors close to the goal heavily,
makes the heuristic value alone an insufficient measure of
proximity to a goal. Therefore the node with top priority
might not be the physically closest to the goal. In general
a global goal should be encountered as precisely as
possible, i.e. the goal area around it should be small. In
contrast, the waypoints only give “guidance” on how the
local planner should approach the environment. It is
therefore possible to relax the constraints on how
precisely they need to be followed. Nonetheless, if the
constraints are too loose, chances are high that the locally
planned trajectory will deviate too far from the previously
found global solution, which can then lead to planning
failure, because the local planner might not succeed in
guiding the aircraft back to the global solution.

Deutscher Luft- und Raumfahrtkongress 2011

1030

On implementation level two different ways to distinguish,
whether a goal has been reached, were found to be
efficient. An upper bound on the Euclidian distance goalR
and a looser upper bound on the Dubins metric serve as
decision criteria. The looser bound on the Dubins metric

DubinsgoalR _ is possible, because heading information is
directly incorporated into this metric. If one of the
conditions is satisfied, the waypoint is reached and the
next waypoint becomes active. For the global goal, i.e. the
last waypoint, we chose that only the Euclidian distance is
of interest, as this goal should be reached as precisely as
possible with arbitrary heading. It is important to note,
however, that the magnitude of the thresholds have to be
adjusted to the specific model of the aircraft, i.e. the
maneuver automaton. If the maneuver automaton
included shorter or more aggressive maneuvers, one
could lower the threshold and vice versa.

4. SIMULATION RESULTS

The following parameters have been set if not otherwise
stated to conduct the presented simulations. Motion
primitives for a set of ���� reference vectors r shown in
table 2 were generated. Additionally, to allow for small
heading changes a set of non steady-state MPs has been
added. In total we obtain a set of 1087 motion primitives.
The limited set of motion primitives was chosen to be the
Motion Primitives with a roll angle φ � �25 . The thresholds
in the switching function G were set to mdbound 50= and

°=Δ 15ψ . Parameters for the global planner are set to
°=10maxγ , °=Δ 60maxχ , mR 38min = and the LRF parameters

were set to mdLRF 80= ,]20,20[°°−=Δθ ,]45,45[°°−=Δψ . The
default metric is Dubins metric I. The radius of the sphere
around waypoints is set to mRgoal 15= and the threshold

for proximity when evaluating Dubins metric I to
mR Dubinsgoal 30_ = .

4.1. A Deeper Insight Into the Local Planner

By definition the global planner returns an obstacle free
path, i.e. intervisibility between waypoints is guaranteed.
Therefore, any case in which intervisibility between the
start position and goal position is not given, the obstacle
blocking the line-of-sight can be considered unknown and
will be referred to as unknown obstacle.

4.1.1 Dubins Metric Performance

First, we present a comparison of the 3 suggested
metrics. Simulation results obtained when using the
Euclidian distance serve as reference. Table 3 shows the
number of node expansions necessary to reach the goal

using each one of the metrics.

Heading information is necessary in test case 1 (figure 2)
for the planner to find a solution, because the goal is
located elevated and behind the aircraft’s initial position.
The Euclidean Distance does not provide such
information and therefore the algorithm is not able to
determine which branch to expand, since none of the
candidates is the best evaluating J . Thus, when the
condition in line 13 of algorithm 2 is violated, the planner
aborts the planning process. The usage of Dubins curves
in the horizontal plane incorporates heading information
into the other 3 tested metrics. They perform similarly
well. Using metric 3, the planner expands one more node
compared to Dubins Metric I and Dubins Metric II.

Test case 2 (fig. 3) is trivial, but reveals the core message
of the metric comparison. In terms of node expansions all
metrics perform almost similarly well. However, a visual
comparison reveals a very wiggly path for the Euclidean
Metric compared to Dubins Metric I+II caused by lack of
heading information in the Euclidean Metric.

Figure 4 demonstrates the difference in behavior of
Dubins Metric I and III, if an unknown wall is introduced.
The planner is able to encounter the goal using all 4
metrics. Dubins metric I, Dubins metric II and the
Euclidean distance result in the same path, whereas
metric 3 produces a slightly longer path. The property of
metric to maintain the trajectory headed directly towards
the goal 3 in the x-z plane can be observed.

4.1.1. Reducing Computational Effort in
Obstacle Free Environments

To evaluate the performance of the Switching Maneuver
Automaton, table 4 gives the number of node expansions
���� and the number of times the limited set of motion
primitives is used in test cases 1 through 5. The
application of the limited set reduces the computational
effort since fewer motion primitives have to be evaluated
in each step. In test cases 2, 3 and 4 the limited set has
been applied in at least one third of the node expansions.
Difficult start-goal configurations or unknown obstacles
need to make use of the full flight envelope of the UAV,
therefore requesting all motion primitives. Such cases are
test cases 1 and 5.

φ -45° -20° -10° 0° 10° 20° 45°
γ -15° -10° 0° 10° 15°
kv 20m

Case Dubins
Metric I

Dubins
Metric II Metric 3 2-Norm

1 10 10 11 -
2 9 10 9 9
3 6 6 7 6

Case Distance ���� �	
�
��
 �	
�
��
�������
1 - 10 0 0%
2 374m 9 5 55.56%
3 274.4m 6 5 83.33%
4 254m 30 11 36.67%
5 196.5m 6 0 0%

TAB 2. Discretized Reference Inputs

TAB 3. Number of node expansions for each metric

TAB 4. Applicability of the limited set of MPs

Deutscher Luft- und Raumfahrtkongress 2011

1031

FIGURE 2. Test Case 1 shows the necessity to incorporate heading information. In (a) Dubins Metric I comes to
a feasible solution, the Euclidean Metric in (b) fails to reach the goal with the given parameters.

FIGURE 3. Test Case 2: For long obstacle free sections the comparison of Dubins Metric I (a) with the
Euclidean Distance (b) reveals a meandering path for the latter which is in general not favorable.

FIGURE 4. Test Case 3: Passing the unknown obstacle (green) from the x-y perspective is shown here. Figure
(a) depicts a trajectory created with Dubins Metric I. The planning process is terminated successfully as the
trajectory enters the goal region with no direction preference. The result of the additional incorporation of x-y
plane direction information towards the goal in Dubins Metric III can be seen in (b).

 (a) (b)

 (a) (b)

 (a) (b)

Deutscher Luft- und Raumfahrtkongress 2011

1032

FIGURE 7.Test Case 6: Global + Local planning

FIGURE 5. Test Case 4: A scenario with an unknown obstacle (green) with penalty function (a) and without penalty
function (b) can be seen.

FIGURE 6.Test Case 5: Narrow passage

4.1.2. Obstacle Avoidance

We already showed basic unknown obstacle avoidance in
test case 3. However, it is interesting to compare the
performance of the planner in a more difficult scenario
with the penalty function disabled. U-shaped obstacles
present a special challenge to planning algorithms as the
search tree can become dead-locked. In test case 4,
depicted in figure 5, we introduce a large U-shaped
obstacle with height mhobs 50= . If the penalty function is
disabled, the Open List is empty after 22 node expansion,
leaving the planner with no more branches to explore,
thus aborting planning. If the penalty function is used, it
successfully biases the tree away from the obstacle.

Another case, which needs special attention, is a scenario
with narrow passages, because the dynamic constraints
of the aircraft make it difficult to enter canyons.
Furthermore, obstacle avoidance techniques should not
be too conservative, because otherwise goal positions,
which are only reachable through canyons, will not be
attained. Test case 5 depicted in figure 6 shows such a
case. The local planner performs well and finds the
connection through the canyon even if no line-of-sight
connection between start and goal exists.

4.2. Integrated Planner

Test case 6 depicted in figure 7 presents a solution of the
two-stage planning approach. The roadmap of the global
planning stage consisted of 10000 nodes and the 500
nearest neighbors of each node were considered during

roadmap construction. The red circles represent the
waypoints, which were computed using the global planner.
The blue solid line depicts the final solution of the local
planner and the green U-shaped obstacle with height

mhobs 35= was unknown during global planning. It
intersects the edge between waypoint 5 and the goal
rendering the global solution infeasible.

The initial heading of the aircraft points away from the
goal. A U-turn towards waypoint 1 leads the aircraft
towards the global path. At the first tree-expansion step
the Dubins metric ensures, that the branch of the tree,
which is the closest to waypoint 1 under the minimum
turning radius constraint is expanded. As soon as the
waypoint proximity condition (line 3 of algorithm 2) is
fulfilled, waypoint 2 is set as next local goal. Then the
nodes on the Open List are reevaluated (lines 5-6) and
the best node with respect to waypoint 2 is expanded. It
can be seen that this is not necessarily the node closest
to waypoint 1.

As already shown in the previous section, the local
planner is able to avoid the unknown obstacle using the
obstacle avoidance techniques implemented. A feasible
3D trajectory, which avoids previously known as well as
unknown obstacles by flying over them as well as around
them, was found in this test case using our two-stage
approach in an urban scenario.

 (a) (b)

Deutscher Luft- und Raumfahrtkongress 2011

1033

5. DISCUSSION

5.1. Local Planner - Features and Failure Cases

The presented local planning algorithm works fast and
returns smooth trajectories for a variety of cases. The
switching maneuver automaton provides a feasible
representation of the aircraft’s dynamics and reasonably
reduces the computational effort due to the switching
property.

The choice of an appropriate metric was identified as a
key component. A metric should be computationally
cheap but also robust in a sense, that it does not lead to
failure in unforeseen situations, such as pop-up obstacles
or goals, which are positioned directly behind the aircraft.
The Euclidean Distance is therefore not suitable. Even if
the advantages of the Dubins metric are not of purely
quantitative nature, as can be seen in table 2, its use
results in paths of higher quality i.e. less unnecessary
turning. To provide comparability throughout testing of the
properties of the suggested planner we chose to
implement Dubins Metric I as default metric.

The penalty function is computationally cheap but
improves the performance in obstacle rich environment.
We chose a completely deterministic approach for the
local planner, due to the advantages of predictability and
traceability. However, there is a trade-off between these
advantages and completeness. Other than in the case of
planners with probabilistic completeness guarantees the
presented local planner is not guaranteed to find a
solution if one exists. It is therefore necessary to carefully
analyze the reasons for aborted planning.

Three failure modes exist, which cause the local planner
to abort the planning process depicted in algorithm 2.

1) Empty Open List failure: If the last node on the Open
List cannot be expanded successfully, planning is
aborted in line 12. This failure mode occurs, if the
search-tree gets entrapped by the environment. It can
be countervailed by increasing the size of the Open
List. Furthermore, the aforementioned penalty term
lowers the probability of this failure mode.
2) Expansion Failure: The threshold in line 13 is set

to 50. Given that the global planner returns a set
of waypoints, which are spaced by the length of
at least 1 but on average 4 to 5 motion primitives
in the given test environment, 50 tree expansion
steps are sufficient to plan a trajectory between
two consecutive waypoints. Thus, a violation of
this limit can have two reasons:

a. The sequence of waypoints produced by the
global planner is not kinematically feasible. This
can occur, when planning in maze-like
environments with sharply cornered canyons.
This is the most common reason for failure,
because the sequence of waypoints cannot be
tracked by the local planner.

b. Unknown obstacles are discovered blocking the
globally planned path. In this case the local
planner plans around the obstacle. However,
unfavorable obstacle geometries such as U-
shaped obstacles or wedges, which drive the
tree away from the waypoint, can result in this
failure mode. The penalty term countervails the
occurrence of this failure mode.

If the waypoint, which cannot be reached within the
limits, is not the global goal, the planner tries to skip
this waypoint in line 15.

3) Propagation failure: If the node, the aircraft is
supposed to move to during the propagation
procedure in line 20, is equivalent to the current best
node, the aircraft would move to a node, which has
not been successfully expanded yet. We choose to
abort planning in this case, as no information exists if
this node can be expanded successfully. This failure
mode is caused by large unknown obstacles such as
walls preventing the aircraft from reaching a
waypoint. This failure mode is closely related to the
failure mode presented in 2.(b)

Considering the failure modes, it can be observed that
failure mode 2.(a) is caused by problems concerning the
combination of both planners. Further research will
address this issue. The other failure modes, however, are
due to unknown obstacles or very difficult obstacle
configurations. This might be tolerable, because the
aircraft’s safety can be guaranteed through the safety
maneuvers. Failure mode 2.(a) also does not compromise
the safety of the aircraft, as the safe execution of one of
the safety maneuvers is always guaranteed.

5.2. Integration of Global and Local Planner

The integration of the global planner and the local planner
into a two-stage motion planning framework has been
outlined and a simulation in a difficult scenario has been
performed. The overall performance is good, i.e. feasible
trajectories between random start and goal configurations
can be generated reliably for a wide variety of
environments, start and goal configurations.

We found it difficult to carefully account for the kinematic
constraints in the global planner due to the random
sampling approach used by the PRM. However, the
results we obtained were satisfying. Deterministic
sampling during roadmap generation [16] seems
promising to directly address kinematic feasibility
constraints and improve the performance of the global
planner. However, a kinematically unfeasible path does
not necessarily lead to failure of the integrated planner if
the environment allows for additional turns of the aircraft.
Overall, the integrated planning approach performs well
and is able to successfully address narrow passages as
well as unknown obstacles. It also exhibited promising
runtime behavior in the test runs we conducted.

6. CONCLUSION

We presented a deterministic tree-based local planner for
a fixed-wing UAV in detail. It is part of the two-stage
planning approach presented in [1]. The Dubins metric
was shown to outperform the Euclidian metric in terms of
visible path quality. Furthermore, augmenting the heuristic
with environment information such as obstacle proximity
increased the success rate of the planner significantly.
We conducted simulations of the integrated planner in
difficult terrain and obtained promising results. The
presented local planner as well as the framework is a step
towards a computationally inexpensive online planner for
small UAVs which are able to function safely in a varying
urban environment. Further details can be found in Ref.
[15].

Deutscher Luft- und Raumfahrtkongress 2011

1034

7. REFERENCES

[1] Kavraki, L. E., Svestka, P., Latombe, J. C., et al.:
“Probabilistic Roadmaps for Path Planning in High-
Dimensional Configuration Spaces”, IEEE
Transactions on Robotics and Automation, Vol. 12,
No. 4, August 1996

[2] Andert, F., Adolf, F.-M.: „Online World Modelling and
Path Planning for an Unmanned Helicopter“,
Autonomous Robots(27), 2009, Springer
Netherlands, pp. 147-164

[3] LaValle, S.M., Kuffner, J.J.: “Randomized
Kinodynamic Planning”, Proceedings of the 1999
IEEE Int. Conf. on Robotics and Automation, IEEE,
1999

[4] Frazzoli, E., Dahleh, M. A., Feron, E.: “Real-Time
Motion Planning for Agile Autonomous Vehicles”,
Journal of Guidance, Control and Dynamics, Vol. 25,
No. 1, 2002, pp. 116-129

[5] Hwangbo, M., Kuffner, J., Kanade, T.: „Efficient Two-
Phase 3D Motion Planning for Smal Fixed-Wing
UAVs“, Proceedings of the 2007 IEEE Int. Conf. on
Robotics & Automation, IEEE, 2007

[6] Gros, M., Niendorf, M., Schöttl, A., Fichter, W.:
„Motion Planning for a Fixed-Wing MAV Incorporating
Closed-Loop Dynamics Motion Primitives and Safety
Maneuvers“, Advances in Aerospace Guidance,
Navigation and Control, Springer Verlag, Berlin, 2011,
pp. 241-260

[7] Saunders, J., Call, B., Curtis, A. et al.: “Static and
Dynamic Obstacle Avoidance in Miniature Air
Vehicles”, AIAA Infotech@Aerospace, Arlington VA,
pp. 2005-6950, 2005

[8] Scherer, S., Singh, S., Chamberlain, L. et al.: “Flying
Fast and Low Among Obstacles”, International
Conference on Robotics and Automation (ICRA), pp.
2023-2029, 2007

[9] Gottschalk, S., Lin, M., Manocha, D.: “OBBTree: A
Hierarchical Structure for Rapid Interference
Detection”, Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive
Techniques, pp. 171-180, ACM New York, NY, USA,
1996

[10] Dubins, L.: “On curves of minimal length with a
constraint on average curvature, and with prescribed
initial and terminal positions and tangents,” American
Journal of Mathematics, vol. 79, no. 3, pp. 497–516,
1957

[11] Enright, J., Frazzoli, E., Savla, K., Bullo, F.: “On
Multiple UAV Routing with Stochastic Targets:
Performance Bounds and Algorithms”, Proceedings
of the AIAA Conference on Guidance, Navigation and
Control, 2005

[12] Chitsaz, H., LaValle, S. M.: „Time-optimal paths for a
Dubins airplane“, Proceedings IEEE Conference
Decision and Control, 2007

[13] Hart, P., Nilsson, N. J., Raphael, B.: “A Formal Basis
for the Heuristic Determination of Minimum Cost
Paths”, IEEE transactions on Systems Science and
Cybernetics, vol. 4, no. 2, pp. 100-107, 1968

[14] Kehoe, J., Watkins, A., Lind, R.: “A Time-Varying
Hybrid Model for Dynamic Motion Planning of an
Unmanned Air Vehicle” AIAA Guidance, Navigation
and Control Conference, Keystone, CO, August 2006

[15] Niendorf, M.: ”Two-Stage Motion Planning for a
Fixed-Wing UAV Incorporating A Tree-Based Local
Planner With Motion Primitives”, Thesis, Institute of
Flight Mechanics and Control Universitaet Stuttgart,
2010

Deutscher Luft- und Raumfahrtkongress 2011

1035

